ebook img

Theory of pairing symmetry inside the Abrikosov vortex core PDF

0.25 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Theory of pairing symmetry inside the Abrikosov vortex core

Theory of pairing symmetry inside the Abrikosov vortex core Takehito Yokoyama1, Yukio Tanaka1 and Alexander A. Golubov2 1 Department of Applied Physics, Nagoya University, Nagoya, 464-8603, Japan and CREST 2 Faculty of Science and Technology, University of Twente, 7500 AE, Enschede, The Netherlands (Dated: February 2, 2008) We show that the Cooper pair wave function at the centerof an Abrikosov vortex with vorticity mhasdifferentparitywithrespecttofrequencyfromthatinthebulkifmisanoddnumberandhas thesameparityifmisanevennumber. Asaresult,inaconventionalvortexwith m=1,thelocal 8 density of states at the Fermi energy has a maximum (minimum) at the center of the vortex core 0 in even(odd)-frequency superconductor. We propose a scanning tunneling microscope experiment 0 2 using a superconductingtip to explore odd-frequency superconductivity. n a The study of the mixed state in type-II superconduc- even-frequency pairing state may be generated around J tors has a long history and revealed a variety of physi- the vortex core in odd-frequency superconductor. 4 cal phenomena.[1] In the clean limit, low-energy bound InthisLetter,basedonthequasiclassicaltheoryofsu- 2 states (the Andreev bound states) are generated in the perconductivity, we develop a general theory of pairing ] vortex core due to the spatial structure of the supercon- symmetryinanAbrikosovvortexcoreincleansupercon- n ducting pair potential. [2, 3] One of the manifestations ductors, including odd-frequency superconductivity. We o of the bound states is the enhancement of zero-energy show that for a vortex with vorticity m in superconduc- c - quasiparticle density of states (DOS) locally in the core, tor, pairing function of the Cooper pair at the vortex r p observable as a zero-bias conductance peak by scanning centerhastheopposite(same)symmetrywithrespectto u tunneling microscope (STM).[3, 4] However, despite ex- frequency to (as) that of the bulk if m is an odd (even) s tensive studies of the vortex core, the issue of pairing integer. For a conventional vortex with m = 1, we show . t symmetry in the core remains unexplored. that zero energy local DOS is enhanced (suppressed) at a m Generally, superconducting pairing is classified into the center of the vortex core in even (odd)-frequency su- even-frequency or odd-frequency state according to a perconductor. We further reveal that OSO p-wave pair- - d symmetry with respect to time. Due to the Fermi ing is generated at the center of the core of ESE s-wave n statistics, even-frequency superconductors belong to the superconductor. On the other hand, in OSO p-wave su- o symmetry class of spin-singlet even-parity (ESE) or perconductor, ESE s-wave pairing state emerges at the c [ spin-triplet odd-parity (ETO) pairing state, while odd- center of the vortex core. Based on these results, we frequency superconductors belong to the spin-singlet propose an experimental setup to explore odd-frequency 2 odd-parity(OSO)orspin-tripleteven-parity(OTE)pair- superconductivityby probinga localJosephsoncoupling v 7 ing state. Although vortex core state of even-frequency by STM with superconducting tip. 6 superconductors has been well studied, that in odd- The electronic structure of the vortex core in a single 9 frequency superconductors has not been clarified yet. Abrikosov vortex in a clean superconductor is described 2 The possibility of the odd-frequency pairing state in bythequasiclassicalEilenbergerequations[10,11]based . 0 various kinds of uniform systems was discussed in Refs. ontheRiccatiparametrizationofthequasiclassicalprop- 1 [5, 6], albeit its realization in bulk materials is still agator [12]. Along a trajectory r(x′) = r0+x′ vˆF with 07 controversial. On the other hand, the realization of unit vector vˆF parallel to vF, the Eilenberger equations : the odd-frequency pairing state in inhomogeneous even- are generally represented in 4×4 matrix form.[13] For a v frequency superconducting systems has recently been singlet (triplet) superconductor with ∆ˆ = ∆σy(σx) (σx i X proposed. It is established that odd-frequency pairing andσy arePauli’smatricesinspinspace)[14],theseequa- r is induced due to symmetry breaking in such systems. tions are reduced to the set of two decoupled differential a Inferromagnet/superconductorjunctions,odd-frequency equations of the Riccati type for the functions a(x′) and pairing emerges due to the broken symmetry in a spin b(x′), space.[7] It was recently realized that proximity-induced odd-frequency pairing may be generated near normal ¯hvF∂x′a(x′)+ 2ǫn+∆†a(x′) a(x′)−∆ = 0, metal/superconductorinterfacesduetothebreakdownof ¯hvF∂x′b(x′)−(cid:2)[2ǫn+∆b(x′)](cid:3)b(x′)+∆† = 0 (1) translationalsymmetry[8]orinadiffusive normalmetal where iǫ are the Matsubara frequencies, and ∆† = n attached to a spin-triplet superconductor.[9] (−)∆∗ for even (odd)-frequency superconductor. For Since an Abrikosov vortex breaks translational sym- simple case of a cylindrical Fermi surface, the Fermi ve- metry in a superconductor, one may expect the emer- locity can be written as vF =vF(e1cosθ+e2sinθ). gence of an odd-frequency pairing state around the vor- We choose the following form of the pair potential: tex core even in a conventional spin-singlet s-wave su- perconductor. Onthe other hand,one may imaginethat ∆(r,θ,E)=∆0χ(θ,E)F(r)exp(imϕ) (2) 2 with r = x2+y2 and exp(iϕ) = (x+iy)/ x2+y2. TABLE I: Pairing symmetry in the vortex state. Here,F(r)pdenotesthespatialprofileofthegapp,misthe bulkstate vorticity symmetry at vorticity,andχ(θ,E)isthesymmetryfunction. Also,we m thecenter introduce the coherence length ξ = h¯vF/∆0, the center (1) ESE odd OSO ofa vortexis situatedat x=y =0, andexp(imϕ) is the (2) ESE even ESE phase factor which originates from the vortex. (3) ETO odd OTE WeobtainpairingfunctionoftheCooperpair(anoma- (4) ETO even ETO lous Green’s function) f as f = −2a/(1+ab). For the (5) OSO odd ESE calculation of the local DOS normalized by its value in (6) OSO even OSO the normalstate, the quasiclassicalpropagatorhas to be (7) OTE odd ETO (8) OTE even OTE integratedoverthe angleθ whichdefines the directionof the Fermi velocity. The normalized local DOS in terms of functions a and b is given by (cid:3)(cid:5)(cid:4) 2π dθ 1−ab N(r0,E)= Re , (3) Z0 2π (cid:20)1+ab(cid:21)iǫn→E+iδ where E denotes the quasiparticle energy with respect to the Fermi levelandδ is aneffective scattering param- eter that corresponds to an inverse mean free path. In numericalcalculations throughoutthis paper, we will fix this value as δ =0.1∆0. First, we discuss the general property of the symme- (cid:31) (cid:31) try at the vortex center. Vorticity and the symmetry (cid:9) ofsuperconductorwith respectto frequency cruciallyaf- fect the symmetry of the Cooper pair at the core center. (cid:10) (cid:11)(cid:12)(cid:13)(cid:14) Consider a trajectory passing through the center of the (cid:11)(cid:12)(cid:13)(cid:15) (cid:3)(cid:6)(cid:4) vortex. By setting x′ = 0 at the vortex center, we get (cid:20)(cid:21)(cid:13)(cid:15)(cid:16)(cid:16)(cid:19)(cid:17)(cid:18)(cid:19)(cid:17) b(x′,ǫ ) = −1/a(−x′,−ǫ ) from the Eilenberger equa- (cid:8)(cid:9) n n tionsforeven-frequencysuperconductorwithoddinteger morodd-frequencysuperconductorwithevenintegerm. (cid:24) ! ! (cid:11)(cid:12)(cid:13)(cid:28) fSriemqiulaenrlcyy, wsuepoerbctoanindubc(txo′r,ǫwn)ith=o1d/da(i−ntxe′g,e−rǫnm) oforreovdend-- (cid:27) (cid:11)(cid:20)(cid:21)(cid:12)(cid:13)(cid:13)(cid:28)(cid:29)(cid:30)(cid:16)(cid:19) frequency superconductor with even integer m. Thus, (cid:20)(cid:21)(cid:13)(cid:29)(cid:17) (cid:23) at the vortex center x′ = 0, we get f(ǫn) = −f(−ǫn) (cid:3)(cid:7)(cid:4) in the former case, while f(ǫ ) = f(−ǫ ) in the latter. n n (cid:9) Note that spin is conserved in the vortex state consid- ered. Therefore,quitegenerally,foranoddintegermthe (cid:10) (cid:10)(cid:22)(cid:23) (cid:10)(cid:22)(cid:24) (cid:10)(cid:22)(cid:25) (cid:10)(cid:22)(cid:26) (cid:9) (cid:0) induced pairing at the vortex center has different sym- (cid:1) (cid:2) metry with respect to frequency from that in the bulk superconductor. On the other hand, for an even integer m,theinducedpairingatthe vortexcenterhasthe same FIG. 1: (color online) Results for ESE s-wave superconduc- symmetry as that of the bulk. We summarize pairing tor. (a) Normalized local DOS around the vortex at E = 0. symmetry at the vortex center in Table I. The center of the vortex is situated at x = y = 0. Spatial For conventional s-wave case, there have been several dependenciesof(b) ESEand (c) OSOcomponentsat E =0. studies of multi-vortex state with m≥1 [15, 16]. It was Only OSO components, Refpx and Imfpy, can survive inside shownthatzeroenergypeakintheDOSonlyappearsfor thecore (near x=0). odd number m at the vortex center [16]. This statement is consistent with our result for the conventional s-wave caseofχ(θ,E)=1becauseodd-frequencypairingstateis In general, the most realizable vorticity is m = 1. generated only for odd integer m. The relation between Thus, in the following, we will study in detail two typ- zeroenergypeakinDOSandodd-frequencypairingstate ical cases at m = 1 with ESE s-wave and OSO px- will be discussed later. wave superconductors where we choose χ(θ,E) = 1 and 2 χ(θ,E)=(CcosθE/∆0)/[1+(E/∆0) ] with C =0.8,[9] respectively. Also, spatial dependence of the gap is cho- sen as F(r)=tanh(r/ξ). 3 (cid:3) (cid:4) (cid:5) the core center, the magnitudes of f decrease rapidly, except for s-wave one. Note that other angular momen- tum components not shown in this figure are negligibly small. We also find that the following representation of anomalous Green’s function f holds at the center of the core: f =(Ref +iImf )(cosθ+isinθ)=f exp(iθ). (5) px px px (cid:11)(cid:12)(cid:15) Thus,weseethatanomalousGreen’sfunctionatthecore (cid:11) center has chiral p-wave symmetry. (cid:10)(cid:11)(cid:12)(cid:15) ! ! (cid:16)(cid:17)(cid:18)(cid:19)(cid:20) The enhancement of the local DOS in the presence (cid:21)(cid:22)(cid:18)(cid:19)(cid:23) of odd-frequency pairing canbe understood, irrespective (cid:10)(cid:11)(cid:12)(cid:14) (cid:3)(cid:6)(cid:4) (cid:16)(cid:17)(cid:18)(cid:24)(cid:25) of the detailed shape of ∆ by using the normalization (cid:11)(cid:12)(cid:13) (cid:21)(cid:22)(cid:18)(cid:24)(cid:26) condition for the quasiclassical Green’s functions, g2 + (cid:10) ff¯ = 1. Indeed, since for odd-frequency pairing state, (cid:11)(cid:12)(cid:27) theanomalousGreen’sfunctionf¯=−2b/(1+ab)atE = 0isgivenbyf¯(θ)=−f∗(θ)(seeRef.[13])andlocalDOS (cid:11)(cid:12)(cid:14) is given by N(E) = −Reg, one can show that generally (cid:31) (cid:31) (cid:7)(cid:9)(cid:8) N(E = 0)> 1 since g2 = 1+|f|2 > 1. This means that (cid:11) (cid:16)(cid:17)(cid:18)(cid:28) the emergence of the odd-frequency pairing is a physical (cid:16)(cid:17)(cid:18)(cid:29)(cid:20)(cid:26)(cid:30)(cid:23)(cid:26) reason of zero energy peak of the local DOS inside the (cid:21)(cid:22)(cid:18)(cid:29)(cid:20)(cid:23) (cid:11)(cid:12)(cid:14) core. The manifestation of the odd-frequency chiral p- (cid:10) wavepairingstate atthe center ofthe vortexcoreis also (cid:11)(cid:12)(cid:27) consistent with the experimental fact that the observed (cid:10) (cid:11) (cid:15) (cid:14) (cid:13) zero-bias conductance peak by STM at a vortex center (cid:0) (cid:1) (cid:2) is very sensitive to disorder [17], since p-wave pairing is fragile to impurity scattering. Figure 2 depicts the results for OSO p -wave super- x FIG.2: (coloronline)ResultsforOSOpx-wavesuperconduc- conductor. ThelocalDOSaroundthe vortexatE =0is tor. (a) Normalized local DOS around the vortex at E = 0. showninFig. 2(a). Indramaticcontrasttotheresultfor The center of the vortex is situated at x = y = 0. Spatial the ESE s-wave, zero energy DOS is suppressed at the dependenciesof (b)OSOand (c) ESEcomponentsat E =0. core. The spatial dependencies of decomposed anoma- OnlyESEcomponentscanexistinsidethecore(nearx=0). lous Green’s function at E =0 are shown in Figs. 2 (b) and (c). As is seen, only ESE pairing components ex- Due to the broken translational symmetry of the sys- ist at the center of the core. For even-frequency pairing tem,variouspairingstatesareexpectedtoemergearound state, f¯(θ) = f∗(θ) is satisfied at E = 0 and hence we the vortex. In order to study possible pairing states, we get N(E = 0) < 1 which is consistent with Fig. 2 (a). decomposeanomalousGreen’sfunctionf intovariousan- By comparing Figs.1 and 2, it is clear that zero energy gular momentum components as follows localDOSN(0)hasamaximumatthecenterofthevor- texcoreineven-frequencysuperconductor,whileithasa f ∼=fs+fpxcosθ+fpysinθ+fdx2−y2cos2θ minimum at the core center in odd-frequency supercon- ductor. This difference can be detected by STM. +fdxysin2θ+ff1cos3θ+ff2sin3θ+..... (4) As regardsthe candidate for the odd-frequency super- Notethat all the above pairing components are spin sin- conductor,CeCu2Si2 andCeRhIn5 arepossiblematerials glet. [6, 18]. In these systems, OSO state with p-wave sym- Figure 1 shows the results for ESE s-wave supercon- metry is considered to be promising [6]. In the light of ductor. The local DOS around the vortex at E = 0 the present theory, ESE s-wave pairing is expected to is shown in Fig. 1 (a). As is well known, zero energy appear inside the vortex core. Based on this idea, we peak appears in the core [3]. The spatial dependencies propose an experimental setup to verify the existence of of decomposed anomalous Green’s function f at E = 0 odd-frequency pairing in bulk materials by using super- areshowninFigs. 1(b)and(c). Interestingly,onlyOSO conducting STM where we use conventional s-wave su- pairingcomponents,Ref andImf ,surviveatthecen- perconductorasaSTMtip[19]asshowninFig. 3. Local px py ter of the core. With the increase of the distance from JosephsoncurrentmeasuredinSTMexperimentwithsu- 4 (cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7) (even)integer. Wehavealsoshownthatzeroenergylocal (cid:8)(cid:9)(cid:8)(cid:10)(cid:11)(cid:12)(cid:13)(cid:14)(cid:15) (cid:16)(cid:13)(cid:17)(cid:18) densityofstatesisenhanced(suppressed)atthecenterof the vortex core for even(odd)-frequency superconductor. (cid:22)(cid:19)(cid:21)(cid:20) Based on the obtained results, we proposed a scanning tunneling microscope experiment using a superconduct- (cid:23)(cid:9)(cid:23)(cid:16)(cid:11)(cid:12)(cid:13)(cid:14)(cid:15) ing tip to detect local Josephson coupling in order to (cid:10)(cid:24)(cid:16)(cid:15)(cid:18)(cid:25)(cid:26)(cid:27)(cid:28)(cid:24)(cid:25)(cid:29)(cid:26)(cid:18) explore and identify odd-frequency superconductor. We acknowledgevaluable discussionwith C. Iniotakis, (cid:0) (cid:1) Y.AsanoandN.Hayashi. T.Y.acknowledgessupportby the JSPS. This work was supported by Ministry of Ed- ucation, Culture, Sports, Science and Technology,Grant FIG.3: (coloronline)Suggestedexperimentalsetuptoprobe No. 17071007and NanoNed Grant TSC7029. thelocalJosephsoncouplingbetweensuperconductingtipand superconductorwith Abrikosov vortex core. perconducting tip is given by [20] [1] A. A. Abrikosov, Superconductivity, edited by R.D. eIR=πT Im(f∗(θ,ǫ )f (θ,ǫ )). (6) Parks (Marcel Dekker, New York, 1969); G. Blatter, M. n S n V. Feigel’man, V. B. Geshkenbein, A. I. Larkin, and V. Xθ,ǫn M.Vinokur,Rev.Mod.Phys.66,1125(1994);T.Maniv, Here,R isthe junction resistance,T is temperature,and V.Zhuravlev,I.Vagner,andP.Wyder,Rev.Mod.Phys. 73, 867 (2001). f is anomalous Green’s function in the STM tip. It fol- S [2] C. Caroli, P. G. de Gennes and J. Matricon, Phys. Lett. lowsfromthisexpressionthatfinite Josephsoncurrentis 9, 307 (1964); Yu.G.Makhlin andG. E. Volovik,JETP allowed only when superconducting STM has the same Lett. 62, 737 (1995); A. I. Larkin and Yu. N. Ovchin- symmetry as that in the vortex state. Therefore, finite nikov, Phys. Rev. B 57, 5457 (1998); N. B. Kopnin and Josephson currentis allowed atthevortexcoreonlywhen G. E. Volovik, Phys. Rev. Lett. 79, 1377 (1997); Phys. thepairingsymmetryatthecoreisESEs-wave. First,we Rev. B 57, 8526 (1998); G. E. Volovik, JETP Lett. 70, consider bulk superconductor which has an ESE s-wave 609 (1999). [3] H. F. Hess, R. B. Robinson, R. C. Dynes, J. M. Valles, symmetry with m=1. As seen from Fig. 1, only OSO Jr.,andJ.V.Waszczak,Phys.Rev.Lett.62,214(1989); state is generated at the core center. Then, the local F. Gygi and M. Schlu¨ter, Phys.Rev.B 43, 7609 (1991). Josephson coupling is absent at the core while it exists [4] Ø.Fischer,M.Kugler,I.Maggio-Aprile,C.Berthod,and inthebulk. Ontheotherhand,inOSOp-wavesupercon- C. Renner,Rev.Mod. Phys. 79, 353 (2007). ductor with m=1, ESEs-wavestate is generatedinside [5] V. L. Berezinskii, JETP Lett. 20, 287 (1974); A. Bal- the core (see Fig. 2). In this case, the local Josephson atskyandE.Abrahams,Phys.Rev.B 45,13125 (1992); couplingonlyexistsatthe core. Suchadramaticfeature E. Abrahams, A. Balatsky, D. J. Scalapino and J. R. Schrieffer, Phys. Rev. B 52, 1271 (1995); P. Coleman, is usefultoexploreandidentify odd-frequencypairingin E. Miranda, and A. Tsvelik, Phys. Rev. Lett. 70, 2960 bulk superconductor. We summarize the possible local (1993); Phys. Rev. B 49, 8955 (1994); M. Vojta and E. Josephson couplings with ESE s-wave STM tip in Table Dagotto, Phys. Rev.B 59, R713 (1999). II. [6] Y. Fuseya, H. Kohno and K. Miyake, J. Phys. Soc. Jpn. 72, 2914 (2003). [7] F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Phys. Rev.Lett.86,4096(2001); F.S.Bergeret,A.F.Volkov, TABLE II: Local Josephson coupling with ESE s-wave STM and K.B. Efetov, Rev.Mod. Phys. 77, 1321 (2005). tip. [8] Y. Tanaka, A.A. Golubov, S.Kashiwaya, and M. Ueda, Local Josephson coupling Phys. Rev. Lett. 99, 037005 (2007); M. Eschrig, T. Bulk state core bulk Lofwander, Th. Champel, J. C. Cuevas and G. Schon, ESE No Yes J. Low Temp. Phys. 147 457 (2007). OSO Yes No [9] Y. Tanaka and A. A. Golubov, Phys. Rev. Lett. 98, 037003 (2007). [10] G. Eilenberger, Z. Phys. 214, 195 (1968). [11] A. I. Larkin and Yu. N. Ovchinnikov, Sov. Phys. JETP In summary, we have developed a general theory of 28, 1200 (1969). pairingsymmetryinsidetheAbrikosovvortexcoreinsu- [12] N. Schopohland K.Maki, Phys. Rev.B 52, 490 (1995). [13] M. Eschrig, Phys.Rev.B 61, 9061 (2000). perconductors, including odd-frequency superconductiv- [14] For triplet pairing, we can choose d-vector parallel to z- ity. We have found that for a vortex with vorticity m axis without loss of generality. in a superconductor, anomalous Green’s function at the [15] G.E.Volovik,JETPLett.57,244(1993); S.M.M.Vir- vortexcenterhasthe opposite(same)symmetrywithre- tanenandM.M.Salomaa,Phys.Rev.B6014581(1999). spectto frequency to (as)that ofthe bulk if m is anodd [16] Y. Tanaka, H. Takayanagi and A. Hasegawa, Solid state 5 Commun. 85, 321 (1993); A. S. Mel’nikov and V. M. Moreno, and J. D. Thompson, Phys. Rev. B 70, 014511 Vinokur,Nature415, 60 (2002). (2004). [17] C. Renner, A. D. Kent, P. Niedermann, O. Fischer, and [19] A. Kohen, Th. Proslier, T. Cren, Y. Noat, W. Sacks, H. F. L´evy,Phys. Rev.Lett. 67, 1650 (1991). Berger, and D. Roditchev, Phys. Rev. Lett. 97, 027001 [18] S.Kawasaki, T. Mito, Y.Kawasaki, G.-q. Zheng,Y. Ki- (2006); J.G. Rodrigo, H. Suderow, and S. Vieiraa, Eur. taoka,D.Aoki,Y.Haga,andY.Onuki,Phys.Rev.Lett. Phys. J. B 40, 483 (2004). 91, 137001 (2003); Guo-qing Zheng, N. Yamaguchi, H. [20] A. V.Zaitsev, Sov.Phys. JETP 59, 1015 (1984). Kan, Y. Kitaoka, J. L. Sarrao, P. G. Pagliuso, N. O.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.