ebook img

Theory of Multicomponent Fluids PDF

311 Pages·1999·2.538 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Theory of Multicomponent Fluids

Applied Mathematical Sciences Volume 135 Editors J.E.Marsden L.Sirovich Advisors S.Antman J.K.Hale P.Holmes T.Kambe J.Keller K.Kirchga¨ssner B.J.Matkowsky C.S.Peskin Springer NewYork Berlin Heidelberg Barcelona HongKong London Milan Paris Singapore Tokyo Donald A. Drew Stephen L. Passman Theory of Multicomponent Fluids With40Illustrations 1 3 DonaldA.Drew StephenL.Passman RickettsProfessorofAppliedMathematics SandiaNationalLaboratories DepartmentofMathematicalScience P.O.Box5800 RensselaerPolytechnicInstitute Albuquerque,NM87185 Troy,NY12180-3590 USA USA Editors J.E.Marsden L.Sirovich ControlandDynamicalSystems,107-81 DivisionofAppliedMathematics CaliforniaInstituteofTechnology BrownUniversity Pasadena,CA91125 Providence,RI02912 USA USA MathematicsSubjectClassification(1991):76T05,35B20 LibraryofCongressCataloging-in-PublicationData Drew,DonaldA.(DonaldAllen),1945– Theoryofmulticomponentfluids/DonaldA.Drew,StephenL. Passman p. cm.—(Appliedmathematicalsciences;135) Includesbibliographicalreferencesandindex. ISBN0-387-98380-5(hardcover:alk.paper) 1.Multiphaseflow. 2.Continuummechanics. I.Passman,Stephen L. II.Title. III.Series:Appliedmathematicalsciences(Springer- VerlagNewYork,Inc.);v.135. TA357.5.M84D74 1998 620.1’06—dc21 98-18392 Printedonacid-freepaper. ©1999Springer-VerlagNewYork,Inc. Allrightsreserved.Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewritten permissionofthepublisher(Springer-VerlagNewYork,Inc.,175FifthAvenue,NewYork,NY10010, USA),exceptforbriefexcerptsinconnectionwithreviewsorscholarlyanalysis.Useinconnection withanyformofinformationstorageandretrieval,electronicadaptation,computersoftware,orby similarordissimilarmethodologynowknownorhereafterdevelopedisforbidden. Theuseofgeneraldescriptivenames,tradenames,trademarks,etc.,inthispublication,evenifthe formerarenotespeciallyidentified,isnottobetakenasasignthatsuchnames,asunderstoodbythe TradeMarksandMerchandiseMarksAct,mayaccordinglybeusedfreelybyanyone. Production coordinated by Robert Wexler and managed by Francine McNeill; manufacturing supervisedbyJoeQuatela. a PhotocomposedcopypreparedbyTheBartlettPress,Inc.,Marietta,GA,usingtheauthors’LTEX files. PrintedandboundbyMaple-VailBookManufacturingGroup,York,PA. PrintedintheUnitedStatesofAmerica. 9 8 7 6 5 4 3 2 1 ISBN0-387-98380-5 Springer-Verlag NewYork Berlin Heidelberg SPIN10657516 Contents ListofFigures ix Introduction 1 I Preliminaries 11 1 PhysicalReality,CorpuscularModels,ContinuumModels 13 2 ClassicalContinuumTheory 20 2.1. Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2. BalanceEquations . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3. JumpConditions . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.4. Frames,FrameIndifference,Objectivity . . . . . . . . . . . . 31 2.5. ConstitutiveEquations,Well-PosednessofBoundary-Value Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.6. RepresentationTheorems . . . . . . . . . . . . . . . . . . . . 35 2.7. ThermodynamicProcesses . . . . . . . . . . . . . . . . . . . 36 3 ViscousandInviscidFluidsandElasticSolids 41 3.1. Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2. Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4 KineticTheory 48 4.1. CollisionOperator . . . . . . . . . . . . . . . . . . . . . . . . 49 vi Contents 4.2. TheH-Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.3. MaxwellianDistribution . . . . . . . . . . . . . . . . . . . . . 53 4.4. SlightDisequilibrium . . . . . . . . . . . . . . . . . . . . . . 53 4.5. DenseGases . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5 ClassicalTheoryofSolutions 59 II ContinuumTheory 63 6 ContinuumBalanceEquationsforMulticomponentFluids 65 6.1. MulticomponentMixtures . . . . . . . . . . . . . . . . . . . . 65 6.2. Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.3. BalanceEquations . . . . . . . . . . . . . . . . . . . . . . . . 68 6.4. MulticomponentEntropyInequalities . . . . . . . . . . . . . . 74 7 MixtureEquations 81 III AveragingTheory 85 8 Introduction 87 8.1. LocalConservationEquations . . . . . . . . . . . . . . . . . . 88 8.2. JumpConditions . . . . . . . . . . . . . . . . . . . . . . . . . 89 8.3. SummaryoftheExactEquations . . . . . . . . . . . . . . . . 91 9 EnsembleAveraging 92 9.1. ResultsforEnsembleAveraging. . . . . . . . . . . . . . . . . 99 10 OtherAverages 105 10.1. MultiparticleDistributionFunctions . . . . . . . . . . . . . . 106 10.2. TimeAveraging . . . . . . . . . . . . . . . . . . . . . . . . . 114 10.3. VolumeAveraging . . . . . . . . . . . . . . . . . . . . . . . . 116 10.4. Desiderata . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 11 AveragedEquations 121 11.1. AveragingBalanceEquations . . . . . . . . . . . . . . . . . . 121 11.2. DefinitionofAverageVariables . . . . . . . . . . . . . . . . . 122 11.3. AveragedBalanceEquations . . . . . . . . . . . . . . . . . . 126 12 PostulationalandAveragingApproaches 131 IV ModelingMulticomponentFlows 135 13 Introduction 137 Contents vii 14 ClosureFramework 140 14.1. CompletenessoftheFormulation . . . . . . . . . . . . . . . . 140 14.2. ConstitutiveEquations . . . . . . . . . . . . . . . . . . . . . . 141 14.3. FormsforConstitutiveEquations . . . . . . . . . . . . . . . . 144 14.4. EntropyRestrictions . . . . . . . . . . . . . . . . . . . . . . . 147 15 RelationofMicrostructuretoConstitutiveEquations 153 15.1. AveragingTechniques . . . . . . . . . . . . . . . . . . . . . . 154 15.2. CellModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 15.3. InviscidFluidFlowingAroundaSphere . . . . . . . . . . . . 162 15.4. ViscousFlowAroundaSphere . . . . . . . . . . . . . . . . . 177 16 Maxwell–BoltzmannDynamics 193 16.1. CollisionEffects . . . . . . . . . . . . . . . . . . . . . . . . . 194 16.2. FluidVelocityEffects . . . . . . . . . . . . . . . . . . . . . . 194 17 InterfacialArea 199 17.1. GeometryModels . . . . . . . . . . . . . . . . . . . . . . . . 200 17.2. EvolutionofGeometricStatistics . . . . . . . . . . . . . . . . 205 17.3. AverageGeometricalProperties . . . . . . . . . . . . . . . . . 210 17.4. ACoalescenceandBreakupModelandGeometry . . . . . . . 217 17.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 18 EquationsofMotionforDiluteFlow 221 18.1. ConstitutiveEquations . . . . . . . . . . . . . . . . . . . . . . 221 18.2. DispersedFlowEquationsofMotion . . . . . . . . . . . . . . 231 V Consequences 235 19 NatureoftheEquations 237 19.1. SpecialCasesoftheEquations . . . . . . . . . . . . . . . . . 238 20 Well-Posedness 243 20.1. Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 20.2. CharacteristicValues . . . . . . . . . . . . . . . . . . . . . . 244 20.3. TheSimplestModel . . . . . . . . . . . . . . . . . . . . . . . 248 20.4. EffectofViscosity . . . . . . . . . . . . . . . . . . . . . . . . 249 20.5. InertialEffects . . . . . . . . . . . . . . . . . . . . . . . . . . 251 20.6. SummaryObservations . . . . . . . . . . . . . . . . . . . . . 252 21 SolutionsforShearingFlows 254 21.1. FieldEquations . . . . . . . . . . . . . . . . . . . . . . . . . 255 21.2. KinematicsandDynamicsofShearingFlow . . . . . . . . . . 258 viii Contents 22 WaveDynamics 273 22.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 22.2. AcousticPropagation . . . . . . . . . . . . . . . . . . . . . . 274 22.3. VolumetricWaves . . . . . . . . . . . . . . . . . . . . . . . . 282 22.4. CharacteristicsandLinearStability . . . . . . . . . . . . . . . 286 22.5. InletStepResponse . . . . . . . . . . . . . . . . . . . . . . . 288 22.6. NonlinearWaves . . . . . . . . . . . . . . . . . . . . . . . . . 294 References 297 Index 303 List of Figures 1.1 Mass-to-volumeratiosforvarioussizedballs . . . . . . . . . . 15 2.1 A“flake”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2 Atetrahedron. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3 Atypicalconfiguration. . . . . . . . . . . . . . . . . . . . . . . 26 2.4 Atypicalconfigurationwithacut. . . . . . . . . . . . . . . . . 27 2.5 Anotherconfigurationwithacut. . . . . . . . . . . . . . . . . . 27 2.6 Cylindricalvolumeillustratingbalancesacrossinterfaces. . . . . 31 4.1 Collisiongeometry. . . . . . . . . . . . . . . . . . . . . . . . . 50 4.2 Cylindricalvolumeforpotentialcollisions. . . . . . . . . . . . 51 4.3 ExcludedVolume . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.4 Shieldingeffect . . . . . . . . . . . . . . . . . . . . . . . . . . 58 6.1 Configurationsandmappings. . . . . . . . . . . . . . . . . . . 68 9.1 Realizations.. . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 10.1 Excludedvolume . . . . . . . . . . . . . . . . . . . . . . . . . 112 10.2 Timehistory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 15.1 Nearest-neighborand“tophat”distributions . . . . . . . . . . . 160 15.2 A“cell” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 15.3 Cellaveragingoftheinterfacialforce. . . . . . . . . . . . . . . 166 15.4 Volumeaverage.. . . . . . . . . . . . . . . . . . . . . . . . . . 176 15.5 Cellapproximationtothevolumeaverage. . . . . . . . . . . . . 176 x ListofFigures 15.6 Effectiveviscosity. . . . . . . . . . . . . . . . . . . . . . . . . 190 17.1 Steady-statevaluesofs versusα . . . . . . . . . . . . . . . . . 205 d 17.2 Principalcoordinatesandradiiofcurvature. . . . . . . . . . . . 207 17.3 Surfacecoalescence. . . . . . . . . . . . . . . . . . . . . . . . 216 19.1 Momentumbalanceformixture . . . . . . . . . . . . . . . . . 239 20.1 Normalandtangentialcoordinates. . . . . . . . . . . . . . . . . 244 20.2 Characteristicvalues . . . . . . . . . . . . . . . . . . . . . . . 252 21.1 Simpleshearingflow. . . . . . . . . . . . . . . . . . . . . . . . 262 21.2 Volumefractionprofile. . . . . . . . . . . . . . . . . . . . . . . 271 21.3 Shearstress . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 22.1 Speedofsoundversusvolumefraction. . . . . . . . . . . . . . 279 22.2 Speedofsoundversusfrequency. . . . . . . . . . . . . . . . . . 282 22.3 Attenuationversusfrequency.. . . . . . . . . . . . . . . . . . . 283 22.4 Spreadingcharacteristics. . . . . . . . . . . . . . . . . . . . . . 285 22.5 Convergingcharacteristics,leadingtoashock. . . . . . . . . . . 285 22.6 “Density”oftheconservedmomentum. . . . . . . . . . . . . . 290 22.7 Evolutionofaninitialdiscontinuity . . . . . . . . . . . . . . . 291 22.8 Shockandrarefactionloci. . . . . . . . . . . . . . . . . . . . . 292 22.9 Travelingwaveprofile. . . . . . . . . . . . . . . . . . . . . . . 295

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.