ebook img

Theory of function spaces 4 PDF

167 Pages·2020·1.062 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Theory of function spaces 4

Monographs in Mathematics 107 Hans Triebel Theory of Function Spaces IV Monographs in Mathematics Volume 107 Series Editors Herbert Amann, Universität Zürich, Zürich, Switzerland Jean-Pierre Bourguignon, IHES, Bures-sur-Yvette, France William Y. C. Chen, Nankai University, Tianjin, China Associate Editors Huzihiro Araki, Kyoto University, Kyoto, Japan John Ball, Heriot-Watt University, Edinburgh, UK Franco Brezzi, Università degli Studi di Pavia, Pavia, Italy Kung Ching Chang, Peking University, Beijing, China Nigel Hitchin, University of Oxford, Oxford, UK Helmut Hofer, Courant Institute of Mathematical Sciences, New York, USA Horst Knörrer, ETH Zürich, Zürich, Switzerland Don Zagier, Max-Planck-Institut, Bonn, Germany The foundations of this outstanding book series were laid in 1944. Until the end ofthe1970s,atotalof77volumesappeared,includingworksofsuchdistinguished mathematicians asCarathéodory, NevanlinnaandShafarevich,toname afew.The series came to its name and present appearance in the 1980s. In keeping its well-established tradition, only monographs of excellent quality are published in this collection. Comprehensive, in-depth treatments of areas of current interest are presented to a readership ranging from graduate students to professional mathematicians. Concrete examples and applications both within and beyond the immediate domain of mathematics illustrate the import and consequences of the theory under discussion. More information about this series at http://www.springer.com/series/4843 Hans Triebel Theory of Function Spaces IV Hans Triebel Mathematisches Institut Friedrich-Schiller-Universität Jena, Germany ISSN 1017-0480 ISSN 2296-4886 (electronic) Monographsin Mathematics ISBN978-3-030-35890-7 ISBN978-3-030-35891-4 (eBook) https://doi.org/10.1007/978-3-030-35891-4 MathematicsSubjectClassification(2010): 46–02,46E35,42C40,42B35 ©SpringerNatureSwitzerlandAG2020 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregard tojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. This book is published under the imprint Birkhäuser, www.birkhauser-science.com by the registered companySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Contents Preface ix 1 Fundamental principles 1 1.1 Definitions and basic properties . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Global spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Hybrid spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Wavelet characterizations . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.1 Global spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.2 Hybrid spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3 Basic assertions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.3.1 Relations between global and hybrid spaces . . . . . . . . . 12 1.3.2 Lifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.3.3 Distinguished representations . . . . . . . . . . . . . . . . . 17 1.3.4 Fatou property . . . . . . . . . . . . . . . . . . . . . . . . . 18 2 The essentials, key theorems 21 2.1 Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1.1 Embeddings in L∞(Rn) and C(Rn). . . . . . . . . . . . . . 21 2.1.2 Embeddings in the space of locally integrable functions . . 23 2.1.3 Sharp embeddings: Constant differential dimensions . . . . 25 2.1.4 Sharp embeddings: Constant smoothness . . . . . . . . . . 26 2.1.5 Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.1.6 Gagliardo-Nirenberg inequalities . . . . . . . . . . . . . . . 28 2.2 Traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2.1 The problem . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2.2 The trace theorem . . . . . . . . . . . . . . . . . . . . . . . 32 2.2.3 Dichotomy: Traces versus density . . . . . . . . . . . . . . . 35 2.3 Diffeomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.4 Multipliers, localizations and multiplication algebras . . . . . . . . 40 2.4.1 Smooth multipliers . . . . . . . . . . . . . . . . . . . . . . . 40 2.4.2 Localizations . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.4.3 Multiplication algebras. . . . . . . . . . . . . . . . . . . . . 44 v vi Contents 2.4.4 Characteristic functions as multipliers . . . . . . . . . . . . 46 2.4.5 Rough multipliers . . . . . . . . . . . . . . . . . . . . . . . 53 2.5 Extensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2.5.1 Introduction and distinguished lifts . . . . . . . . . . . . . . 57 2.5.2 Main assertions . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.6 Spaces on domains . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 2.6.1 The essentials: Why and how . . . . . . . . . . . . . . . . . 62 2.6.2 Preliminaries and definitions . . . . . . . . . . . . . . . . . 63 2.6.3 Traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 2.6.4 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 2.6.5 Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 2.6.6 Characteristics of distributions . . . . . . . . . . . . . . . . 72 2.7 Multipliers: Further properties . . . . . . . . . . . . . . . . . . . . 74 2.7.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 74 2.7.2 Main assertions . . . . . . . . . . . . . . . . . . . . . . . . . 77 3 Further topics 83 3.1 Envelopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.2 Positivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 3.3 Local homogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 3.4 Refined localization spaces . . . . . . . . . . . . . . . . . . . . . . . 93 3.4.1 Multipliers, revisited . . . . . . . . . . . . . . . . . . . . . . 93 3.4.2 Main assertions . . . . . . . . . . . . . . . . . . . . . . . . . 94 3.5 Haar wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.6 Fubini property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 3.7 Characterizations in terms of Lusin functions and heat kernels . . 105 3.7.1 Lusin functions . . . . . . . . . . . . . . . . . . . . . . . . . 105 3.7.2 Heat kernels. . . . . . . . . . . . . . . . . . . . . . . . . . . 106 3.7.3 Caloric smoothing . . . . . . . . . . . . . . . . . . . . . . . 109 4 Complements 115 4.1 Tempered homogeneous spaces . . . . . . . . . . . . . . . . . . . . 115 4.1.1 Introduction and motivation . . . . . . . . . . . . . . . . . 115 4.1.2 Spaces with negative smoothness . . . . . . . . . . . . . . . 118 4.1.3 Spaces in the distinguished strip . . . . . . . . . . . . . . . 120 4.1.4 Some properties . . . . . . . . . . . . . . . . . . . . . . . . 125 4.1.5 Caloric smoothing . . . . . . . . . . . . . . . . . . . . . . . 126 4.2 Natural habitats and the homogeneity rule . . . . . . . . . . . . . 128 4.2.1 Natural habitats . . . . . . . . . . . . . . . . . . . . . . . . 128 4.2.2 The homogeneity rule . . . . . . . . . . . . . . . . . . . . . 129 4.3 Spaces and tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 4.3.1 Classical Sobolev spaces . . . . . . . . . . . . . . . . . . . . 132 4.3.2 Sobolev spaces . . . . . . . . . . . . . . . . . . . . . . . . . 133 4.3.3 Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Contents vii 4.3.4 Fourier-analytical decompositions and paramultiplication . 135 4.3.5 Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 4.3.6 Quarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 4.3.7 Wavelets and paramultiplication . . . . . . . . . . . . . . . 142 4.3.8 Epilogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 Bibliography 147 Symbols 157 Index 159 Preface Themainmotivationtowritethisbookoriginatesfromtheattempttoincorporate the nowadays fashionable spaces Fs (Rn), s ∈ R, 0 < q ≤ ∞, into the existing ∞,q elaborated theory of the spaces As (Rn), A ∈ {B,F}, s ∈ R, 0 < p ≤ ∞, p,q 0 < q ≤ ∞ with p < ∞ for the F-spaces. But we decided to extend this task by offering a guided tour through the jungle of these spaces of Sobolev-Besov type. Therefore,thisbookcanalsoserveasanadvancedtextbookintroducingthistopic ofSobolev-Besov-typespacesinamodernandconciseway.Weconcentrateonthe essentials, complemented by a kaleidoscope of highlights exploring the grounds of the fascinating mathematical landscape called function spaces. The required hiking equipment is: Fourier analysis, measure theory, functional analysis, and enthusiasm.Newproofsrelymostlyonwaveletrepresentations.Inallothercases, we take over already existing assertions (quite often from our own books), which are carefully commented and adapted. Detailed references are also provided. Thetableofcontentsshowswhichtopicsaretreatedinthisbook,butletus addafewcommentsatthispoint.Nowadays,aplethoraoffunctionspacesofmany types prevails. In this book, however, the aim is not to provide an encyclopaedic survey. Much rather, we deal almost exclusively with the above-mentioned inho- mogeneous spaces As (Rn) and their counterparts As (Ω) on domains Ω in Rn. p,q p,q There are two exceptions. Firstly, we will occasionally rely on some assertions for the so-called hybrid spaces LrAs (Rn), which have the remarkable property p,q L0Fs (Rn)=Fs (Rn), 0<q≤∞, s∈R, (0.1) p,q ∞,q for all 0 < p < ∞. Secondly, we will deal in the Sections 4.1 and 4.2 with the ∗ tempered homogeneous spaces As (Rn) within the dual pairing (cid:2)S(Rn),S(cid:4)(Rn)(cid:3) p,q mostly restricted to their natural habitat 0<p≤∞, n(cid:2)1 −1(cid:3)≤s≤ n. (0.2) p p This will be based on heat kernels as discussed in Section 3.7 for the spaces As (Rn).Apartfromthat,wewillimmediatelyjumpfromtheFourier-analytical p,q definition of the spaces As (Rn) in Section 1.1 to their wavelet characterization p,q inSection1.2withoutdiscussinganyothermeansorspecialcases.Thisapproach ix x Preface will be compensated to some extent in the final Section 4.3, where we discuss Sobolev and Besov spaces in their more traditional versions based on derivatives anddifferencesoffunctions,includingtherelatedreferences.Furthermore,wewill glance at other means such as atoms and quarks. The fact that this discussion is located at the very end of the book gives us the possibility to make clear how all these special spaces, means and building blocks (including wavelets and heat kernels) are interwoven and how they are connected with the preceding text. Note that this book may be considered both as a supplement to the mono- graphs [T83, T92, T06] with the same title and as an advanced companion of the textbook [HT08]. Throughout the book, we shall use the symbol ∼ (equivalence) as follows: Let I be an arbitrary index set. Then a ∼b for i∈I (equivalence) (0.3) i i for two sets of positive numbers {a :i∈I} and {b :i∈I} means that there are i i two positive numbers c and c such that 1 2 c a ≤b ≤c a for all i∈I. (0.4) 1 i i 2 i Lastbutnotleast,IwouldliketothankDorotheeD.Haroskeforproducing the figures. Hans Triebel, September 2019

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.