ebook img

Theory of Differential Equations in Engineering and Mechanics PDF

1000 Pages·2017·11.42 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Theory of Differential Equations in Engineering and Mechanics

THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS K.T. CHAU Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2018 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed on acid-free paper Version Date: 20170811 International Standard Book Number-13: 978-1-138-74813-2 (Paperback) International Standard Book Number-13: 978-1-4987-6778-1 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging-in-Publication Data Names: Chau, K. T., author. Title: Theory of differential equations in engineering and mechanics / by K.T. Chau. Description: Boca Raton : CRC Press, [2017] | Includes bibliographical references and index. Identifiers: LCCN 2017001029| ISBN 9781138748132 (pbk. : alk. paper) | ISBN 9781498767781 (hardback : acid-free paper ) | ISBN 9781498767798 (ebook : acid-free paper ) Subjects: LCSH: Differential equations. Classification: LCC QA371 .C445 2017 | DDC 515/.35--dc23 LC record available at https://lccn.loc.gov/2017001029 Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com To My wife Lim, son Magnum, and daughter Jaquelee and my mother, father, sisters, and brothers Contents vii CONTENTS PREFACE THE AUTHOR CHAPTER 1: MATHEMATICAL PRELIMINARIES ..................................... 1 1.1 Introduction ......................................................................................... 1 1.2 Binomial Theorem ............................................................................... 2 1.3 Differentiation ..................................................................................... 5 1.3.1 General Formulas................................................................................. 6 1.3.2 Chain Rule ........................................................................................... 8 1.3.3 Leibniz Theorem on n-th Order Differentiation ................................... 9 1.3.4 Leibniz Rule of Differentiation for Integral ....................................... 10 1.3.5 Partial Derivative ............................................................................... 11 1.3.6 Commutative Rule for Partial Derivatives ......................................... 13 1.4 Integration .......................................................................................... 14 1.4.1 Integration by Parts ............................................................................ 16 1.4.2 General Rules of Integration .............................................................. 16 1.4.3 Some Transformation Rules .............................................................. 17 1.4.4 Mean Value Theorem ........................................................................ 18 1.4.5 Improper Integral ............................................................................... 18 1.4.6 Laplace/Gauss Integral ...................................................................... 18 1.5 Jacobian ............................................................................................. 20 1.6 Complex Variables and Euler’s Formula ........................................... 22 1.7 Analytic Function .............................................................................. 24 1.7.1 Cauchy-Riemann Relations ................................................................ 24 1.7.2 Liouville Theorem ............................................................................. 26 1.7.3 Cauchy-Goursat Theorem .................................................................. 26 1.7.4 Cauchy Integral Formula ................................................................... 28 1.7.5 Residue Theorem ............................................................................... 30 1.7.6 Branch Point and Branch Cut ............................................................ 33 1.7.7 Titchmarsh’s Contour Integral ........................................................... 34 1.8 Frullani-Cauchy Integral .................................................................... 36 1.9 Ramanujan Master Theorem .............................................................. 36 1.10 Ramanujan Integral Theorem ............................................................ 37 1.11 Circular Functions ............................................................................. 38 1.12 Hyperbolic Functions ......................................................................... 39 1.13 Series Expansions .............................................................................. 43 1.13.1 Darboux’s Formula ............................................................................ 43 1.13.2 Taylor’s Series Expansion ................................................................. 45 1.13.3 Maclaurin’s Series Expansion............................................................ 46 1.13.4 Laurent’s Series Expansion................................................................ 47 viii Theory of Differential Equations in Engineering and Mechanics 1.13.5 Lagrange’s Theorem .......................................................................... 47 1.13.6 Mittag-Leffler’s Expansion ................................................................ 48 1.13.7 Borel’s Theorem ................................................................................ 50 1.14 Functions as Infinite Product ............................................................. 51 1.15 Vector Calculus ................................................................................. 53 1.15.1 Gradient ............................................................................................. 53 1.15.2 Divergence ......................................................................................... 55 1.15.3 Curl .................................................................................................... 55 1.15.4 Physical Meaning of Gradient, Divergence and Curl......................... 56 1.15.5 Vector Identities ................................................................................ 58 1.16 Helmholtz Representation Theorem .................................................. 59 1.17 Gauss Divergence Theorem ............................................................... 60 1.18 Kelvin-Stokes Theorem .................................................................... 61 1.19 Vectors and Tensors ......................................................................... 62 1.20 e-(cid:71) Identity ......................................................................................... 66 1.21 Tensor Analysis in Cartesian Coordinates ......................................... 67 1.22 Tensor Analysis in Cylindrical Coordinates ...................................... 68 1.23 Tensor Analysis in Spherical Coordinates ......................................... 71 1.24 Summary and Further Reading .......................................................... 73 1.25 Problems ............................................................................................ 74 CHAPTER 2: INTRODUCTION TO DIFFERENTIAL EQUATIONS ........ 83 2.1 Introduction ....................................................................................... 83 2.2 Total and Partial Derivatives ............................................................. 84 2.3 Order of Differential Equations ......................................................... 84 2.4 Nonlinear versus Linear ..................................................................... 84 2.5 PDE versus ODE ............................................................................... 86 2.6 Nonhomogeneous versus Homogeneous .......................................... 87 2.7 Some Signifciant Nonlinear PDEs ..................................................... 89 2.8 System of Differentail Equations ....................................................... 98 2.8.1 Maxwell Equations ............................................................................ 98 2.8.2 Navier-Stokes Equation ................................................................... 100 2.8.3 Elastodynamics ................................................................................ 106 2.8.4 Three-Dimensional Elasticity ......................................................... 108 2.9 Summary and Further Reading ........................................................ 109 2.10 Problems .......................................................................................... 110 CHAPTER 3: ORDINARY DIFFERENTIAL EQUATIONS ....................... 113 3.1 Introduction ..................................................................................... 113 3.2 First Order ODE .............................................................................. 114 3.2.1 Separable ODE ................................................................................ 114 3.2.2 Homogeneous Equation ................................................................... 117 Contents ix 3.2.3 Rational Polynomials ...................................................................... 119 3.2.4 Integrable Condition ........................................................................ 122 3.2.5 Integrating Factor ............................................................................ 125 3.2.5.1 Case 1: Mx+Ny=0 ............................................................................ 125 3.2.5.2 Case 2: Mx(cid:16)Ny=0 ............................................................................ 126 3.2.5.3 Case 3: Mx+Ny(cid:122)0 & Mx(cid:16)Ny(cid:122)0 ....................................................... 126 3.2.5.4 Stokes Method for Homogeneous Equation .................................... 126 3.2.5.5 Differential Equation for Integrating Factor .................................... 127 3.2.5.6 Integrating Factors by Inspection .................................................... 130 3.2.6 Standard Linearized Form ............................................................... 131 3.2.7 Bernoulli Equation ........................................................................... 132 3.2.8 Riccati Equation .............................................................................. 134 3.2.9 Jacobi Method ................................................................................. 139 3.2.10 Integration by Differentiation .......................................................... 140 3.2.11 Clairaut Equation ............................................................................. 143 3.2.12 Singular Solution ............................................................................. 144 3.2.13 Lagrange Equation ........................................................................... 145 3.2.14 Factorization of Nonlinear Form ..................................................... 145 3.2.15 Solution by Taylor Series Expansion ............................................... 147 3.3 Second Order ODE .......................................................................... 147 3.3.1 ODE with Constant Coefficients ...................................................... 148 3.3.2 Nonhomogeneous ODE ................................................................... 151 3.3.3 Undetermined Coefficient ................................................................ 152 3.3.4 Variation of Parameters ................................................................... 158 3.3.5 Operator Factors .............................................................................. 160 3.3.6 Reduction to First Order ................................................................. 161 3.4 Second Order ODE with Nonconstant Coefficients ......................... 163 3.4.1 Euler Equation ................................................................................ 164 3.4.2 Transformation to Constant Coefficient........................................... 164 3.4.3 Laplace Type ................................................................................... 166 3.4.4 Solution as Confluent Hypergeometric Functions .......................... 171 3.4.5 Liouville Problem ............................................................................ 174 3.4.6 Mainardi Approach for Liouville Problem ...................................... 176 3.4.7 Liouville Transformation ................................................................. 176 3.4.8 Transformation and Invariants of ODE ........................................... 178 3.5 Higher Order ODE .......................................................................... 181 3.5.1 Euler Equation of Order n ............................................................... 184 3.5.2 Adjoint ODE .................................................................................... 186 3.5.3 Sarrus Method ................................................................................. 190 3.5.4 Rule of Transformation .................................................................... 191 3.5.5 Homogeneous Equation ................................................................... 194 3.5.6 Undetermined Coefficient for Nonhomogeneous ODE ................... 197 3.5.7 Variation of Parameters ................................................................... 199 3.5.8 Reduction to Lower Order .............................................................. 202 3.5.9 Exact Condition ............................................................................... 203

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.