ebook img

Theory of coexistence of superconductivity and ferroelectricity PDF

0.09 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Theory of coexistence of superconductivity and ferroelectricity

Theory of coexistence of superconductivity and ferroelectricity Y. Krivolapov,∗ A. Mann, and Joseph L. Birman† Department of Physics, Technion-Israel Institute of Technology, Haifa 32000 Israel (Dated: February 6, 2008; Received textdate;Revised textdate; Accepted textdate;Published textdate) 6 A new investigation of the coexistence and competition of ferroelectricity and superconductivity 0 isreported. InparticularweshowthatthestartingHamiltonianofapreviousstudybyBirmanand 0 Weger(2001)canbeexactlydiagonalized. Theresultdifferssignificantlyfrommean-fieldtheory. A 2 Hamiltonian with a different realization of the coupling between ferroelectricity and superconduc- tivityisproposed. Wereporttheresultsformean-fieldtheoryappliedtothisHamiltonian. Wefind n that theorder parameters are strongly affected by thiscoupling. a J PACSnumbers: 74.20.-z,77.80.-e,64.90.+b,77.90.+k 8 1 Inthepresentpaperwereporttworelatedresultsfrom The Hamiltonian of the ferroelectric sector of the ] n a reexamination of previous work on nearly ferroelectric model is simply a Hamiltonian of a displaced harmonic o superconductors1. Inthat paper acoupling termwasin- oscillator c troducedintotheoriginalHamiltonian(Eq. 27ofRef.1). pr- Aginveisnvaessqtiugeaetzioinngooffththaetcpohuopnloinngstaenrdmnsohocwousptlhinatgittootnhlye HFE =ω0(cid:18)NˆB + 21(cid:19)+γ1(cid:16)Bˆ0†+Bˆ0(cid:17) u electronic pairs, and therefore the Hamiltonian can be s t. diagonalized exactly. However, the double mean-field where Bˆ0†,Bˆ0 have boson commutation relations. a approximation does result in an effective coupling be- Combiningthose two sectorstogether andintroducing m tweenthe two subsystems. (Eq. 34 of Ref. 1). Therefore a gauge invariant coupling between them, Birman and - the results of the analysis of that equation remain valid. WegerobtainthefollowingHamiltonian(Eq.27ofRef.1) d Oursecondresultfollowsfromintroducingadifferentbi- n quadratic coupling term in the Hamiltonian of Eq. 27 of o Ref. 1, which satisfies gauge and inversion symmetries. 1 [c Thistermdoescouplethe twosubsystems. Wewilltreat Hˆ =−2 (εkˆ3k+2∆kˆ2k)+ω0(cid:18)NˆB+ 2(cid:19)+ (1) this new Hamiltonian in mean-field approximation. Xk 1 2 v We start with the model of coexistence of supercon- +γ1 Bˆ0†+Bˆ0 + γ2kˆ22k Bˆ0†+Bˆ0 7 ductivity and ferroelectricity proposed by Birman and (cid:16) (cid:17) Xk (cid:16) (cid:17) 0 Weger1. For convenience we include its main features 4 here. Birman and Weger start with two separate Hamil- If a single k mode is isolated 1 toniansforthesuperconductingandferroelectricsectors. 0 The superconducting sectorisa mean-fieldreducedBCS 1 6 pseudo-spin model (we corrected a misprint in Ref. 1) Hˆ = 2(εˆ3+2∆ˆ2)+ω0 NˆB+ + (2) 0 − (cid:18) 2(cid:19) / 2 at HSC = 2 (εkˆ3k+2∆kˆ2k) +γ1 Bˆ0†+Bˆ0 +γ2ˆ22 Bˆ0†+Bˆ0 m − Xk (cid:16) (cid:17) (cid:16) (cid:17) - Here we notice that the structure of the pseudo-spin d whereεk isthesingle-electronenergyand∆k isthepair- operators in terms of the pair operators implies n ing interaction energy. The pseudo-spin operators ˆpk o obey SU(2) commutation relations and are defined as ˆ2 =ˆ2 =ˆ2 c 1 2 3 : iv ˆ1k =(−i/2)(cid:16)ˆb†k−ˆbk(cid:17) and therefore ˆ21, ˆ22 and ˆ23 are invariant to any rotation X r ˆ2k =(1/2) ˆb†k+ˆbk of the form exphnˆ·−→j i. a (cid:16) (cid:17) We use this property to diagonalize the Hamiltonian ˆ3k =( 1/2)(nˆk+nˆ−k 1) analytically by applying the following unitary transfor- − − mation where ˆb andˆb† are pair operators defined by k k eβ2(Bˆ0†2−Bˆ02)eα(Bˆ0†−Bˆ0)+iθˆ1He−iθˆ1−α(Bˆ0†−Bˆ0)e−β2(Bˆ0†2−Bˆ02) † ˆb†k =aˆ†k↑aˆ†−k↓, ˆbk =(cid:16)ˆb†k(cid:17) , nˆk ≡aˆ†k↑aˆk↑ =HD+ˆ2(2εsinθ−4∆cosθ)+ + Bˆ0†+Bˆ0 ω0αe−2β +γ1e−β +4αγ2ˆ22e−2β + oapnderaˆakt↑orasnfdoraˆ†kw↑aavreevtehceteolrec~kt,rospninan(n↑i)h,ileattcio.nandcreation +(cid:16)(cid:16)Bˆ0†2+Bˆ02(cid:17)(cid:17)(cid:0)(cid:16)−ω20 sh2β+γ2ˆ22e−2β(cid:17) (cid:1) 2 HereHD is aHamiltoniandiagonalinthe j3,NB basis: with | i HD =2ˆ3(2∆sinθ−εcosθ)+ ξ =[ Γ1/ω0 Γ2(1 msinθ)]/ω0 − − − +ω0(cid:18)NˆBch2β+sh2β+ 21 +αe−2β(cid:19)+ ∆′ =∆ 1−γ2P2 Γ1 =γ1(cid:0) 2γ2P∆2(cid:1) Γ2 =4γ2 +2αγ1e−β +γ2ˆ22e−2β 2NˆB+1+4α2 − (cid:16) (cid:17) Here both order parameters are affected by the SC-FE and if we want the non-diagonal parts to vanish we re- coupling strength (γ2). quire To sum up this part, we have obtained an exact an- alytical solution of the ferroelectricity and superconduc- 2εsinθ =4∆cosθ tivitycoexistencemodel,usedinRef.1. We showedhere ω0αe−2β +γ1e−β +4αγ2ˆ22e−2β =0 thatcontraryto themean-fieldresults,anexactsolution γ2ˆ22e−2β = ω20 sh2β opfartahmeemteordiesladffeemctoendsbtryattehsetchoautpltinhge,fbeurrtotehleectsruipceorcrodner- ducting order parameter is not. If one were to initially Theseyieldthefollowingsetofcoupledequationsforthe model the SC-FE system by Eq. 34 of Ref. 1, the results parameters reported in Ref. 1 would remain valid. tanθ = 2∆, α= γ1eβ , e4β = ω0+γ2. pliRngetuterrnmingintoathqeuaonrtiguimnalmqeucehsatnioicnalofHtahmeipltroonpiearn,cowue- ε −ω0+γ2 ω0 needtorespectgaugeandinversionsymmetry. Sincethe Inserting them back into the transformed Hamiltonian superconductinggapparameterisacomplexquantitythe 2 gives added term should correspond to the bilinear ∆ . We | | now take this as ˆ+ˆ−. The coupling term for the ferro- HD =−2ˆ3√εε22−+44∆∆22 − γ2γ+12ω0+ ewleilcltcroicrrpeosplaornizdattioonP,2wahnidchcarenspbeecttsakiennvearssionBˆ0†sy+mBmˆ0etr2y. 1 (cid:16) (cid:17) + ω0(ω0+γ2)(cid:18)NˆB+ 2(cid:19) Thus the bilinear coupling becomes ˆ+ˆ− Bˆ0†+Bˆ0 2. p (cid:16) (cid:17) and this is the decoupled Hamiltonianof a squeezed and We note that ˆ+ˆ− = ˆ21+ˆ22+j3 = 21 +ˆ3 (Using ˆ−ˆ+ shifted harmonic oscillator and a spin of one-half in a would have changed ˆ32into −ˆ3). The coupling becomes magnetic field. The energy spectrum is given by γ2 ˆ3+ 21 Bˆ0†+Bˆ0 . The Hamiltonian is now (cid:0) (cid:1)(cid:16) (cid:17) ε2 4∆2 γ2 H (m,n)= 2m − 1 + D − √ε2+4∆2 − γ2+ω0 Hˆ = 2(εˆ3+2∆ˆ2)+ω0 NˆB+ 1 + (4) 1 − (cid:18) 2(cid:19) + ω0(ω0+γ2)(cid:18)n+ 2(cid:19) 1 2 We can now use tphe exact eigenstates of the Hamilto- +γ1(cid:16)Bˆ0†+Bˆ0(cid:17)+γ2(cid:18)ˆ3+ 2(cid:19)(cid:16)Bˆ0†+Bˆ0(cid:17) nian to compute the order parameters of the system: TheinteractionterminthisHamiltoniandiffersfromthe ηFE ≡DBˆ0†+Bˆ0E=2αe−β =−ω0γ+1γ2 (3) cisornroetspeoxnadcitnlygtseorlmvab(Eleq,.t2h7e)reinforReefw.e1.mTahkiesaHammeialtno-nfiiealnd 1 ∆ approximationin the form ηSC ˆ2 = sinθ = ≡h i −2 −√ε2+4∆2 2 2 While the order parameter of the ferroelectric sector is ˆ3(cid:16)Bˆ0†+Bˆ0(cid:17) ≃(cid:28)(cid:16)Bˆ0†+Bˆ0(cid:17) (cid:29)ˆ3+ (5) affected by the SC-FE coupling strength, the order pa- 2 2 rameter of the superconducting sector is not. This oc- + ˆ3 Bˆ0†+Bˆ0 Bˆ0†+Bˆ0 ˆ3 . 2 h i(cid:16) (cid:17) −(cid:28)(cid:16) (cid:17) (cid:29)h i curs since in the coupling term γ2ˆ22 Bˆ0†+Bˆ0 , ˆ22 is a (cid:16) (cid:17) Inserting Eq. 5 into Eq. 4 results in a solvable bilinear c-number and not an operator. Hamiltonian Using a double mean-field approximation for the Hamiltonian (Eq. 34 of Ref. 1) and variational coherent 1 sfotalltoewiwnagvreelfautnioctnisonfo,rBthiremoarndearnpdarWamegeetre1rsobtained the HˆMF =ε′ˆ3−4∆ˆ2+ω0(cid:18)NˆB+ 2(cid:19)+γ1(cid:16)Bˆ0†+Bˆ0(cid:17)+ (6) m(∆′/ε+ξΓ2/ε) 2 2 ηFE =2ξ ηSC = 1+(∆′/ε+ξΓ2/ε)2 +γ2′ (cid:16)Bˆ0†+Bˆ0(cid:17) −γ2(cid:28)(cid:16)Bˆ0†+Bˆ0(cid:17) (cid:29)hˆ3i q 3 This set of equations can be reduced to a polynomial 0.5 10 |η | equation, which we solved numerically. Using these nu- SC merical results we investigate the behavior of the order 0.4 |ηFE| 8 parameters 0.3 6 η|SC η|FE ηFE Bˆ0†+Bˆ0 =2αe−β (8) | 0.2 4 | ≡D E 1 ηSC ˆ2 = sinθ ≡h i −2 0.1 2 0 0 Fig. 1showsthe dependence ofthe twoorderparame- −−11 00 11 22 33 44 55 66 77 γ2 ters on the coupling coefficient between the ferroelectric andsuperconductingsubsystems. Thereisasmoothevo- FIG.1: Theabsolutevaluesofthesuperconductingorderpa- lution of each of the order parameters with the coupling rameter and the ferroelectric order parameter as a function coefficient γ2. Both order parameters are non-vanishing ofthecouplingconstant γ2.Theleft sideoftheordinatecor- at γ2 = 0. We note that γ2 is bounded by two critical responds to small negative values of γ2. Here ∆ = ε = γ1 = values, beyond which there are no real solutions for the ω0 =1. set of self-consistent equations (7). At the positive criti- calvaluethesuperconductinggapparameterη reaches SC its maximum, and the polarizationorder parameter η FE Here reachesitsminimum. Fornegativevaluesofγ2thesuper- conducting order parameter vanishes very rapidly, while ε′ =−2ε+γ2(cid:28)(cid:16)Bˆ0†+Bˆ0(cid:17)2(cid:29) tγh2eafpeprrrooealcehcetsriictsorndeegratpiavreacmriettiecralshvaalrupely. diverges, when 1 In conclusion we note that our new model for SC-FE γ2′ =γ2(cid:18)hˆ3i+ 2(cid:19) coexistence/competitiondoesagreewiththespiritofthe Matthiasconjecturethateachofthesecooperativeeffects This mean-field Hamiltonian, Eq. 6, differs from Eq. 34 tends to exclude or suppress the other2. in Ref. 1 andcanbe diagonalizedusing rotation,squeez- ing and displacement transformations; Wˆ =eα(Bˆ0†−Bˆ0)eβ2(Bˆ0†2−Bˆ02)eiθˆ1 These yield the following set of (self-consistent) coupled Acknowledgments equations for the parameters α,β and θ tanθ = −4∆, α= −γ1eβ , e4β = ω0+γ2′. JLB thanks the Institute of Theoretical Physics of ε′ ω0+γ2′ ω0 Technion for its support and hospitality. Also support (7) from PSC-CUNY is acknowledged. ∗ Electronic address: [email protected] 2 B. Matthias, in Ferroelectricity, edited by E. Weller (Else- † Permanent address: Department of Physics, City College, vier, NewYork,1976) CUNY,New York,New York10031 1 J.L.BirmanandM.Weger,Phys.Rev.B64,174503(2001).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.