ebook img

Theory, Numerics and Applications of Hyperbolic Problems II: Aachen, Germany, August 2016 (Springer Proceedings in Mathematics & Statistics (237)) PDF

698 Pages·2018·10.428 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Theory, Numerics and Applications of Hyperbolic Problems II: Aachen, Germany, August 2016 (Springer Proceedings in Mathematics & Statistics (237))

Springer Proceedings in Mathematics & Statistics Christian Klingenberg  Editors Michael Westdickenberg Theory, Numerics and Applications of Hyperbolic Problems II Aachen, Germany, August 2016 Springer Proceedings in Mathematics & Statistics Volume 237 Springer Proceedings in Mathematics & Statistics This book series features volumes composed of selected contributions from workshops and conferences in all areas of current research in mathematics and statistics, including operation research and optimization. In addition to an overall evaluation of the interest, scientific quality, and timeliness of each proposal at the hands of the publisher, individual contributions are all refereed to the high quality standards of leading journals in the field. Thus, this series provides the research community with well-edited, authoritative reports on developments in the most exciting areas of mathematical and statistical research today. More information about this series at http://www.springer.com/series/10533 Christian Klingenberg Michael Westdickenberg (cid:129) Editors Theory, Numerics and Applications of Hyperbolic Problems II Aachen, Germany, August 2016 123 Editors Christian Klingenberg Michael Westdickenberg Department ofMathematics Department ofMathematics Würzburg University RWTH Aachen University Würzburg Aachen Germany Germany ISSN 2194-1009 ISSN 2194-1017 (electronic) SpringerProceedings in Mathematics& Statistics ISBN978-3-319-91547-0 ISBN978-3-319-91548-7 (eBook) https://doi.org/10.1007/978-3-319-91548-7 LibraryofCongressControlNumber:2018941540 Mathematics Subject Classification (2010): 35Lxx, 35M10, 35Q30, 35Q35, 35Q60, 35Q72, 35R35, 65Mxx,65Nxx,65Txx,65Yxx,65Z05,74B20,74Jxx,76L06,76Rxx,76Txx,80A32,80Mxx,83C55, 83F05 ©SpringerInternationalPublishingAG,partofSpringerNature2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbytheregisteredcompanySpringerInternationalPublishingAG partofSpringerNature Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Contents A Stochastic Galerkin Method for the Fokker–Planck–Landau Equation with Random Uncertainties. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Jingwei Hu, Shi Jin and Ruiwen Shu On Robust and Adaptive Finite Volume Methods for Steady Euler Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Guanghui Hu, Xucheng Meng and Tao Tang The Burgers–Hilbert Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 John K. Hunter General Linear Methods for Time-Dependent PDEs . . . . . . . . . . . . . . . 59 Alexander Jaust and Jochen Schütz An Invariant-Region-Preserving (IRP) Limiter to DG Methods for Compressible Euler Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Yi Jiang and Hailiang Liu b-Schemes with Source Terms and the Convergence Analysis . . . . . . . . 85 Nan Jiang Existence of Undercompressive Shock Wave Solutions to the Euler Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Buğra Kabil Some Numerical Results of Regional Boundary Controllability with Output Constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Touria Karite, Ali Boutoulout and Fatima Zahrae El Alaoui Water Hammer Modeling for Water Networks via Hyperbolic PDEs and Switched DAEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Rukhsana Kausar and Stephan Trenn Stability Criteria for Some System of Delay Differential Equations . . . . 137 Yuya Kiri and Yoshihiro Ueda v vi Contents Bound-Preserving Reconstruction of Tensor Quantities for Remap in ALE Fluid Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 Matej Klima, Milan Kucharik, Mikhail Shashkov and Jan Velechovsky On Computing Compressible Euler Equations with Gravity . . . . . . . . . 159 Christian Klingenberg and Andrea Thomann On Well-Posedness for a Multi-particle Fluid Model . . . . . . . . . . . . . . . 167 Christian Klingenberg, Jens Klotzky and Nicolas Seguin On Quantifying Uncertainties for the Linearized BGK Kinetic Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 Christian Klingenberg, Qin Li and Marlies Pirner Kinetic ES-BGK Models for a Multi-component Gas Mixture. . . . . . . . 195 Christian Klingenberg, Marlies Pirner and Gabriella Puppo An Arbitrary Lagrangian–Eulerian Discontinuous Galerkin Method for Conservation Laws: Entropy Stability . . . . . . . . . . . . . . . . . . . . . . . 209 Christian Klingenberg, Gero Schnücke and Yinhua Xia Simplified Hyperbolic Moment Equations . . . . . . . . . . . . . . . . . . . . . . . 221 Julian Koellermeier and Manuel Torrilhon Weakly Coupled Systems of Conservation Laws on Moving Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 Andrea Korsch A Phase-Field Model for Flows with Phase Transition. . . . . . . . . . . . . . 243 Mirko Kränkel and Dietmar Kröner MathematicalTheoryofTwo-PhaseGeochemicalFlowwithChemical Species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 W. J. Lambert, A. C. Alvarez, D. Marchesin and J. Bruining Localization of Adiabatic Deformations in Thermoviscoplastic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 Min-Gi Lee, Theodoros Katsaounis and Athanasios E. Tzavaras The Global Nonlinear Stability of Minkowski Spacetime for Self-gravitating Massive Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 Philippe G. LeFloch A Particle-Based Multiscale Solver for Compressible Liquid–Vapor Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 Jim Magiera and Christian Rohde Lp-Lq Decay Estimates for Dissipative Linear Hyperbolic Systems in 1D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305 Corrado Mascia and Thinh Tien Nguyen Contents vii A Numerical Approach of Friedrichs’ Systems Under Constraints in Bounded Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 Clément Mifsud and Bruno Després Lagrangian Representation for Systems of Conservation Laws: An Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 Stefano Modena Kinematical Conservation Laws in Inhomogeneous Media. . . . . . . . . . . 349 S. Baskar, R. Murti and P. Prasad ArtificialViscosityforCorrectionProcedureviaReconstructionUsing Summation-by-Parts Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363 Jan Glaubitz, Philipp Öffner, Hendrik Ranocha and Thomas Sonar On a Relation Between Shock Profiles and Stabilization Mechanisms in a Radiating Gas Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 Masashi Ohnawa On the Longtime Behavior of Almost Periodic Entropy Solutions to Scalar Conservation Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391 Evgeny Yu. Panov Structure Preserving Schemes for Mean-Field Equations of Collective Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405 Lorenzo Pareschi and Mattia Zanella A Numerical Model for Three-Phase Liquid–Vapor–Gas Flows with Relaxation Processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423 Tore Flåtten, Marica Pelanti and Keh-Ming Shyue Feedback Stabilization of a Linear Fluid–Membrane System with Time Delay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437 Gilbert Peralta A Unified Hyperbolic Formulation for Viscous Fluids and Elastoplastic Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451 Michael Dumbser, Ilya Peshkov and Evgeniy Romenski On the Transverse Diffusion of Beams of Photons in Radiation Therapy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465 S. Brull, B. Dubroca, M. Frank and T. Pichard Numerical Viscosity in Large Time Step HLL-Type Schemes . . . . . . . . 479 Marin Prebeg Correction Procedure via Reconstruction Using Summation-by-Parts Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491 Philipp Öffner, Hendrik Ranocha and Thomas Sonar viii Contents A Third-Order Entropy Stable Scheme for the Compressible Euler Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503 Deep Ray Did Numerical Methods for Hyperbolic Problems Take a Wrong Turning? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517 Philip Roe Astrophysical Fluid Dynamics and Applications to Stellar Modeling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535 Friedrich K. Röpke Nonlinear Stability of Localized and Non-localized Vortices in Rotating Compressible Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549 Olga S. Rozanova and Marko K. Turzynsky Coupled Scheme for Hamilton–Jacobi Equations. . . . . . . . . . . . . . . . . . 563 Smita Sahu Compressible Heterogeneous Two-Phase Flows . . . . . . . . . . . . . . . . . . . 577 Nicolas Seguin Bound-Preserving High-Order Schemes for Hyperbolic Equations: Survey and Recent Developments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591 Chi-Wang Shu Comparison of Shallow Water Models for Rapid Channel Flows . . . . . 605 Stefanie Elgeti, Markus Frings, Anne Küsters, Sebastian Noelle and Aleksey Sikstel On Stability and Conservation Properties of (s)EPIRK Integrators in the Context of Discretized PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617 Philipp Birken, Andreas Meister, Sigrun Ortleb and Veronika Straub Compactness on Multidimensional Steady Euler Equations . . . . . . . . . . 631 Tian-Yi Wang A Constraint-Preserving Finite Difference Method for the Damped Wave Map Equation to the Sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643 Franziska Weber Integral Transform Approach to Solving Klein–Gordon Equation with Variable Coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655 Karen Yagdjian AsymptoticConsistencyoftheRS-IMEXSchemefortheLow-Froude Shallow Water Equations: Analysis and Numerics. . . . . . . . . . . . . . . . . 665 Hamed Zakerzadeh Contents ix Class of Space–Time Entropy Stable DG Schemes for Systems of Convection–Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677 Georg May and Mohammad Zakerzadeh Invariant Manifolds for a Class of Degenerate Evolution Equations and Structure of Kinetic Shock Layers . . . . . . . . . . . . . . . . . . . . . . . . . 691 Kevin Zumbrun

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.