ebook img

Theory and Simulation of Random Phenomena : Mathematical Foundations and Physical Applications PDF

245 Pages·2018·1.715 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Theory and Simulation of Random Phenomena : Mathematical Foundations and Physical Applications

UNITEXT for Physics Ettore Vitali · Mario Motta  Davide Emilio Galli Theory and Simulation of Random Phenomena Mathematical Foundations and Physical Applications UNITEXT for Physics Series editors Paolo Biscari, Milano, Italy Michele Cini, Roma, Italy Attilio Ferrari, Torino, Italy Stefano Forte, Milano, Italy Morten Hjorth-Jensen, Oslo, Norway Nicola Manini, Milano, Italy Guido Montagna, Pavia, Italy Oreste Nicrosini, Pavia, Italy Luca Peliti, Napoli, Italy Alberto Rotondi, Pavia, Italy UNITEXTforPhysicsseries,formerly UNITEXT CollanadiFisicae Astronomia, publishestextbooksandmonographsinPhysicsandAstronomy,mainlyinEnglish language, characterized of a didactic style and comprehensiveness. The books published in UNITEXT for Physics series are addressed to graduate and advanced graduate students, but also to scientists and researchers as important resources for their education, knowledge and teaching. More information about this series at http://www.springer.com/series/13351 Ettore Vitali Mario Motta (cid:129) Davide Emilio Galli Theory and Simulation of Random Phenomena Mathematical Foundations and Physical Applications 123 Ettore Vitali Davide EmilioGalli Department ofPhysics Department ofPhysics Collegeof William andMary University of Milan Williamsburg Milan USA Italy Mario Motta Division of Chemistry andChemical Engineering California Institute ofTechnology Pasadena USA ISSN 2198-7882 ISSN 2198-7890 (electronic) UNITEXTfor Physics ISBN978-3-319-90514-3 ISBN978-3-319-90515-0 (eBook) https://doi.org/10.1007/978-3-319-90515-0 LibraryofCongressControlNumber:2018939455 ©SpringerInternationalPublishingAG,partofSpringerNature2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbytheregisteredcompanySpringerInternationalPublishingAG partofSpringerNature Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland To our families and friends Contents 1 Review of Probability Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Probability Spaces and Random Variables . . . . . . . . . . . . . . . . . 1 1.2 First Examples: Binomial Law, Poisson Law, and Geometric Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Probability and Counting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3.1 A Bit of Quantum Statistics . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Absolutely Continuous Random Variables . . . . . . . . . . . . . . . . . 11 1.5 Integration of Random Variables . . . . . . . . . . . . . . . . . . . . . . . . 14 1.5.1 Integration with Respect to the Law of a Random Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.6 Transformations Between Random Variables . . . . . . . . . . . . . . . 20 1.7 Multi-dimensional Random Variables. . . . . . . . . . . . . . . . . . . . . 22 1.7.1 Evaluation of Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.8 Characteristic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.8.1 Moments and Cumulants . . . . . . . . . . . . . . . . . . . . . . . . 28 1.9 Normal Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.10 Convergence of Random Variables . . . . . . . . . . . . . . . . . . . . . . 32 1.11 The Law of Large Numbers and the Central Limit Theorem . . . . 34 1.12 Further Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2 Applications to Mathematical Statistics. . . . . . . . . . . . . . . . . . . . . . . 41 2.1 Statistical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.2 Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.3 The Empiric Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.4 Cochran Theorem and Estimation of the Variance . . . . . . . . . . . 46 2.4.1 The Cochran Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.5 Estimation of a Proportion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.6 Cramer-Rao Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.7 Maximum Likelihood Estimators (MLE) . . . . . . . . . . . . . . . . . . 55 vii viii Contents 2.8 Hypothesis Tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2.8.1 Student Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.8.2 Chi-Squared Test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 2.8.3 Kolmogorov-Smirnov Test . . . . . . . . . . . . . . . . . . . . . . . 62 2.9 Estimators of Covariance and Correlation. . . . . . . . . . . . . . . . . . 66 2.10 Linear Regression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 2.11 Further Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3 Conditional Probability and Conditional Expectation. . . . . . . . . . . . 75 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.2 Conditional Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.3 Conditional Expectation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.4 An Elementary Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.5 Computing Conditional Expectations from Probability Densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.6 Properties of Conditional Expectation . . . . . . . . . . . . . . . . . . . . 82 3.7 Conditional Expectation as Prediction . . . . . . . . . . . . . . . . . . . . 83 3.8 Linear Regression and Conditional Expectation . . . . . . . . . . . . . 84 3.9 Conditional Expectation, Measurability and Independence. . . . . . 85 3.10 Further Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4 Markov Chains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.2 Random Walk in d Dimensions. . . . . . . . . . . . . . . . . . . . . . . . . 90 4.2.1 An Exact Expression for the Law. . . . . . . . . . . . . . . . . . 91 4.2.2 Explicit Expression in One Dimension and Heat Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.2.3 The Asymptotic Behavior for n! þ1 and Recurrence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4.3 Recursive Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.4 Transition Matrix and Initial Law . . . . . . . . . . . . . . . . . . . . . . . 96 4.5 Invariant Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.6 Metropolis Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4.7 Further Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5 Sampling of Random Variables and Simulation . . . . . . . . . . . . . . . . 109 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.2 Monte Carlo Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5.3 Random Number Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5.4 Simulation of Normal Random Variables. . . . . . . . . . . . . . . . . . 113 5.5 The Inverse Cumulative Distribution Function . . . . . . . . . . . . . . 114 Contents ix 5.6 Discrete Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 5.7 The Metropolis Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 5.7.1 Monte Carlo Simulation of the Ising Model . . . . . . . . . . 116 5.7.2 Monte Carlo Simulation of a Classical Simple Liquid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5.8 Further Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 6 Brownian Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 6.2 Brownian Motion: A Heuristic Introduction . . . . . . . . . . . . . . . . 132 6.3 Stochastic Processes: Basic Definitions . . . . . . . . . . . . . . . . . . . 134 6.3.1 Finite-Dimensional Laws . . . . . . . . . . . . . . . . . . . . . . . . 136 6.4 Construction of Brownian Motion . . . . . . . . . . . . . . . . . . . . . . . 137 6.5 Transition Probability and Existence of the Brownian Motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 6.6 The Martingale Property and the Markov Property . . . . . . . . . . . 142 6.7 Wiener Measure and Feynman Path Integral. . . . . . . . . . . . . . . . 143 6.8 Markov Processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 6.9 Semigroup Associated to a Markovian Transition Function . . . . . 148 6.10 The Heat Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 6.11 Further Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 7 Stochastic Calculus and Introduction to Stochastic Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 7.2 Integration of Processes with Respect to Time . . . . . . . . . . . . . . 156 7.3 The Itô Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 7.3.1 Itô Integral Integral of Simple Processes . . . . . . . . . . . . . 158 7.3.2 First Extension of the Itô Integral . . . . . . . . . . . . . . . . . . 161 7.3.3 Second Extension of the Itô Integral . . . . . . . . . . . . . . . . 162 7.3.4 The Itô Integral as a Function of Time . . . . . . . . . . . . . . 163 7.3.5 The Wiener Integral. . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 7.4 Stochastic Differential and Itô’s Lemma. . . . . . . . . . . . . . . . . . . 165 7.5 Extension to the Multidimensional Case. . . . . . . . . . . . . . . . . . . 167 7.6 The Langevin Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 7.6.1 Ohm’s Law. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 7.7 Further Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 x Contents 8 Stochastic Differential Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 8.1 General Introduction to Stochastic Differential Equations . . . . . . 177 8.2 Stochastic Differential Equations and Markov Processes . . . . . . . 180 8.2.1 The Chapman-Kolmogorov Equation . . . . . . . . . . . . . . . 181 8.3 Kolmogorov Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 8.3.1 The Fokker-Planck Equation. . . . . . . . . . . . . . . . . . . . . . 186 8.4 Important Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 8.4.1 Geometric Brownian Motion . . . . . . . . . . . . . . . . . . . . . 188 8.4.2 Brownian Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 8.4.3 Langevin Equation in a Force Field . . . . . . . . . . . . . . . . 190 8.5 Feynman-Kac Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 8.6 Kakutani Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 8.7 Further Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 Solutions . .... .... .... .... ..... .... .... .... .... .... ..... .... 203

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.