ebook img

Theory and Modeling of Rotating Fluids: Convection, Inertial Waves and Precession PDF

541 Pages·2017·29.218 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Theory and Modeling of Rotating Fluids: Convection, Inertial Waves and Precession

THEORY AND MODELING OF ROTATING FLUIDS A systematic account of the theory and modeling of rotating fluids that highlights the remarkable advances in the area and brings researchers and postgraduate students in atmospheres, oceanography, geophysics, astrophysics and engineering to the frontiers of research.Sufficientmathematicalandnumericaldetailisprovidedinavarietyofgeome- tries, such that the analysis and results can be readily reproduced, and many numerical tablesareincludedtoenablereaderstocompareorbenchmarktheirowncalculations.Tra- ditionally,therearetwodisjointedtopicsinrotatingfluids:convectivefluidmotiondriven by buoyancy, discussed by Chandrasekhar (1961), and inertial waves and precession- driven flow, described by Greenspan (1968). Now, for the first time in book form, the authorspresentaunifiedtheoryforthreetopics–thermalconvection,inertialwaves,and precession-drivenflow–todemonstratethattheseseeminglycomplicated,andpreviously disconnected,problemsbecomemathematicallysimpleintheframeworkofanasymptotic approachthatincorporatestheessentialcharacteristicsofrotatingfluids. KEKE ZHANG,professorofGeophysicalandAstrophysicalFluidDynamicsattheUni- versity of Exeter, UK, obtained his BSc in 1982 from the University of Nanjing, China, andhisMScin1985andhisPhDin1987fromtheUniversityofCalifornia,LosAngeles, USA.HeisaFellowofboththeAmericanGeophysicalUnionandtheRoyalAstronomi- calSociety.ProfessorZhanghasauthoredover180publicationsinpeer-reviewedscientific journals XINHAO LIAO, professor of Celestial Dynamics at the Chinese Academy of Sciences, obtainedhisBScin1983andhisPhDin1989fromtheUniversityofNanjing. Established in 1952, the Cambridge Monographs on Mechanics series has maintained a reputation for the publication of outstanding monographs, a number of which have been re-issued in paperback. The series covers such areasaswavepropagation,fluiddynamics,theoreticalgeophysics,combus- tion, and the mechanics of solids. Authors are encouraged to write for a wide audience, and to balance mathematical analysis with physical inter- pretation and experimental data, where appropriate. Whilst the research literature is expected to be a major source for the content of the book, authorsshouldaimtosynthesisenewresultsratherthanjustsurveythem. Acompletelistofbooksintheseriescanbefoundat www.cambridge.org/mathematics. RECENTTITLESINTHISSERIES Magnetoconvection N.O.WEISS&M.R.E.PROCTOR WavesandMeanFlows(SecondEdition) OLIVERBÜHLER Turbulence,CoherentStructures,DynamicalSystemsandSymmetry (SecondEdition) PHILIPHOLMES,JOHNL.LUMLEY, GAHLBERKOOZ&CLARENCEW.ROWLEY ElasticWavesatHighFrequencies JOHNG.HARRIS Gravity–CapillaryFree-SurfaceFlows JEAN-MARCVANDEN-BROECK LagrangianFluidDynamics ANDREWF.BENNETT THEORY AND MODELING OF ROTATING FLUIDS Convection, Inertial Waves and Precession KEKE ZHANG UniversityofExeter XINHAO LIAO ChineseAcademyofSciences UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 4843/24,2ndFloor,AnsariRoad,Daryaganj,Delhi–110002,India 79AnsonRoad,#06-04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learningandresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9780521850094 (cid:2)c KekeZhangandXinhaoLiao2017 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2017 PrintedintheUnitedStatesofAmericabySheridanBooks,Inc. AcataloguerecordforthispublicationisavailablefromtheBritishLibrary LibraryofCongressCataloguinginPublicationdata Names:Zhang,Keke.|Liao,Xinhao. Title:Theoryandmodelingofrotatingfluids:convection,inertialwaves,and precession/KekeZhang,UniversityofExeter,XinhaoLiao,ChineseAcademyofSciences. Description:Cambridge:CambridgeUniversityPress,2017.| Series:Cambridgemonographsonmechanicsseries| Includesbibliographicalreferencesandindex. Identifiers:LCCN2017004135|ISBN9780521850094(hardback:alk.paper) Subjects:LCSH:Rotatingmassesoffluid.|Fluidmechanics.|Fluiddynamics. Classification:LCCQA913.Z432017|DDC532/.0595–dc23 LCrecordavailableathttps://lccn.loc.gov/2017004135 ISBN978-0-521-85009-4Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication, anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. Contents Preface pagexi Part1 FundamentalsofRotatingFluids 1 1 BasicConceptsandEquationsforRotatingFluids 3 1.1 Introduction 3 1.2 EquationsofMotioninRotatingSystems 4 1.3 TheHeatEquation 6 1.4 TheBoussinesqEquations 7 1.5 TheKineticEnergyEquation 10 1.6 Taylor–ProudmanTheoremandThermalWindEquation 11 1.7 AUnifiedApproach 13 Part2 InertialWavesinUniformlyRotatingSystems 15 2 Introduction 17 2.1 Formulation 17 2.2 FrequencyBound|σ|≤1 19 2.3 SpecialCases:σ =0andσ =±1 21 2.4 Orthogonality 23 2.5 ThePoincaréEquation 25 3 InertialModesinRotatingNarrow-gapAnnuli 27 3.1 Formulation 27 3.2 AxisymmetricInertialOscillations 29 3.3 GeostrophicMode 31 3.4 Non-axisymmetricInertialWaves 32 4 InertialModesinRotatingCylinders 35 4.1 Formulation 35 4.2 AxisymmetricInertialOscillations 36 4.3 GeostrophicMode 41 4.4 Non-axisymmetricInertialWaves 43 5 InertialModesinRotatingSpheres 50 5.1 Formulation 50 v vi Contents 5.2 GeostrophicMode 52 5.3 EquatoriallySymmetricModes:m=0 54 5.4 EquatoriallySymmetricModes:m≥1 60 5.5 EquatoriallyAntisymmetricModes:m=0 71 5.6 EquatoriallyAntisymmetricModes:m≥1 75 5.7 AnExactNonlinearSolutioninRotatingSpheres 81 6 InertialModesinRotatingOblateSpheroids 83 6.1 Formulation 83 6.2 GeostrophicMode 91 6.3 EquatoriallySymmetricModes:m=0 92 6.4 EquatoriallySymmetricModes:m≥1 94 6.5 EquatoriallyAntisymmetricModes:m=0 96 6.6 EquatoriallyAntisymmetricModes:m≥1 99 6.7 AnExactNonlinearSolutioninRotatingSpheroids 102 7 AProofofCompletenessofInertialModesinRotatingChannels 105 7.1 SignificanceoftheCompletenessofInertialModes 105 7.2 Bessel’sInequalityandParseval’sEquality 107 7.3 AProofoftheCompletenessRelation 109 8 IndicationsofCompletenessofInertialModesinRotatingSpheres 118 8.1 SeekingSignsofCompleteness 118 8.2 AProofoftheVanishingDissipation-typeIntegral 119 Part3 PrecessionandLibrationinNon-uniformlyRotatingSystems 127 9 Introduction 129 9.1 Non-uniformRotation:PrecessionandLibration 129 9.2 Precession/LibrationinDifferentGeometries 130 9.3 KeyParametersandReferenceFrames√ 134 9.4 AsymptoticExpansionWithoutUsing Ek 135 10 FluidMotioninPrecessingNarrow-gapAnnuli 138 10.1 Formulation 138 10.2 ConditionsforResonance √ 141 10.3 AsymptoticSolutionatResonancewith(cid:3)= 3√ 142 10.4 AsymptoticSolutionatResonancewith(cid:3)=1/ 3 152 10.5 LinearNumericalAnalysis 155 10.6 NonlinearDirectNumericalSimulation 157 10.7 Comparison:Analyticalvs.Numerical 159 10.8 AByproduct:TheViscousDecayFactor 160 11 FluidMotioninPrecessingCircularCylinders 164 11.1 Formulation 164 11.2 ConditionsforResonance 166 11.3 DivergenceoftheInviscidPrecessingSolution 168 11.4 GeneralAsymptoticSolutionfor0<Ek(cid:5)1 172 Contents vii 11.5 AsymptoticSolutionatPrimaryResonances 180 11.6 LinearNumericalAnalysisUsingSpectralMethods 187 11.7 NonlinearPropertiesofWeaklyPrecessingFlow 190 11.8 NumericalSimulationUsingFiniteElementMethods 193 11.9 NonlinearPrecessingFlowatPrimaryResonances 195 11.9.1 DecompositionofNonlinearFlowintoInertialModes 195 11.9.2 TheStructureofNonlinearPrecessingFlow 199 11.9.3 SearchforTriadicResonance 205 11.10AByproduct:TheViscousDecayFactor 209 12 FluidMotioninPrecessingSpheres 213 12.1 Formulation 213 12.2 AsymptoticExpansionandResonance 215 12.3 AsymptoticSolution 217 12.4 NonlinearDirectNumericalSimulation 224 12.5 Comparison:Analyticalvs.Numerical 226 12.6 NonlinearEffects:MeanAzimuthalFlow 227 12.7 AByproduct:TheViscousDecayFactor 229 13 FluidMotioninLongitudinallyLibratingSpheres 231 13.1 Formulation 231 13.2 AsymptoticSolutions 232 13.2.1 WhyResonanceCannotOccur 232 13.2.2 AsymptoticAnalysis 233 13.2.3 ThreeFundamentalModesExcited 239 13.3 LinearNumericalSolution 244 13.4 NonlinearDirectNumericalSimulation 246 14 FluidMotioninPrecessingOblateSpheroids 250 14.1 Formulation 250 14.2 InviscidSolution 252 14.3 ExactNonlinearSolution 258 14.4 ViscousSolution 260 14.5 PropertiesofNonlinearPrecessingFlow 268 14.6 AByproduct:TheViscousDecayFactor 273 15 FluidMotioninLatitudinallyLibratingSpheroids 276 15.1 Formulation 276 15.2 AnalyticalSolution:Non-resonantLibratingFlow 279 15.3 AnalyticalSolution:ResonantLibratingFlow 283 15.4 NonlinearDirectNumericalSimulation 293 15.5 Comparison:Analyticalvs.Numerical 293 Part4 ConvectioninUniformlyRotatingSystems 297 16 Introduction 299 16.1 RotatingConvectionvs.Precession/Libration 299 viii Contents 16.2 KeyParametersforRotatingConvection 300 16.3 RotationalConstraintonConvection 302 16.4 TypesofRotatingConvection 303 16.4.1 ViscousConvectionMode 303 16.4.2 InertialConvectionMode 305 16.4.3 TransitionalConvectionMode 306 16.5 ConvectioninVariousRotatingGeometries 307 16.5.1 RotatingAnnularChannels 307 16.5.2 RotatingCircularCylinders 308 16.5.3 RotatingSpheresorSphericalShells 309 17 ConvectioninRotatingNarrow-gapAnnuli 313 17.1 Formulation 313 17.2 AFinite-differenceMethodforNonlinearConvection 316 17.3 StationaryViscousConvection 318 17.3.1 GoverningEquations 318 17.3.2 AsymptoticSolutionfor(cid:3)(Ta)1/6(cid:5)O(1) 320 17.3.3 AsymptoticSolutionfor(cid:3)(Ta)1/6=O(1) 325 17.3.4 NumericalSolutionUsingaGalerkin-tauMethod 327 17.3.5 Comparison:Analyticalvs.Numerical 329 17.3.6 NonlinearPropertiesofStationaryConvection 330 17.4 OscillatoryViscousConvection 332 17.4.1 GoverningEquations 332 17.4.2 SymmetrybetweenTwoDifferentOscillatory Solutions 334 17.4.3 AsymptoticSolutionsSatisfyingtheBoundary Condition 335 17.4.4 Comparison:Analyticalvs.Numerical 343 17.4.5 ComparisonwithanUnboundedRotatingLayer 348 17.4.6 NonlinearPropertieswith(cid:3)=O(Ta−1/6) 352 17.4.7 NonlinearPropertieswith(cid:3)(cid:6)O(Ta−1/6) 354 17.5 ViscousConvectionwithCurvatureEffects 356 17.5.1 OnsetofViscousConvection 356 17.5.2 NonlinearPropertiesofViscousConvection 359 17.6 InertialConvection:Non-axisymmetricSolutions 366 17.6.1 AsymptoticExpansion 366 17.6.2 Non-dissipativeThermalInertialWave 367 17.6.3 AsymptoticSolutionwithStress-freeCondition 369 17.6.4 AsymptoticSolutionwithNo-slipCondition 373 17.6.5 NumericalSolutionUsingaGalerkinSpectralMethod 383 17.6.6 Comparison:Analyticalvs.Numerical 385 17.6.7 NonlinearPropertiesofInertialConvection 386 17.7 InertialConvection:AxisymmetricTorsionalOscillation 393 Contents ix 18 ConvectioninRotatingCylinders 396 18.1 Formulation 396 18.2 ConvectionwithStress-freeCondition 399 18.2.1 AsymptoticSolutionforInertialConvection 399 18.2.2 AsymptoticSolutionforViscousConvection 405 18.2.3 NumericalSolutionUsingaChebyshev-tauMethod 408 18.2.4 Comparison:Analyticalvs.Numerical 410 18.3 ConvectionwithNo-slipCondition 412 18.3.1 AsymptoticSolutionforInertialConvection 412 18.3.2 AsymptoticSolutionforViscousConvection 418 18.3.3 NumericalSolutionUsingaGalerkin-typeMethod 419 18.3.4 Comparison:Analyticalvs.Numerical 421 18.3.5 EffectofThermalBoundaryCondition 424 18.3.6 AxisymmetricInertialConvection 426 18.4 TransitiontoWeaklyTurbulentConvection 430 18.4.1 AFiniteElementMethodforNonlinearConvection 430 18.4.2 InertialConvection:FromSingleInertialModetoWeak Turbulence 431 18.4.3 ViscousConvection:FromSidewall-localizedModetoWeak Turbulence 435 19 ConvectioninRotatingSpheresorSphericalShells 439 19.1 Formulation 439 19.2 NumericalSolutionusingToroidal/PoloidalDecomposition 442 19.2.1 GoverningEquationsunderToroidal/PoloidalDecomposition 442 19.2.2 NumericalAnalysisforStress-freeorNo-slipCondition 444 19.2.3 SeveralNumericalSolutionsfor0<Ek(cid:5)1 447 19.2.4 NonlinearEffects:DifferentialRotation 452 19.3 LocalAsymptoticSolution:ASmall-gapAnnularModel 459 19.3.1 TheLocalandQuasi-geostrophicApproximation 459 19.3.2 AsymptoticRelationfor0<Ek(cid:5)1 461 19.3.3 Comparison:Asymptoticvs.Numerical 463 19.4 GlobalAsymptoticSolutionwithStress-freeCondition 464 19.4.1 HypothesesforAsymptoticAnalysis 464 19.4.2 AsymptoticAnalysisforInertialConvection 465 19.4.3 SeveralAnalyticalSolutionsforInertialConvection 470 19.4.4 DifferentialRotationCannotbeSustainedbyInertialConvection 474 19.4.5 AsymptoticAnalysisforViscousConvection 476 19.4.6 TypicalAsymptoticSolutionsforViscousConvection 479 19.4.7 NonlinearEffects:DifferentialRotationinViscousConvection 481 19.5 GlobalAsymptoticSolutionwithNo-slipCondition 484 19.5.1 HypothesesforAsymptoticAnalysis 484 19.5.2 AsymptoticAnalysisforInertialConvection 485

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.