Applied Mathematical Sciences Volume 170 Editors S.S. Antman J.E. Marsden L. Sirovich Advisors J.K. Hale P. Holmes J. Keener J. Keller B.J. Matkowsky A. Mielke C.S. Peskin K.R. Sreenivasan Forfurthervolumes: http://www.springer.com/series/34 Zeev Schuss Theory and Applications of Stochastic Processes An Analytical Approach Zeev Schuss Department of Applied Mathematics School of Mathematical Science Tel AAviv University 69 978 Tel Aviv Israel Editors: S.S.Antman J.E.Marsden L.Sirovich DepartmentofMathematics ControlandDynamical LaboratoryofApplied and Systems,107-81 Mathematics InstituteforPhysicalScience CaliforniaInstitute Departmentof andTechnology ofTechnology BiomathematicalSciences UniversityofMaryland Pasadena,CA91125 MountSinaiSchoolofMedicine CollegePark USA NewYork,NY10029-6574 MD20742-4015 [email protected] USA USA [email protected] [email protected] ISSN 0 066-5452 ISBN 978-1-4419-1604-4 e-ISBN 978-1-4419-1605-1 DOI 10.1007/978-1-4419-1605-1 Springer New York Dordrecht He idelberg London Library of Congress Control Number: 2009942425 Mathematics Subject Classification (2000): 60-01, 60J60, 60J65, 60J70, 60J75, 60J50, 60J35, 60J05, 60J25, 60J27, 58J37, 37H10, 60H10, 65C30, 60G40, 46N55, 47N55, 60F05, 60F10 ©SpringerScience+BusinessMedia,LLC2010 Allrightsreserved.Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewritten permissionofthepublisher(SpringerScience+BusinessMedia,LLC,233SpringStreet,NewYork,NY 10013,USA),exceptforbriefexcerptsinconnectionwithreviewsorscholarlyanalysis.Useinconnection withanyformofinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdevelopedisforbidden. Theuseinthispublicationoftradenames,trademarks,servicemarks,andsimilarterms,eveniftheyare notidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornottheyaresubject toproprietaryrights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Preface Stochastic processes and diffusion theory are the mathematical underpinnings of manyscientificdisciplines,includingstatisticalphysics,physicalchemistry,molec- ularbiophysics,communicationstheory,andmanymore.Manybooks,reviews,and researcharticleshavebeenpublishedonthistopic,fromthepurelymathematicalto the most practical. Some are listed below in alphabetical order, but a Web search revealsmanymore. • Mathematicaltheoryofstochasticprocesses[14],[25],[46],[47],[53],[58], [57], [72], [76], [74], [82], [206], [42], [101], [106], [115], [116], [117], [150],[153],[161],[208],[234],[241] • Stochasticdynamics[5],[80],[84],[171],[193],[204],[213] • Numerical analysis of stochastic differential equations [207], [59], [132], [131],[103],[174],[206],[4] • Largedeviationstheory[32],[52],[54],[68],[77],[110],[55] • Statisticalphysics[38],[82],[100],[98],[99],[185],[206],[196],[242] • Electricalengineering[108],[148],[199] This book offers an analytical approach to stochastic processes that are most commoninthephysicalandlifesciences. Itsaimistomakeprobabilitytheoryin function space readily accessible to scientists trained in the traditional methods of applied mathematics, such as integral, ordinary, and partial differential equations andasymptoticmethods,ratherthaninprobabilityandmeasuretheory. Thebookpresentsthebasicnotionsofstochasticprocesses, mostlydiffusions, including fundamental concepts from measure theory in the space of continuous functions(thespaceofrandomtrajectories). TherudimentsoftheWienermeasure infunctionspaceareintroducednotforthesakeofmathematicalrigor,butratheras atoolforcountingtrajectories,whicharetheelementaryeventsintheprobabilistic description of experiments. The Wiener measure turns out to be appropriate for the statistical description of nonequilibrium systems and replaces the equilibrium Boltzmanndistributioninconfigurationspace.Therelevantstochasticprocessesare mainlystochasticdifferentialequationsdrivenbyEinstein’swhiteortheOrnstein– Uhlenbeck (OU) colored noise, but include also continuous-time Markovian jump v vi Preface processesanddiscrete-timesemi-Markovianprocesses,suchasrenewalprocesses. Continuous-ordiscrete-timejumpprocessesoftencontainmoreinformationabout the origin of randomness in a given system than diffusion (white noise) models. Approximationsofthemoremicroscopicdiscretemodelsbytheircontinuumlimits (diffusions)arethecornerstoneofmodelingrandomsystems. The analytical approach relies heavily on initial and boundary value problems for partial differential equations that describe important probabilistic quantities, suchasprobabilitydensityfunctions,meanfirstpassagetimes,densityofthemean timespentatapoint,survivalprobability,probabilityfluxdensity,andsoon.Green’s functionanditsderivativesplayacentralroleinexpressingthesequantitiesanalyti- callyandindeterminingtheirinterrelationships. Themostprominentequationsare the Fokker–Planck and Kolmogorov equations for the transition probability den- sity, which are the well-known transport-diffusion partial differential equations of continuumtheory, theKolmogorovandFeynman–Kacrepresentationformulasfor solutions of initial boundary value problems in terms of conditional probabilities, theAndronov–Vitt–Pontryaginequationfortheconditionalmeanfirstpassagetime, andmore. Computersimulationsarethenumericalrealizationsofstochasticdynamicsand areubiquitousincomputationalphysics,chemistry,molecularbiophysics,andcom- municationstheory.Thebehaviorofrandomtrajectoriesnearboundariesofthesim- ulation impose a variety of boundary conditions on the probability density and its functionals. Thequiteintricateconnectionbetweentherandomtrajectoriesandthe boundaryconditionsforthepartialdifferentialequationsistreatedherewithspecial care. TheWienerpathintegralandWienermeasureinfunctionspaceareusedex- tensivelyfordeterminingtheseconnections.Someofthesimulation-orientedtopics are discussed in one dimension only, because the book is not about simulations. SpecialtopicsthatariseinBrowniandynamicssimulationsandtheiranalysis,such assimulatingtrajectoriesbetweenconstantconcentrations,connectingasimulation tothecontinuum,thealbedoproblem,behavioroftrajectoriesathigher-dimensional partiallyreflectingboundaries,theestimateofrareeventsduetoescapeofrandom trajectories through small openings, the analysis of simulations of interacting par- ticles and more are discussed in [214]. The important topic of nonlinear optimal filtering theory and performance evaluation of optimal phase trackers is discussed in[215]. Theextractionofusefulinformationaboutstochasticprocessesrequirestheso- lution of the basic equations of the theory. Numerical solutions of integral and partialdifferentialequationsorcomputersimulationsofstochasticdynamicsareof- teninadequatefortheexplorationoftheparameterspaceorforstudyingrareevents. Themethodsandtricksofthetradeofappliedmathematicsareusedextensivelyto obtainexplicitanalyticalapproximationstothesolutionsofcomplicatedequations. ThemethodsincludesingularperturbationtechniquessuchastheWKBexpansion, borrowed from quantum mechanics, boundary layer theory, borrowed from con- tinuum theory, the Wiener–Hopf method, and more. These methods are the main analyticaltoolsfortheanalysisofsystemsdrivenbysmallnoise(smallrelativeto thedrift).Inparticular,theyprovideanalyticalexpressionsforthemeanexittimeof Preface vii arandomtrajectoryfromagivendomain,aproblemoftenencounteredinphysics, physical chemistry, molecular and cellular biology, and in other applications. The last chapter, on stochastic stability, illustrates the power of the analytical methods forestablishingthestochasticstability,orevenforstabilizingunstablestructuresby noise. The book contains exercises and worked-out examples. The hands-on training in stochastic processes, as my long teaching experience shows, consists of solv- ingtheexercises,withoutwhichunderstandingisonlyillusory. Thebookisbased on lecture notes from a one- or two-semester course on stochastic processes and their applications that I taught many times to graduate students of mathematics, appliedmathematics,physics,chemistry,computerscience,electricalengineering, and other disciplines. My experience shows that mathematical rigor and applica- tionscannotcoexistinthesamecourse;excessiverigorleavesnoroomforin-depth developmentofmodelingmethodologyandturnsoffstudentsinterestedinscientific andengineeringapplications. Thereforethebookcontainsonlytheminimalmathe- maticalrigorrequiredforunderstandingthenecessarymeasure-theoreticalconcepts andforenablingthestudentstousetheirownjudgmentofwhatiscorrectandwhat requiresfurthertheoreticalstudy.Thestudentshouldbefamiliarwithbasicmeasure andintegrationtheoryaswellaswithrudimentsoffunctionalanalysis,astaughtin mostgraduateanalysiscourses(see,e.g.,[79]). Moreintricatemeasure-theoretical problemsarediscussedintheoreticaltexts,asmentionedinthefirstlistofreferences above. Thefirstcoursecancoverthefundamentalconceptspresentedinthefirstsix chaptersandeitherChapter8onMarkovprocessesandtheirdiffusionapproxima- tions,orChapters7or11,whichdevelopsomeofthementionedmethodsofapplied mathematicsandapplythemtothestudyofsystemsdrivenbysmallnoise.Chapters 7and9–12,whichdevelopandapplytheanalyticaltoolstothestudyoftheequa- tions developed in Chapters 1–6 and 8, can be chosen for the second semester. A well-pacedcoursecancovermostofthebookinasinglesemester. Thetwobooks [214], onBrowniandynamicsandsimulations, and[215], onoptimalfilteringand phasetracking,canbeusedforone-semesterspecialtopicsfollowupcourses. It is recommended that students of Chapters 7 and 9–12 acquire some inde- pendenttraininginsingularperturbationmethods,forexample,fromclassicaltexts suchas[194],[121],[20],[195],[251]. Thesechaptersrequirethebasicknowledge ofChapters1–6andasolidtraininginpartialdifferentialequationsofmathematical physicsandintheasymptoticmethodsofappliedmathematics. viii Preface Acknowledgment. Muchofthematerialpresentedinthisbookisbasedonmycol- laborationwithmanyscientistsandstudents,whosenamesarelistednexttominein theauthorindex. Muchoftheworkdoneinthenearly30yearssincemyfirstbook appeared [213], was initiated in the Department of Applied Mathematics and En- gineeringScienceatNorthwesternUniversityandintheDepartmentofMolecular BiophysicsandPhysiologyatRushMedicalCenterinChicago,forwhosehospital- ityIamgrateful. ThescientificenvironmentprovidedbyTel-AvivUniversity, my homeinstitution,wasconducivetointerdisciplinarycooperation. Itsdouble-major undergraduate program in mathematics and physics, as well as its M.Sc. program in E.E. produced my most brilliant graduate students and collaborators in applied mathematics. ZeevSchuss List of Figures 2.1 FourBrowniantrajectoriessampledatdiscretetimes. Threecylin- ders are marked by vertical bars. The trajectories were sampled accordingtothescheme(2.21). . . . . . . . . . . . . . . . . . . . . 29 2.2 ThreeBrowniantrajectoriessampledatdiscretetimesaccordingto theWienermeasurePr {·}bythescheme(2.21). . . . . . . . . . . 41 0 2.3 The graphs of X (t) (dots), its first refinement X (t) (dot-dash), 1 2 andsecondrefinementX (t)(dash). . . . . . . . . . . . . . . . . . 50 3 2.4 ABrowniantrajectorysampledat1024points. . . . . . . . . . . . 50 6.1 ThepotentialU(x)=x2/2−x4/4(solidline)andtheforceF(x)= −U0(x)(dashedline). Thedomainofattractionofthestableequi- libriumx=0istheintervalD =(−1,1). . . . . . . . . . . . . . . 186 6.2 The solution (6.31) of the noiseless dynamics (6.30) with x(0) = 0.99 inside (bottom line) and x(0) = 1.01 outside (top line) the domainofattractionD. . . . . . . . . . . . . . . . . . . . . . . . . 187 8.1 The potential U(x) = 3(x−1)2 −2(x−1)3. The well is x < x = 2, the bottom is at x = x = 1, the top of the barrier is C A C =(x ,U(x )),andtheheightofthebarrierisE =U(x )− C C C C U(x )=1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 A 8.2 The energy contours y2/2+U(x) = E for the potential U(x) = x2/2−x3/3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 8.3 ThewashboardpotentialU(x)=cosx−IxforI =0.3. . . . . . . 286 8.4 The stable running solution (top) and separatrices, 2π apart in the phasespace(x,y),forγ =0.1andI =0.3. Thethickcurveisthe criticaltrajectoryS =S thattouchesthex-axis.Theenergyofthe C system on the running solution slides to −∞ down the washboard potentialinFigure8.3. . . . . . . . . . . . . . . . . . . . . . . . . 287 8.5 In the limit γ → ∞ the stable running solution of Figure 8.4 dis- appearstoinfinityandthecriticalenergycontourS = S andthe C separatricescoalesce. . . . . . . . . . . . . . . . . . . . . . . . . . 288 8.6 TheeffectiveglobalpotentialΦ(A)(8.131)inthesteady-stateFPE (8.130). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 ix
Description: