ebook img

Theory and Applications of Heat Transfer in Humans PDF

856 Pages·2018·25.489 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Theory and Applications of Heat Transfer in Humans

TheoryandApplicationsofHeatTransferinHumans Theory and Applications of Heat Transfer in Humans Volume1 Editedby DevashishShrivastava USFoodandDrugAdministration SilverSpring,MD,USA InVivoTemperatures,LLC Burnsville,MN,USA Theory and Applications of Heat Transfer in Humans Volume2 Editedby DevashishShrivastava USFoodandDrugAdministration SilverSpring,MD,USA InVivoTemperatures,LLC Burnsville,MN,USA Thiseditionfirstpublished2018 ©2018JohnWiley&SonsLtd Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,in anyformorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedby law.Adviceonhowtoobtainpermissiontoreusematerialfromthistitleisavailableat http://www.wiley.com/go/permissions. TherightofDevashishShrivastavatobeidentifiedastheauthoroftheeditorialmaterialinthisworkhasbeen assertedinaccordancewithlaw. RegisteredOffice(s) JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK EditorialOffice TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproductsvisitusat www.wiley.com. Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthatappears instandardprintversionsofthisbookmaynotbeavailableinotherformats. LimitofLiability/DisclaimerofWarranty Inviewofongoingresearch,equipmentmodifications,changesingovernmentalregulations,andtheconstantflow ofinformationrelatingtotheuseofexperimentalreagents,equipment,anddevices,thereaderisurgedtoreview andevaluatetheinformationprovidedinthepackageinsertorinstructionsforeachchemical,pieceofequipment, reagent,ordevicefor,amongotherthings,anychangesintheinstructionsorindicationofusageandforadded warningsandprecautions.Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparingthiswork,they makenorepresentationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthiswork andspecificallydisclaimallwarranties,includingwithoutlimitationanyimpliedwarrantiesofmerchantabilityor fitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedbysalesrepresentatives,writtensales materialsorpromotionalstatementsforthiswork.Thefactthatanorganization,website,orproductisreferredto inthisworkasacitationand/orpotentialsourceoffurtherinformationdoesnotmeanthatthepublisherand authorsendorsetheinformationorservicestheorganization,website,orproductmayprovideorrecommendations itmaymake.Thisworkissoldwiththeunderstandingthatthepublisherisnotengagedinrenderingprofessional services.Theadviceandstrategiescontainedhereinmaynotbesuitableforyoursituation.Youshouldconsultwith aspecialistwhereappropriate.Further,readersshouldbeawarethatwebsiteslistedinthisworkmayhavechanged ordisappearedbetweenwhenthisworkwaswrittenandwhenitisread.Neitherthepublishernorauthorsshallbe liableforanylossofprofitoranyothercommercialdamages,includingbutnotlimitedtospecial,incidental, consequential,orotherdamages. LibraryofCongressCataloging-in-PublicationData Names:Shrivastava,Devashish,1976-editor. Title:Theoryandapplicationsofheattransferinhumans/editedby DevashishShrivastava. Description:Hoboken,NJ:Wiley,[2018]|Includesbibliographical referencesandindex.| Identifiers:LCCN2017049065(print)|LCCN2017049368(ebook)|ISBN 9781119127314(pdf)|ISBN9781119127321(epub)|ISBN9781119127307 (hardback) Subjects:LCSH:Biophysics.|Heat–Transmission.|Humanphysiology. Classification:LCCQH505(ebook)|LCCQH505.T39272018(print)|DDC 572/.43–dc23 LCrecordavailableathttps://lccn.loc.gov/2017049065 CoverDesign:Wiley CoverImages:CourtesyofDevashishShrivastava;Backgroundimage:©Leysan/iStockphoto Setin10/12ptWarnockbySPiGlobal,Chennai,India 10 9 8 7 6 5 4 3 2 1 TomydaughtersAthenaandMinerva andtoallotherswhoareinterestedintheinterplayof‘heat’and‘form’ vii VolumeIContents ListofContributorstoVolume1 xxv Preface xxvii SupplementaryMaterial xxxi VOLUMEI SectionI Theory:Physics 1 1 AGenericThermalModelforPerfusedTissues 3 DevashishShrivastava 1.1 Introduction 3 1.2 DerivationofGenericBioheatThermalModels(GBHTMs) 4 1.2.1 ATwo-CompartmentGenericBioheatTransferModel 4 1.2.2 Simplifications 6 1.2.3 AThree-Compartmentand‘N +1’CompartmentGBHTM 7 1.3 ComparingtheTwo-CompartmentGBHTMwithPennes’BHTM 8 1.4 ComparingthePredictionsoftheTwo-CompartmentGBHTMandPennes’ BHTMwithMeasuredinvivoTemperatureChangesduringMRI 9 1.5 Summary 11 Disclaimer 12 Nomenclature 12 Subscripts 12 Greek 12 References 12 2 AlternateThermalModelstoPredictinvivoTemperatures 15 DevashishShrivastava 2.1 Introduction 15 2.2 EstimatingCoreTemperature 15 2.2.1 ThermalModel 16 2.2.2 Example:TheEffectofAnestheticsontheCoreTemperatureChange 16 2.3 EstimatingWorst-CaseinvivoTemperatureChangeduetoa‘Regional’ SourceTerm 19 2.3.1 ThermalModel 20 2.4 EstimatinginvivoTemperatureChangeduetoa‘Local’SourceTerm 22 2.4.1 ThermalModel 22 viii VolumeIContents 2.5 Summary 23 Disclaimer 23 References 23 3 ThermalEffectsofBloodVessels 25 DevashishShrivastava 3.1 Introduction 25 3.2 Methods 25 3.3 Results 27 3.4 Discussion 28 3.5 Summary 30 Disclaimer 31 References 31 4 GeneratingBloodVasculatureforBioheatComputations 33 DavidPorter 4.1 Introduction 33 4.2 Method 35 4.2.1 AssumptionsandFrameworkofMethod 35 4.2.2 ModelInputs:GeometryandPhysicsofaRegion 35 4.2.3 ModelOutput:GeometryandPhysicsofaVasculature 37 4.2.4 ConstraintsandCriteria 38 4.2.5 IterativeGenerationofaVasculature 40 4.2.6 UsingTreeStructuresforComputationalEfficiency 42 4.3 Examples 42 4.3.1 GeometryandFlowParameters 42 4.3.2 GrowingaVasculature 45 4.3.3 CapillaryBed 46 4.3.4 Obstructions 47 4.3.5 Finger 49 4.4 Summary 50 Disclaimer 51 References 51 5 Whole-BodyHumanComputationalModelsandtheEffectof Clothing 53 DanielaZavecPavlinicandEugeneH.Wissler 5.1 Introduction 53 5.2 TheClothing–EnvironmentRelationshipforFirefighting 53 5.2.1 PropertiesofProtectiveGarmentsWornbyFirefighters 53 5.2.2 MetabolicHeatGenerationduringFirefighting 55 5.2.3 AmbientConditionsandExposureTime 56 5.2.4 AnalysisofHeatStrainwhileWearingProtectiveClothing 57 5.3 AHumanThermalModelforAnalyzingThermalStressduring Firefighting 58 5.3.1 PhysiologicalVariables 60 VolumeIContents ix 5.3.2 ValidationoftheModel 61 5.3.3 ModelingAmbientConditions 64 5.3.4 HeatLoadImposedonIndividualsbyFire 64 5.4 Results 64 5.4.1 AnalysisofThermalInjuryofanUnprotectedIndividualfromaFlash Fire 64 5.4.2 AnalysisoftheEffectofHeatStressonFirefighters 66 5.5 DiscussionandConclusion 67 Disclaimer 68 References 68 6 ModelsoftheCardiovascularSystem 71 M.KeithSharp 6.1 Purposes 71 6.2 History 71 6.3 SimilitudeandDimensionalAnalysis 73 6.3.1 GeometricSimilitude 74 6.3.2 KinematicSimilitude 75 6.3.3 DynamicSimilitude 75 6.3.4 DimensionalAnalysis 75 6.4 BlackBoxModeling 77 6.5 Lumped-ParameterModels 79 6.5.1 RC“Windkessel”Model 80 6.5.2 R-RCModifiedWindkesselModel 83 6.5.3 Four-ElementR-L-RCModel 85 6.5.4 Least-SquaresMatching 86 6.5.5 AkaikeInformationCriterion 87 6.5.6 DealingwithMeasurementAccuracy 88 6.6 BuildingPhysicalSystems 89 6.6.1 CreatingResistance,Compliance,andInertanceElementsforPhysical Systems 91 6.6.1.1 Resistance 91 6.6.1.2 Compliance 92 6.6.1.3 Inertance 92 6.6.2 SurveyofPhysicalSystems 92 6.6.2.1 SystemsforTestingArtificialHeartsandOtherBloodPumps 93 6.6.2.2 SystemsforTestingProstheticValves 98 6.6.2.3 SystemsforPhysiologicSystemResearchandClinicalTraining 106 6.7 Summary 112 Disclaimer 113 References 113 7 LumpedParameterModelingofHumanRespiratorySystem 119 RachanaVisaria 7.1 Introduction 119 7.2 ModelConstruction 120 7.3 ModelSelection 121 x VolumeIContents 7.4 PhysiologicalRelevanceoftheModelParameters 123 7.4.1 ParameterIdentification 125 7.4.2 EstimationofZm 126 7.5 OptimizationforParameterEstimation 126 7.6 Example:PotentialApplicationinClinics 127 7.7 ModelValidation 129 7.8 Summary 129 Disclaimer 130 References 130 8 InverseHeatTransferforBiomedicalApplications 133 ElaineP.Scott 8.1 TypesofHeatTransferProblems 133 8.2 BasicConsiderationsinInverseHeatTransferProblems 134 8.2.1 Physics-BasedMathematicalModels 134 8.2.2 MeasurementsoftheInternalState 135 8.2.3 ExternalSourceandThermophysicalCharacteristics 136 8.3 InverseHeatTransferSolutionMethods 136 8.3.1 Gradient-BasedMethods 137 8.3.1.1 FunctionSpecification 137 8.3.1.2 Regularization 138 8.3.1.3 Gauss-NewtonMethod 139 8.3.1.4 TheAdjointMethod(CoupledwiththeConjugateGradientMethod) 139 8.3.2 EvolutionaryAlgorithmsandOtherNon-Gradient-Based Methods 141 8.3.2.1 GeneticAlgorithms 141 8.3.2.2 OtherNon-Gradient-BasedMethods 142 8.4 ApplicationsofInverseSolutionMethodstoBioheatTransfer 143 8.4.1 Gradient-BasedMethods 143 8.4.1.1 Gauss-Basedmethods 143 8.4.1.2 TheAdjointMethod 144 8.4.2 Non-GradientMethods 145 8.4.2.1 EvolutionaryAlgorithms 146 8.4.2.2 Non-GradientMethods 148 8.4.2.3 ComparisonStudies 148 8.5 Summary 149 Disclaimer 149 References 149 9 FundamentalsofPropagationofLightinTissue 153 Do-HyunKim 9.1 Light–TissueInteraction 153 9.1.1 ReflectionandRefraction 153 9.1.2 Absorption 155 9.1.3 Scattering 155 9.2 LightPropagationinTurbidMedia 156 9.2.1 DiffusionTheory 157 VolumeIContents xi 9.2.2 MonteCarloSimulation 157 9.2.3 HybridTheory 159 9.3 PracticalConsiderations 160 9.3.1 ApplicationtoBiomedicalResearch 160 9.3.2 SafetyConsiderations 161 Acknowledgment 165 Disclaimer 165 References 165 10 UltrasoundPropagationinTissue 167 JoshuaE.Soneson 10.1 Introduction 167 10.2 UltrasoundPhysics 168 10.2.1 LinearUltrasoundModeling 170 10.2.1.1 TheRayleigh-SommerfeldIntegral 170 10.2.1.2 TheParaxialApproximation 172 10.2.1.3 SimpleExpressionsforTemperatureElevationbyaLinearField 173 10.2.2 NonlinearUltrasoundModeling 175 10.2.2.1 ASimpleModel 175 10.2.2.2 HeatingDuetoShocks 176 10.2.3 Cavitation 177 10.3 NumericalSimulation 177 10.3.1 Resolution 178 10.3.2 Splitting 178 10.3.3 Discretization 179 10.3.3.1 SpatialDiscretization 179 10.3.3.2 BoundaryConditions 180 10.3.3.3 EvolutionVariableDiscretization 180 10.3.4 SoftwarePackages 181 Disclaimer 181 References 182 11 ElectromagneticWavesandFieldsintheHumanBodyinMRI 183 JinfengTian 11.1 RFWavesattheAir–BodyBoundary:ReflectionandRefraction 183 11.1.1 Snell’sLawofRefractionandRefractionAngles 184 11.1.2 RFWaveReflection/TransmissionCoefficients 185 11.1.3 ApplicationoftheWaveTheorytoMRI 187 11.1.3.1 DielectricPad 187 11.1.3.2 ThinDielectricPad 188 11.1.3.3 DielectricBoard 189 11.2 IntroductiontoFinite-Difference-TimeDomain 190 11.3 FDTDSimulationStepsandSetup 193 11.3.1 CellSize 193 11.3.2 TimeStepSize 194 11.3.3 FDTDBoundaryandFDTDSpace 195 11.3.4 FastFourierTransform(FFT)andFrequencyResolution 196

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.