ebook img

Theoretical Model for Time Evolution of an Electron Population under Synchrotron Loss PDF

0.12 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Theoretical Model for Time Evolution of an Electron Population under Synchrotron Loss

Bull.Astr.Soc.India(2015)00,1–15 5 Theoretical Model for Time Evolution of an Electron 1 Population under Synchrotron Loss 0 2 n Siddharth Malik1∗ a J 1DepartmentofEarthandSpaceSciences,IndianInstituteofSpaceScienceandTechnology,Thiruvananthapuram-695547,India 5 2SemiconductorLaboratory,DepartmentofSpace,GovernmentofIndia,Mohali-160071,India 1 ] 18thMarch2015 E H . h Abstract. p Manyastrophysicalsourcesradiateviasynchrotronemissionfromrelativistic - o electrons. The electrons give off their kinetic energy as radiation and this radiative r lossmodifiestheelectronenergydistribution. Ananalyticaltreatmentofthisproblem t s ispossibleinasymptoticlimitsbyemployingthecontinuityequation. Inthisarticle, a weareusingaprobabilisticapproachtoobtaintheanalyticalresults. Thebasiclogic [ behind this approach is that any particle distribution can be viewed as a probability 1 distribution after normalizing it (as is done frequently in statistical mechanics with v ensembles containing very large numberof particles). We are able to reproducethe 0 8 established resultsfrom ournovelapproach. Same approachcan be appliedto other 0 physicsproblemsinvolvingspatialortemporalevolutionofdistributionfunctions. 5 0 3. 1. Introduction 0 5 1 Synchrotron radiation is emitted by relativistic charged particles circling magnetic field lines. : Highlyrelativisticparticlesareabundantinouruniverseandtheradiationdetectedfromarange v of astrophysical sources originate due to this process. Supernova remnants, pulsars, Gamma i X Ray Bursts and large-scale jets emanating from certain galaxies are some of the examples. In r this article, we are describingthe time evolutionof a populationofelectronsemittingsynchro- a tron radiation. We used probabilitytheory to arrive at the results conventionallyderived using the continuityequation. These results are widely used in modelingastrophysicalsources. Our approachisgenericandcanbeusedforsimilarphysicalproblems. Total energy of a relativistic electron can be expressed as E = γm c2 where m c2 is the e e ∗email:[email protected] 2 S.Malik2015 rest energy and γ is the Lorentz factor ( 21−v2/c2 ) of an electron moving with velocity v. The synchrotron power P depends on tphe energy E (equivalently lorentz factor γ) and the syn larmorradiusoftheelectron. Astheelectronradiates,itsenergy(equivalentlyγ)reduces. Time evolution of the Lorentz factor of a synchrotron radiating electron of mass m , charge e and e initial lorentz factor γ in the presence of a magnetic field density B can be derivedas follows 0 (seeappendixforthederivation) γ σB2 γ(t)= 0 A= t (1) 1+Aγ t 6πm c 0 e whereσ istheThompson’sCrosssection. t Insteadofmonoenergeticelectrons,realisticsystemshaveelectronsofacertainenergydistri- bution. Mostastrophysicalsystemsemittingsynchrotronradiationdonothavesufficientparticle density to achieve thermal equilibrium. Hence instead of a relativistic Maxwellian, the energy distributionisexpectedtobea‘power-law’oftheform: n(γ)dγ= K γ−pdγwhereγ <γ<γ (2) e m u whereγ andγ aretheminimumandmaximumlimitsofthedistributionrespectively,K isan m m e arbitraryconstantdependingonthephysicalparametersofagivensystem. Thisisalsocalledthe ‘non-thermal’distribution. Thisdistributiondoesnotremainthesameovertimeduetosynchro- tron loss sufferedby each electron. However,the time evolutionof the electronpopulationnot onlydependsontheenergylossbutalsoontheinjectionoffreshparticlesintothesystem. Our aimistoobtainthedistributionn′(γ(t))atanygiventimet. We assume a constantmagneticfield B and two typesof injection: (i) One Shotinjection and(ii)ContinuousInjection. We assumethatthefreshparticlesthatareinjectedinthesystem alwaysfollowthenon-thermalpowerlawgiveninequation2. 2. One ShotInjection Oneshotinjectionmeansthatatt=0weinjectelectronsinthesystemwhichfollowthepower-law distributioninequation2. Ifwedivideequation2bythetotalnumberofparticlesinthesystem N,itbecomesaprobabilitydistribution: p(γ )dγ = Kγ−pdγ whereγ <γ <∞ (3) 0 0 0 0 m 0 Wehaveassumedthatγ →∞. K = K /N andγ istheminimumlorentzfactorofthedistribu- u e m tion. p(γ )=istheprobabilitythatanelectronhasaninitialLorentzfactorbetweenγ andγ + 0 0 0 dγ 0 If we substitute γ as ∞ in equation 1, then γ(t) will tend to 1. Therefore, even if the 0 At maximumlorentzfactor in infinite initially, it will to tend to some finite value say γ at a later u timet. TheoreticalModelforTimeEvolutionofanElectronPopulationunderSynchrotronLoss 3 Thesystematalatertimetcanberepresentedas, p(γ)dγ= Kγ−pdγwhereγ <γ<γ (4) m u K = K /N; p(γ) =probabilitythataelectronhaslorentzfactorbetweenγandγ+dγatagiven e timet. Letusconsidertworandomvariables: 1. γ whichrepresentstheLorentzfactorofanelectronattimet=0 0 2. γwhichrepresentstheLorentzfactorofanelectronatsometimet Inordertofind p(γ),wecanusethetheoremfortransformationofrandomvariablesfromprob- abilitytheory(MyersYeandWalpole2007). Theorem 1. Suppose that X a continuous random variable with probability distribution f(x). Lety=u(x)defineaone-onerelationshipcorrespondencebetweenthevaluesofXandY sothat the equation y = u(x) can be uniquely solved for x to obtain x = w(y). Then, the probability distributionofY isgivenis: g(y)= f(w(y))|J| (5) where J =dw/dyandiscalledthejacobianofthetransformation Inourcase x = γ , f(x) = p′(γ ), y = γandg(y) = p(γ),u(x)isgivenbyequation2. So, 0 0 usingTheorem1,wecanwrite, dγ γ−p p(γ)= p′(γ (γ)) 0 =K (6) 0 dγ (1−Aγt)−p+2 or, γ−p p(γ)dγ= K dγ where γ′ <γ<γ′ (7) (1−Aγt)−p+2 m u Atalatertimet,minimumandmaximumvaluesofγhavechangedwhichcanbefoundout bysubstitutinginitialminimum(γ)andmaximum(∞)valuesinequation2. γ 1 γ′ = m γ ≡γ′ = (8) m 1+Aγt c u At Note,thatevenifatt=0,maximumpossibleLorentzfactorforanelectronwasinfinite,after a timet, maximumpossibleLorentzfactor= γ . NoelectroncanhaveaLorentzfactorgreater c thanγ atagiventimet. c 4 S.Malik2015 Figure 1. Initial and Time Evolved ParticleDistribution for one shot injection given by equation 2 and equation9respectively Equation7givesustheprobabilitydistribution. Forobtainingtheparticledistributionfunc- tion,wehavetomultiplytheprobabilitydistributionfunctionbyN (totalnumberofparticles). γ−p n(γ)dγ= K dγ where γ′ <γ<γ (9) e(1−Aγt)−p+2 m c whereK = NK. So,theparticledistributionfunctionattimetforoneshotinjectionisgiven e byequation9. Figure1showsbothinitialandtimeevolveddistributionfunctions. Thegraphis plottedbetweenγ andγ . m c 3. Continuous Injection InthecaseofContinuousInjection,freshelectronscontinuouslygetaddedandmakeupforthe loss in energy space. Now, total number of particles will also vary. We can treat Continuous Injection as a series of one shot injections. For simplicity, let’s assume that at each instant of timeweinjectN numberofparticlesandeachinjectionfollowsequation1withsame p,γ and 0 m γ =∞. u n(γ )dγ =K γ−pdγ whereγ <γ <∞ (10) 0 0 e 0 0 m 0 TheoreticalModelforTimeEvolutionofanElectronPopulationunderSynchrotronLoss 5 K isdeterminedfromtheequation e ∞ n(γ )dγ = N (11) 0 0 0 Z γm N = N t (12) 0 Now,againconsidertworandomvariablesγ andγinexactlythesamemannerasdescribed 0 fortheoneshotinjectioncase. Eachelectroninthesystemwasinjectedduringaparticularinjec- tionandeachinjectionevolvesindependentofotherinjections. Ifwelookatanyoneinjection, it evolves in a manner similar to what we discussed in previoussection for one shot injection. Theoverallevolutioncanbeviewedasasummationorintegrationoverallinjections. Ifweare lookingattimetwecanassigntwoothervariablestoeachelectront andt ,t isthetimewhen 1 2 1 the electronwasinjected andt is the time elapsedsince its injectionorthe time forwhichthe 2 electronhasbeenthereinthesystem. Botht andt variesfrom0totsuchthatt +t =t. 1 2 1 2 Define: p(γ,t ) ProbabilitythatarandomelectronhasaLorentzfactorγattimetandhasbeentherein 2 thesystemfortimet . 2 p(γ) ProbabilitythatarandomelectronhasLorentzfactorγattimet. p(t ) Probabilitythatarandomelectronhasbeenthereinthesystemfortimet . 2 2 p(γ/t ) ProbabilitythatarandomelectronhasaLorentzfactorγgiventhatithasbeentherein 2 thesystemfortimet . 2 Fromdefinitionofconditionalprobabilitydistribution,weknowthat: p(γ,t )= p(t )p(γ/t ) (13) 2 2 2 Astheinjectionisidenticalateveryinstant, p(t )isauniformdistribution: 2 1 if0≤t ≤t p(t2)= t 2 (14) 0 otherwise  p(γ/t )istheprobabilitythatarandomelectronhasaLorentzfactorγgiventhatithasbeen 2 thereinthesystemfortimet . Ifweknowtheinitialdistributionandtimeelapsed,then,thefinal 2 distributionisgiveninasamewayasforoneshotinjectioncase(Oncewefixt ,wearetalking 2 aboutaparticularinjection,sotheproblemisidenticaltooneshotinjectioncase). Therefore, γ−p p(γ/t )= K where 0≤t ≤t (15) 2 (1−Aγt)−p+2 2 6 S.Malik2015 where,K = K /N ,puttingequation14and15inequation13: e 0 K γ−p p(γ,t )= 0≤t ≤t (16) 2 t (1−Aγt)−p+2 2 So,farwehavenotimposedanyconditiononγ.Nowfromdefinitionofmarginaldistribution functionweknowthat: p(γ)= p(γ,t )dt (17) 2 2 Z Substitutingequation16inequation17: t K γ−p p(γ)= dt (18) Z t (1−Aγt)−p+2 2 0 K γ−p+1 γ p−1 p(γ)= 1−(1− ) (19) A(p−1)t" γ # c γ andγ′ aredefinedbyequation8. c m Dependinguponγ andγ ,wecanhavetwocases: slowcooling(γ <γ )andfastcooling c m m c (γ >γ ). m c Thelossbecomesconsiderableonlyforthoseelectronsforwhichtheradiativetimescaleis lessthantheageofthesystem(t < t) becauseonlythoseelectronswilldissipateenergyata rad fasterratethantheageofthesystem. Radiativetimescaleisgivenas: E t ≡ (20) rad dE/dt So,lossbecomesconsiderableforthoseelectronsforwhich E t ≡ ≤t (21) rad dE/dt Fromequation1,wecaneasilyderive: dγ Aγ 2 = 0 = Aγ2 (22) dt 1+Aγ t 0 UsingaboveequationandtherelationE =γm c2,wecaneasilyderivethefollowingrelation: e dE d(γm c2) dγ = e = m c2 = Aγ2m c2 (23) e e dt dt dt TheoreticalModelforTimeEvolutionofanElectronPopulationunderSynchrotronLoss 7 Substitutingaboveequationinequation21weget, γm c2 1 e <t or, γ> =γ (24) Aγ2m c2 At c e Hence, Equation21 is equivalentto equation24. Both are just differentrepresentationsof thesameconcept.Bothimpliesthattheenergylossisgreaterforelectronshavingalorentzfactor greaterthanγ ,weexpectthepowerlawtobesteeperintherangeγ>γ . c c Therefore,ifγ < γ ,onlyasmallfractionofelectronsinthesystemwillbecoolingdom- m c inated. Hencewereferittoasslowcooling. However,ifγ > γ , alargefractionofelectrons m c iscoolingdominatedandhencewereferittoasfastcooling.Theelectrondistributionatagiven timeisdifferentforbothcases. Hence,wehavediscussedthemseparatelyincomingsubsections. 3.1 SlowCooling Theexpressioninequation19isvalidonlyforγ < γ < γ . Fromequation8,weknowthatthe m c maximumattainablelorentzfactorforaelectronatatimetisgivenbyγ = 1/At. Acontinuous c injection can be seen as a superimpositionof various sequentially injected one shot injections. Hence,wecanapplytheresultsderivedforoneshotinjectiononaparticularsub-injectionofthe continuousinjection. Consideracontinuousinjectionstartedatt = 0andcurrenttimeast. Now,takeaoneshot injectioninjectedattimet intothesystem. Then,anyelectronwhichwasapartofthisinjection 1 has been inside the system for t = t−t seconds. Therefore, the maximumattainable lorentz 2 1 factorforsuchaelectronis1/At . 2 Supposewewanttocalculate p(γ)forsomeγ ≥ γ = 1/At. Onlythoseelectronscanattain c thisvaluewhosemaximumattainablelorentzfactorisgreaterthanthevalueofγatwhichweare calculating p(γ)i.e. electronsforwhich 1 >γ (25) At 2 or, 1 t < (26) 2 Aγ Therefore,forcalculating p(γ)forγ > γ ,upperlimitoftheintegralintheequation18will c changeto1/Aγinsteadoft. Hence,forγ>γ c A1γ K γ−p p(γ)= dt (27) Z t (1−Aγt)−p+2 2 0 8 S.Malik2015 K p(γ)= γ−(p+1) γ>γ (28) A(p−1)t c Equation19and28combinedgives p(γ)forγ ≤ γ < ∞,buttherewillbesomeelectrons m whichwillhaveLorentzfactorbelowγ also(electronshavinginitialLorentzfactorjustabove m γ willloseenergytogobelowγ . Fortheseelectronsalso,wewillhaveadifferentexpression. m m The minimumLorentzfactor attainable at time t is γ′ , which is given by givenby equation8. m Butthisistheminimumfortheveryfirstinjectioninjectedatt = 0. Forelectronsbelongingto any later injection (whichwere injected at time t > 0 and has been there for time t < t), the 1 2 minimumattainableLorentzfactorisγ /(1+Aγ t ).So,ifwearelookingataγ<γ ,onlythose m m 2 m electronshaveanon-zeroprobabilityofhavingthisLorentzfactorwhichwereinjectedsuchthat theminimumattainableLorentzfactoratpresenttimeislessthanγ. γ m <γ (29) 1+Aγ t m 2 γ−γ t > m (30) 2 γγ m So,forcalculating p(γ)forγ<γ ,lowerlimitoftheintegralintheequation18willchange m to(γ−γ )/γγ insteadoft. So,forγ<γ m m m t K γ−p p(γ)= dt (31) Zγ−γm t (1−Aγt)−p+2 2 γγm Kγ−(p+1) γ p−1 γ p−1 p(γ)= − 1− γ<γ (32) A(p−1)t γ ! γ !  m  m c  3.2 FastCooling Themainlogicremainsthesameforfastcoolingalso,equation16and17arealwaysvalid.Ifyou arelookingintheregionwhereγ >γ ,then,upperlimitintheintegralinequation18shouldbe c asgivenbyequation24insteadoft. Similarlyifyouarelookingintheregionwhereγ<γ ,the m lowerlimitoftheintegralinequation18shouldnotbezero. But,asgivenbyequation30. Now, in case offastcooling,if youarelookingattheregionγ < γ < γ , onlythoseelectronshave c m anon-zeroprobabilityofhavingthisLorentzfactorwhichwereinjectedsuchthattheminimum attainableLorentzfactoratpresenttimeislessthanγandthemaximumattainableLorentzfactor atpresenttimeisgreaterthanγi.e. injectionswhichsatisfiesbothequation26and30. So,both thelimitsoftheintegralinequation18willchangeaccordingequations24and30. So,forfastcoolingandγ <γ<γ , m c A1γ K γ−p p(γ)= dt (33) Zγ−γm t (1−Aγt)−p+2 2 γγm TheoreticalModelforTimeEvolutionofanElectronPopulationunderSynchrotronLoss 9 K γ−2 p(γ)= γ <γ<γ (34) A(p−1)tγp−1 m c m Forγ>γ ,onlyupperlimitchangesbecauseγ>γ butnot<γ ,sotheexpressionforp(γ) m c m isexactlysameasequation26. Similarly, for γ < γ , only the lower limit changesbecauseγ < γ but notγ > γ , so the c m c expressionisexactlysameasequation30. Asummaryofformulasfor p(γ)indifferentregimes forbothslowandfastcoolingcaseisgivenbelow: SlowCooling Kγ−(p+1) γ p−1 γ p−1 p(γ)= − 1− γ<γ (35) A(p−1)t γ ! γ !  m  m c  K γ−p+1 γ p−1 p(γ)= 1−(1− ) γ ≤γ≤γ (36) A(p−1)t" γ # m c c K p(γ)= γ−(p+1) γ>γ (37) A(p−1)t c FastCooling Kγ−(p+1) γ p−1 γ p−1 p(γ)= − 1− γ<γ (38) A(p−1)t γ ! γ !  m  m c  K γ−2 p(γ)= γ <γ<γ (39) A(p−1)tγp−1 m c m K p(γ)= γ−(p+1) γ>γ (40) A(p−1)t c Theseareprobabilitydistributions,forobtainingparticledistributionfunctions,multiplyall of these equationsby N = N t (totalnumberof particles). It will simply change K/t in all the 0 aboveequationstoK . e K N t× = N K = K (mentionedearlier) (41) 0 0 e t 10 S.Malik2015 Theparticledistributionfunctionsaregivenbelow: SlowCooling K γ−(p+1) γ p−1 γ p−1 n(γ)= e − 1− γ<γ (42) A(p−1)  γ ! γ !  m  m c  K γ−p+1 γ p−1 n(γ)= e 1−(1− ) γ ≤γ≤γ (43) A (p−1)" γ # m c c K n(γ)= e γ−(p+1) γ>γ (44) A(p−1) c FastCooling K γ−(p+1) γ p−1 γ p−1 n(γ)= e − 1− γ<γ (45) A(p−1)  γ ! γ !  m  m c  K γ−2 n(γ)= e γ <γ<γ (46) A(p−1)γp−1 m c m K n(γ)= e γ−(p+1) γ>γ (47) A(p−1) c Figure 2 andFigure3 showsthe variationofparticle distributionasa functionof γ forthe slowcoolingcaseandfastcoolingcaserespectivelyinlogarithmicscale. 4. Standard Result Thestandardresult(Wallace&1979Chapter3)obtainedbysolvingthecontinuityequationsays thatelectrondistributionsaremulti-powerlawswithpowerindexesdefinedasfollows: • pforγ <γ≤γ andp+1forγ <γ m c c • -2forγ <γ≤γ andp+1forγ <γ m c c

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.