Bull.Astr.Soc.India(2015)00,1–15 5 Theoretical Model for Time Evolution of an Electron 1 Population under Synchrotron Loss 0 2 n Siddharth Malik1∗ a J 1DepartmentofEarthandSpaceSciences,IndianInstituteofSpaceScienceandTechnology,Thiruvananthapuram-695547,India 5 2SemiconductorLaboratory,DepartmentofSpace,GovernmentofIndia,Mohali-160071,India 1 ] 18thMarch2015 E H . h Abstract. p Manyastrophysicalsourcesradiateviasynchrotronemissionfromrelativistic - o electrons. The electrons give off their kinetic energy as radiation and this radiative r lossmodifiestheelectronenergydistribution. Ananalyticaltreatmentofthisproblem t s ispossibleinasymptoticlimitsbyemployingthecontinuityequation. Inthisarticle, a weareusingaprobabilisticapproachtoobtaintheanalyticalresults. Thebasiclogic [ behind this approach is that any particle distribution can be viewed as a probability 1 distribution after normalizing it (as is done frequently in statistical mechanics with v ensembles containing very large numberof particles). We are able to reproducethe 0 8 established resultsfrom ournovelapproach. Same approachcan be appliedto other 0 physicsproblemsinvolvingspatialortemporalevolutionofdistributionfunctions. 5 0 3. 1. Introduction 0 5 1 Synchrotron radiation is emitted by relativistic charged particles circling magnetic field lines. : Highlyrelativisticparticlesareabundantinouruniverseandtheradiationdetectedfromarange v of astrophysical sources originate due to this process. Supernova remnants, pulsars, Gamma i X Ray Bursts and large-scale jets emanating from certain galaxies are some of the examples. In r this article, we are describingthe time evolutionof a populationofelectronsemittingsynchro- a tron radiation. We used probabilitytheory to arrive at the results conventionallyderived using the continuityequation. These results are widely used in modelingastrophysicalsources. Our approachisgenericandcanbeusedforsimilarphysicalproblems. Total energy of a relativistic electron can be expressed as E = γm c2 where m c2 is the e e ∗email:[email protected] 2 S.Malik2015 rest energy and γ is the Lorentz factor ( 21−v2/c2 ) of an electron moving with velocity v. The synchrotron power P depends on tphe energy E (equivalently lorentz factor γ) and the syn larmorradiusoftheelectron. Astheelectronradiates,itsenergy(equivalentlyγ)reduces. Time evolution of the Lorentz factor of a synchrotron radiating electron of mass m , charge e and e initial lorentz factor γ in the presence of a magnetic field density B can be derivedas follows 0 (seeappendixforthederivation) γ σB2 γ(t)= 0 A= t (1) 1+Aγ t 6πm c 0 e whereσ istheThompson’sCrosssection. t Insteadofmonoenergeticelectrons,realisticsystemshaveelectronsofacertainenergydistri- bution. Mostastrophysicalsystemsemittingsynchrotronradiationdonothavesufficientparticle density to achieve thermal equilibrium. Hence instead of a relativistic Maxwellian, the energy distributionisexpectedtobea‘power-law’oftheform: n(γ)dγ= K γ−pdγwhereγ <γ<γ (2) e m u whereγ andγ aretheminimumandmaximumlimitsofthedistributionrespectively,K isan m m e arbitraryconstantdependingonthephysicalparametersofagivensystem. Thisisalsocalledthe ‘non-thermal’distribution. Thisdistributiondoesnotremainthesameovertimeduetosynchro- tron loss sufferedby each electron. However,the time evolutionof the electronpopulationnot onlydependsontheenergylossbutalsoontheinjectionoffreshparticlesintothesystem. Our aimistoobtainthedistributionn′(γ(t))atanygiventimet. We assume a constantmagneticfield B and two typesof injection: (i) One Shotinjection and(ii)ContinuousInjection. We assumethatthefreshparticlesthatareinjectedinthesystem alwaysfollowthenon-thermalpowerlawgiveninequation2. 2. One ShotInjection Oneshotinjectionmeansthatatt=0weinjectelectronsinthesystemwhichfollowthepower-law distributioninequation2. Ifwedivideequation2bythetotalnumberofparticlesinthesystem N,itbecomesaprobabilitydistribution: p(γ )dγ = Kγ−pdγ whereγ <γ <∞ (3) 0 0 0 0 m 0 Wehaveassumedthatγ →∞. K = K /N andγ istheminimumlorentzfactorofthedistribu- u e m tion. p(γ )=istheprobabilitythatanelectronhasaninitialLorentzfactorbetweenγ andγ + 0 0 0 dγ 0 If we substitute γ as ∞ in equation 1, then γ(t) will tend to 1. Therefore, even if the 0 At maximumlorentzfactor in infinite initially, it will to tend to some finite value say γ at a later u timet. TheoreticalModelforTimeEvolutionofanElectronPopulationunderSynchrotronLoss 3 Thesystematalatertimetcanberepresentedas, p(γ)dγ= Kγ−pdγwhereγ <γ<γ (4) m u K = K /N; p(γ) =probabilitythataelectronhaslorentzfactorbetweenγandγ+dγatagiven e timet. Letusconsidertworandomvariables: 1. γ whichrepresentstheLorentzfactorofanelectronattimet=0 0 2. γwhichrepresentstheLorentzfactorofanelectronatsometimet Inordertofind p(γ),wecanusethetheoremfortransformationofrandomvariablesfromprob- abilitytheory(MyersYeandWalpole2007). Theorem 1. Suppose that X a continuous random variable with probability distribution f(x). Lety=u(x)defineaone-onerelationshipcorrespondencebetweenthevaluesofXandY sothat the equation y = u(x) can be uniquely solved for x to obtain x = w(y). Then, the probability distributionofY isgivenis: g(y)= f(w(y))|J| (5) where J =dw/dyandiscalledthejacobianofthetransformation Inourcase x = γ , f(x) = p′(γ ), y = γandg(y) = p(γ),u(x)isgivenbyequation2. So, 0 0 usingTheorem1,wecanwrite, dγ γ−p p(γ)= p′(γ (γ)) 0 =K (6) 0 dγ (1−Aγt)−p+2 or, γ−p p(γ)dγ= K dγ where γ′ <γ<γ′ (7) (1−Aγt)−p+2 m u Atalatertimet,minimumandmaximumvaluesofγhavechangedwhichcanbefoundout bysubstitutinginitialminimum(γ)andmaximum(∞)valuesinequation2. γ 1 γ′ = m γ ≡γ′ = (8) m 1+Aγt c u At Note,thatevenifatt=0,maximumpossibleLorentzfactorforanelectronwasinfinite,after a timet, maximumpossibleLorentzfactor= γ . NoelectroncanhaveaLorentzfactorgreater c thanγ atagiventimet. c 4 S.Malik2015 Figure 1. Initial and Time Evolved ParticleDistribution for one shot injection given by equation 2 and equation9respectively Equation7givesustheprobabilitydistribution. Forobtainingtheparticledistributionfunc- tion,wehavetomultiplytheprobabilitydistributionfunctionbyN (totalnumberofparticles). γ−p n(γ)dγ= K dγ where γ′ <γ<γ (9) e(1−Aγt)−p+2 m c whereK = NK. So,theparticledistributionfunctionattimetforoneshotinjectionisgiven e byequation9. Figure1showsbothinitialandtimeevolveddistributionfunctions. Thegraphis plottedbetweenγ andγ . m c 3. Continuous Injection InthecaseofContinuousInjection,freshelectronscontinuouslygetaddedandmakeupforthe loss in energy space. Now, total number of particles will also vary. We can treat Continuous Injection as a series of one shot injections. For simplicity, let’s assume that at each instant of timeweinjectN numberofparticlesandeachinjectionfollowsequation1withsame p,γ and 0 m γ =∞. u n(γ )dγ =K γ−pdγ whereγ <γ <∞ (10) 0 0 e 0 0 m 0 TheoreticalModelforTimeEvolutionofanElectronPopulationunderSynchrotronLoss 5 K isdeterminedfromtheequation e ∞ n(γ )dγ = N (11) 0 0 0 Z γm N = N t (12) 0 Now,againconsidertworandomvariablesγ andγinexactlythesamemannerasdescribed 0 fortheoneshotinjectioncase. Eachelectroninthesystemwasinjectedduringaparticularinjec- tionandeachinjectionevolvesindependentofotherinjections. Ifwelookatanyoneinjection, it evolves in a manner similar to what we discussed in previoussection for one shot injection. Theoverallevolutioncanbeviewedasasummationorintegrationoverallinjections. Ifweare lookingattimetwecanassigntwoothervariablestoeachelectront andt ,t isthetimewhen 1 2 1 the electronwasinjected andt is the time elapsedsince its injectionorthe time forwhichthe 2 electronhasbeenthereinthesystem. Botht andt variesfrom0totsuchthatt +t =t. 1 2 1 2 Define: p(γ,t ) ProbabilitythatarandomelectronhasaLorentzfactorγattimetandhasbeentherein 2 thesystemfortimet . 2 p(γ) ProbabilitythatarandomelectronhasLorentzfactorγattimet. p(t ) Probabilitythatarandomelectronhasbeenthereinthesystemfortimet . 2 2 p(γ/t ) ProbabilitythatarandomelectronhasaLorentzfactorγgiventhatithasbeentherein 2 thesystemfortimet . 2 Fromdefinitionofconditionalprobabilitydistribution,weknowthat: p(γ,t )= p(t )p(γ/t ) (13) 2 2 2 Astheinjectionisidenticalateveryinstant, p(t )isauniformdistribution: 2 1 if0≤t ≤t p(t2)= t 2 (14) 0 otherwise p(γ/t )istheprobabilitythatarandomelectronhasaLorentzfactorγgiventhatithasbeen 2 thereinthesystemfortimet . Ifweknowtheinitialdistributionandtimeelapsed,then,thefinal 2 distributionisgiveninasamewayasforoneshotinjectioncase(Oncewefixt ,wearetalking 2 aboutaparticularinjection,sotheproblemisidenticaltooneshotinjectioncase). Therefore, γ−p p(γ/t )= K where 0≤t ≤t (15) 2 (1−Aγt)−p+2 2 6 S.Malik2015 where,K = K /N ,puttingequation14and15inequation13: e 0 K γ−p p(γ,t )= 0≤t ≤t (16) 2 t (1−Aγt)−p+2 2 So,farwehavenotimposedanyconditiononγ.Nowfromdefinitionofmarginaldistribution functionweknowthat: p(γ)= p(γ,t )dt (17) 2 2 Z Substitutingequation16inequation17: t K γ−p p(γ)= dt (18) Z t (1−Aγt)−p+2 2 0 K γ−p+1 γ p−1 p(γ)= 1−(1− ) (19) A(p−1)t" γ # c γ andγ′ aredefinedbyequation8. c m Dependinguponγ andγ ,wecanhavetwocases: slowcooling(γ <γ )andfastcooling c m m c (γ >γ ). m c Thelossbecomesconsiderableonlyforthoseelectronsforwhichtheradiativetimescaleis lessthantheageofthesystem(t < t) becauseonlythoseelectronswilldissipateenergyata rad fasterratethantheageofthesystem. Radiativetimescaleisgivenas: E t ≡ (20) rad dE/dt So,lossbecomesconsiderableforthoseelectronsforwhich E t ≡ ≤t (21) rad dE/dt Fromequation1,wecaneasilyderive: dγ Aγ 2 = 0 = Aγ2 (22) dt 1+Aγ t 0 UsingaboveequationandtherelationE =γm c2,wecaneasilyderivethefollowingrelation: e dE d(γm c2) dγ = e = m c2 = Aγ2m c2 (23) e e dt dt dt TheoreticalModelforTimeEvolutionofanElectronPopulationunderSynchrotronLoss 7 Substitutingaboveequationinequation21weget, γm c2 1 e <t or, γ> =γ (24) Aγ2m c2 At c e Hence, Equation21 is equivalentto equation24. Both are just differentrepresentationsof thesameconcept.Bothimpliesthattheenergylossisgreaterforelectronshavingalorentzfactor greaterthanγ ,weexpectthepowerlawtobesteeperintherangeγ>γ . c c Therefore,ifγ < γ ,onlyasmallfractionofelectronsinthesystemwillbecoolingdom- m c inated. Hencewereferittoasslowcooling. However,ifγ > γ , alargefractionofelectrons m c iscoolingdominatedandhencewereferittoasfastcooling.Theelectrondistributionatagiven timeisdifferentforbothcases. Hence,wehavediscussedthemseparatelyincomingsubsections. 3.1 SlowCooling Theexpressioninequation19isvalidonlyforγ < γ < γ . Fromequation8,weknowthatthe m c maximumattainablelorentzfactorforaelectronatatimetisgivenbyγ = 1/At. Acontinuous c injection can be seen as a superimpositionof various sequentially injected one shot injections. Hence,wecanapplytheresultsderivedforoneshotinjectiononaparticularsub-injectionofthe continuousinjection. Consideracontinuousinjectionstartedatt = 0andcurrenttimeast. Now,takeaoneshot injectioninjectedattimet intothesystem. Then,anyelectronwhichwasapartofthisinjection 1 has been inside the system for t = t−t seconds. Therefore, the maximumattainable lorentz 2 1 factorforsuchaelectronis1/At . 2 Supposewewanttocalculate p(γ)forsomeγ ≥ γ = 1/At. Onlythoseelectronscanattain c thisvaluewhosemaximumattainablelorentzfactorisgreaterthanthevalueofγatwhichweare calculating p(γ)i.e. electronsforwhich 1 >γ (25) At 2 or, 1 t < (26) 2 Aγ Therefore,forcalculating p(γ)forγ > γ ,upperlimitoftheintegralintheequation18will c changeto1/Aγinsteadoft. Hence,forγ>γ c A1γ K γ−p p(γ)= dt (27) Z t (1−Aγt)−p+2 2 0 8 S.Malik2015 K p(γ)= γ−(p+1) γ>γ (28) A(p−1)t c Equation19and28combinedgives p(γ)forγ ≤ γ < ∞,buttherewillbesomeelectrons m whichwillhaveLorentzfactorbelowγ also(electronshavinginitialLorentzfactorjustabove m γ willloseenergytogobelowγ . Fortheseelectronsalso,wewillhaveadifferentexpression. m m The minimumLorentzfactor attainable at time t is γ′ , which is given by givenby equation8. m Butthisistheminimumfortheveryfirstinjectioninjectedatt = 0. Forelectronsbelongingto any later injection (whichwere injected at time t > 0 and has been there for time t < t), the 1 2 minimumattainableLorentzfactorisγ /(1+Aγ t ).So,ifwearelookingataγ<γ ,onlythose m m 2 m electronshaveanon-zeroprobabilityofhavingthisLorentzfactorwhichwereinjectedsuchthat theminimumattainableLorentzfactoratpresenttimeislessthanγ. γ m <γ (29) 1+Aγ t m 2 γ−γ t > m (30) 2 γγ m So,forcalculating p(γ)forγ<γ ,lowerlimitoftheintegralintheequation18willchange m to(γ−γ )/γγ insteadoft. So,forγ<γ m m m t K γ−p p(γ)= dt (31) Zγ−γm t (1−Aγt)−p+2 2 γγm Kγ−(p+1) γ p−1 γ p−1 p(γ)= − 1− γ<γ (32) A(p−1)t γ ! γ ! m m c 3.2 FastCooling Themainlogicremainsthesameforfastcoolingalso,equation16and17arealwaysvalid.Ifyou arelookingintheregionwhereγ >γ ,then,upperlimitintheintegralinequation18shouldbe c asgivenbyequation24insteadoft. Similarlyifyouarelookingintheregionwhereγ<γ ,the m lowerlimitoftheintegralinequation18shouldnotbezero. But,asgivenbyequation30. Now, in case offastcooling,if youarelookingattheregionγ < γ < γ , onlythoseelectronshave c m anon-zeroprobabilityofhavingthisLorentzfactorwhichwereinjectedsuchthattheminimum attainableLorentzfactoratpresenttimeislessthanγandthemaximumattainableLorentzfactor atpresenttimeisgreaterthanγi.e. injectionswhichsatisfiesbothequation26and30. So,both thelimitsoftheintegralinequation18willchangeaccordingequations24and30. So,forfastcoolingandγ <γ<γ , m c A1γ K γ−p p(γ)= dt (33) Zγ−γm t (1−Aγt)−p+2 2 γγm TheoreticalModelforTimeEvolutionofanElectronPopulationunderSynchrotronLoss 9 K γ−2 p(γ)= γ <γ<γ (34) A(p−1)tγp−1 m c m Forγ>γ ,onlyupperlimitchangesbecauseγ>γ butnot<γ ,sotheexpressionforp(γ) m c m isexactlysameasequation26. Similarly, for γ < γ , only the lower limit changesbecauseγ < γ but notγ > γ , so the c m c expressionisexactlysameasequation30. Asummaryofformulasfor p(γ)indifferentregimes forbothslowandfastcoolingcaseisgivenbelow: SlowCooling Kγ−(p+1) γ p−1 γ p−1 p(γ)= − 1− γ<γ (35) A(p−1)t γ ! γ ! m m c K γ−p+1 γ p−1 p(γ)= 1−(1− ) γ ≤γ≤γ (36) A(p−1)t" γ # m c c K p(γ)= γ−(p+1) γ>γ (37) A(p−1)t c FastCooling Kγ−(p+1) γ p−1 γ p−1 p(γ)= − 1− γ<γ (38) A(p−1)t γ ! γ ! m m c K γ−2 p(γ)= γ <γ<γ (39) A(p−1)tγp−1 m c m K p(γ)= γ−(p+1) γ>γ (40) A(p−1)t c Theseareprobabilitydistributions,forobtainingparticledistributionfunctions,multiplyall of these equationsby N = N t (totalnumberof particles). It will simply change K/t in all the 0 aboveequationstoK . e K N t× = N K = K (mentionedearlier) (41) 0 0 e t 10 S.Malik2015 Theparticledistributionfunctionsaregivenbelow: SlowCooling K γ−(p+1) γ p−1 γ p−1 n(γ)= e − 1− γ<γ (42) A(p−1) γ ! γ ! m m c K γ−p+1 γ p−1 n(γ)= e 1−(1− ) γ ≤γ≤γ (43) A (p−1)" γ # m c c K n(γ)= e γ−(p+1) γ>γ (44) A(p−1) c FastCooling K γ−(p+1) γ p−1 γ p−1 n(γ)= e − 1− γ<γ (45) A(p−1) γ ! γ ! m m c K γ−2 n(γ)= e γ <γ<γ (46) A(p−1)γp−1 m c m K n(γ)= e γ−(p+1) γ>γ (47) A(p−1) c Figure 2 andFigure3 showsthe variationofparticle distributionasa functionof γ forthe slowcoolingcaseandfastcoolingcaserespectivelyinlogarithmicscale. 4. Standard Result Thestandardresult(Wallace&1979Chapter3)obtainedbysolvingthecontinuityequationsays thatelectrondistributionsaremulti-powerlawswithpowerindexesdefinedasfollows: • pforγ <γ≤γ andp+1forγ <γ m c c • -2forγ <γ≤γ andp+1forγ <γ m c c