ebook img

Theoretical Evolutionary Genetics PDF

383 Pages·2003·2.465 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Theoretical Evolutionary Genetics

THEORETICAL EVOLUTIONARY GENETICS JOSEPH FELSENSTEIN Theoretical Evolutionary Genetics GENOME 562 Joseph Felsenstein Department of Genome Sciences University of Washington Box 357730 Seattle, Washington 98195-7730 April, 2003 Copyright (c) 1978, 1983, 1988, 1991, 1992, 1994, 1995, 1997, 1999, 2001, 2003 by Joseph Felsenstein. All rights reserved. Not to be reproduced without author’s permission. Contents PREFACE ix 1 RANDOM MATING POPULATIONS 1 I.1 Asexual inheritance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 I.2 Haploid inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 I.3 Diploids with two alleles: Hardy-Weinberg laws. . . . . . . . . . . . . . . . . . . . . 4 I.4 Multiple alleles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 I.5 Overlapping generations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 I.6 Di(cid:11)erent Gene Frequencies in the Two Sexes . . . . . . . . . . . . . . . . . . . . . . 12 I.7 Sex linkage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 I.8 Linkage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 I.9 Estimating Gene Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 I.10 Testing Hypotheses about Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Complements/Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2 NATURAL SELECTION 33 II.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 II.2 Selection in Asexuals - Discrete Generations . . . . . . . . . . . . . . . . . . . . . . 34 II.3 Selection in Asexuals - Continuous Reproduction . . . . . . . . . . . . . . . . . . . . 39 II.4 Selection in Diploids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 II.5 Rates of Change of Gene Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 II.6 Overdominance and Underdominance . . . . . . . . . . . . . . . . . . . . . . . . . . 58 II.7 Selection and Fitness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 II.8 Selection and Fitness : Multiple Alleles . . . . . . . . . . . . . . . . . . . . . . . . . 73 II.9 Selection Dependent on Population Density . . . . . . . . . . . . . . . . . . . . . . . 77 II.10 Temporal Variation in Fitnesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 II.11 Frequency-Dependent Fitnesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 II.12 Kin selection: a speci(cid:12)c case of frequency - dependence . . . . . . . . . . . . . . . . 91 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Complements/Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 3 MUTATION 103 III.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 III.2 E(cid:11)ect of Mutation on Gene Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . 104 v III.3 Mutation with Multiple Alelles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 III.4 Mutation versus Selection: Haploids . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 III.5 Mutation vs. Selection: E(cid:11)ects of Dominance . . . . . . . . . . . . . . . . . . . . . . 110 III.6 Mutational Load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 III.7 Mutation and Linkage Disequilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . 121 III.8 History and References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Complements/Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 4 MIGRATION 127 IV.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 IV.2 The E(cid:11)ect of Migration on Gene Frequencies . . . . . . . . . . . . . . . . . . . . . . 127 IV.3 Migration and Genotype Frequencies: Gene Pools . . . . . . . . . . . . . . . . . . . 128 IV.4 Estimating Admixture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 IV.5 Recurrent Migration: Models of Migration . . . . . . . . . . . . . . . . . . . . . . . 132 IV.6 Recurrent Migration: E(cid:11)ects on Gene Frequencies . . . . . . . . . . . . . . . . . . . 135 IV.7 History and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 IV.8 Migration vs. Selection: Patches of Adaptation . . . . . . . . . . . . . . . . . . . . . 137 IV.9 Two-Population Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 IV.10The Levene Model: Large Amounts of Migration . . . . . . . . . . . . . . . . . . . . 145 IV.11Selection-Migration Clines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 IV.12The Wave of Advance of an Advantageous Allele . . . . . . . . . . . . . . . . . . . . 157 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 Complements/Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 5 INBREEDING 161 V.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 V.2 Inbreeding Coe(cid:14)cients and Genotype Frequencies . . . . . . . . . . . . . . . . . . . 162 V.3 The Loop Calculus: A Simple Example. . . . . . . . . . . . . . . . . . . . . . . . . . 164 V.4 The Loop Calculus: A Pedigree With Several Loops.. . . . . . . . . . . . . . . . . . 166 V.5 The Loop Calculus: Sex Linkage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 V.6 The Method of Coe(cid:14)cients of Kinship. . . . . . . . . . . . . . . . . . . . . . . . . . 169 V.7 The Complication of Linkage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 V.8 More Elaborate Probabilities of Identity. . . . . . . . . . . . . . . . . . . . . . . . . 172 V.9 Regular Systems of Inbreeding: Sel(cid:12)ng. . . . . . . . . . . . . . . . . . . . . . . . . . 174 V.10 Regular Systems of Inbreeding: Full Sib Mating . . . . . . . . . . . . . . . . . . . . 175 V.11 Regular Systems of Inbreeding: Matrix Methods . . . . . . . . . . . . . . . . . . . . 179 V.12 Repeated double (cid:12)rst cousin mating. . . . . . . . . . . . . . . . . . . . . . . . . . . 181 V.13 The E(cid:11)ects of Inbreeding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 V.14 Some Comments About Pedigrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 Complements/Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 6 FINITE POPULATION SIZE 191 VI.1 Genetic Drift and Inbreeding: their relationship . . . . . . . . . . . . . . . . . . . . 191 VI.2 Inbreeding due to (cid:12)nite population size . . . . . . . . . . . . . . . . . . . . . . . . . 192 VI.3 Genetic drift: the Wright model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 VI.4 Inbreeding coe(cid:14)cients, variances, and (cid:12)xation probabilities. . . . . . . . . . . . . . . 198 VI.5 E(cid:11)ective population number: avoidance of sel(cid:12)ng, two sexes, monogamy. . . . . . . 201 VI.6 Varying population size, varying o(cid:11)spring number. . . . . . . . . . . . . . . . . . . . 205 VI.7 Other e(cid:11)ects on e(cid:11)ective population number. . . . . . . . . . . . . . . . . . . . . . . 209 VI.8 Hierarchical population structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 Complements/Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 7 GENETIC DRIFT AND OTHER EVOLUTIONARY FORCES 215 VII.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 VII.2 Drift Versus Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 VII.3 Genetic distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 VII.4 Drift Versus Migration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 VII.5 Drift vs. Migration: the Island Model . . . . . . . . . . . . . . . . . . . . . . . . . . 229 VII.6 Drift vs. Migration: the stepping stone model. . . . . . . . . . . . . . . . . . . . . . 236 VII.7 Drift versus Selection: Probability of Fixation of a Mutant . . . . . . . . . . . . . . 242 VII.8 The Di(cid:11)usion Approximation to Fixation Probabilities. . . . . . . . . . . . . . . . . 247 VII.9 Di(cid:11)usion Approximation to Equilibrium Distributions. . . . . . . . . . . . . . . . . 258 VII.10The Relative Strength of Evolutionary Forces . . . . . . . . . . . . . . . . . . . . . 272 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 Complements/Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 8 MULTIPLE LINKED LOCI 279 VIII.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 VIII.2 A Haploid 2-locus Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 VIII.2.1 Selection with no recombination . . . . . . . . . . . . . . . . . . . . . . . . . 280 VIII.2.2 Epistasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 VIII.2.3 Selection and recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 VIII.2.4 Interaction and Linkage { An Example . . . . . . . . . . . . . . . . . . . . . 284 VIII.3 Linkage and Selection in Diploids . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 VIII.4 Lewontin and Kojima’s symmetric model. . . . . . . . . . . . . . . . . . . . . . . . 289 VIII.4.1 Fitness and Disequilibrium: Moran’s Counterexample . . . . . . . . . . . . 294 VIII.4.2 Coadapted Gene Complexes and Recombination . . . . . . . . . . . . . . . 294 VIII.5 The General Symmetric Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 9 QUANTITATIVE CHARACTERS 299 IX.1 What is a Quantitative Character? . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 IX.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 IX.3 Means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 IX.4 Additive and Dominance Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 IX.5 Covariances Between Relatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318 IX.6 Regression of O(cid:11)spring on Parents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 IX.7 Estimating variance components and heritability.. . . . . . . . . . . . . . . . . . . . 325 IX.8 History and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328 IX.9 Response to arti(cid:12)cial selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329 IX.10History and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 Complements/Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 10 MOLECULAR POPULATION GENETICS 341 X.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341 X.2 Mutation models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341 X.3 The Coalescent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 Problems/Complements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346 11 POLYGENIC CHARACTERS IN NATURAL POPULATIONS 349 XI.1 Phenotypic Evolution Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 XI.2 Kimura’s model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350 XI.3 Lande’s model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350 XI.4 Bulmer’s model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354 XI.5 Other models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 Complements/Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356 REFERENCES 357 viii PREFACE These are chapters I-XI of a set of notes which when completed will serve as a text for Genome Sciences 562 (Population Genetics). The material omitted will complete chapter VIII on the in- teraction of linkage and selection and cover some additional topics in chapters X and XI, such as quantitative characters in natural populations and coalescents. Each chapter ends with two sets of problems. Those labeled Exercises are intended to be relativelystraightforwardapplicationofprinciplesgiveninthetext. Theyusuallyinvolvenumerical calculationorsimplealgebra. ThesetlabeledProblems/Complementsaremorealgebraic,andoften involve extension or re-examination of the material in the text. The level of mathematics required to read this text is not high, although the volume of algebra is sometimes heavy. It is probably su(cid:14)cient to know elementary Calculus, and parts of elementary statistics and probability. Matrix algebra is used in several places, but these can be skipped without much loss. The most relevant mathematical technique for population genetics is probably factorization of simple polynomial expressions, which most people are taught in high school. Many people have contributed to the production of these notes, particularly students in earlier years of the course who caught many errors in earlier versions. The presentations were heavily in(cid:13)uenced by lecture notes and courses on this subject by J. F. Crow and R. C. Lewontin. The cover illustration is adapted from an original by Helen Leung. Sean Lamont wrote the plotting program that producedthe majority of the (cid:12)gures. I am indebtedto many studentsfor suggestions and corrections, particularly to Eric Anderson and Max Robinson. But most of all, I must thank Nancy Gamble and Martha Katz for doing the enormous job of typing out these notes, and Nancy Gamble for drawing some of the (cid:12)gures for earlier editions. I am still hoping to complete this set of notes one day. Joe Felsenstein Department of Genome Sciences University of Washington Seattle [email protected] ix x

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.