ebook img

Theoretical Computer Science Focusing and polarization in linear, intuitionistic, and classical logics PDF

22 Pages·2009·1.01 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Theoretical Computer Science Focusing and polarization in linear, intuitionistic, and classical logics

TheoreticalComputerScience410(2009)4747–4768 ContentslistsavailableatScienceDirect Theoretical Computer Science journalhomepage:www.elsevier.com/locate/tcs Focusing and polarization in linear, intuitionistic, and classical logics ChuckLianga,DaleMillerb,∗ aDepartmentofComputerScience,HofstraUniversity,Hempstead,NY11550,USA bINRIASaclay–Île-de-FranceandLIX/EcolePolytechnique,91128Palaiseau,France a r t i c l e i n f o a b s t r a c t Keywords: Afocusedproofsystemprovidesanormalformtocut-freeproofsinwhichtheapplication Focusedproofsystem of invertible and non-invertible inference rules is structured. Within linear logic, the Sequentcalculus focusedproofsystemofAndreoliprovidesanelegantandcomprehensivenormalform Intuitionisticlogic forcut-freeproofs.Withinintuitionisticandclassicallogics,therearevariousdifferent Classicallogic proofsystemsintheliteraturethatexhibitfocusingbehavior.Thesefocusedproofsystems have been applied to both the proof search and the proof normalization approaches to computation.Wepresentanew,focusedproofsystemforintuitionisticlogic,calledLJF, andshowhowotherintuitionisticproofsystemscanbemappedintothenewsystemby insertinglogicalconnectivesthatprematurelystopfocusing.WealsouseLJF todesigna focusedproofsystemLKF forclassicallogic.Ourapproachtothedesignandanalysisof thesesystemsisbasedonthecompletenessoffocusinginlinearlogicandonthenotionof polaritythatappearsinGirard’sLCandLUproofsystems. ©2009ElsevierB.V.Allrightsreserved. 1. Introduction Cut-eliminationprovidesanimportantnormalformforsequentcalculusproofs.Butwhatnormalformscanweuncover aboutthestructureofcut-freeproofs?Sincecut-freeproofsplayimportantrolesinthefoundationsofcomputation,such normalformsmightfindarangeofapplicationsintheproofnormalizationfoundationsforfunctionalprogrammingorin theproofsearchfoundationsoflogicprogramming. 1.1. Aboutfocusing Andreoli’s focusing proof system for linear logic (the triadic proof system of [1]) provides a normal form for cut-free proofs in linear logic. Although we describe this system, here called LLF, in more detail in Section 2, we highlight two aspect of focusing proofs here. First, linear logic connectives can be divided into the asynchronous connectives, whose right-introductionrulesareinvertible,andthesynchronousconnectives,whoserightintroductionrulesarenot(generally) invertible. The search for a focused proof can capitalize on this classification by applying (reading inference rules from conclusion to premise) all invertible rules in any order (without the need for backtracking) and by applying a chain of invertiblerulesthatfocusesonagivenformulaanditspositivesubformulas.Suchachainofapplications,usuallycalled a focus, terminates when it reaches an asynchronous formula. Proof search can then alternate between applications of asynchronousintroductionrulesandchainsofsynchronousintroductionrules. Asecondaspectoffocusingproofsisthatthesynchronous/asynchronousclassificationofnon-atomicformulasmustbe extendedtoatomicformulas.Thearbitraryassignmentofpositive(synchronous)andnegative(asynchronous)biastoatomic ∗ Correspondingauthor. E-mailaddresses:[email protected](C.Liang),[email protected](D.Miller). 0304-3975/$–seefrontmatter©2009ElsevierB.V.Allrightsreserved. doi:10.1016/j.tcs.2009.07.041 4748 C.Liang,D.Miller/TheoreticalComputerScience410(2009)4747–4768 formulascanhaveamajorimpacton,nottheexistenceoffocusedproofs,buttheshapeoffocusedproofs.Forexample, considertheHornclausespecificationoftheFibonacciseries: fib(0,0)∧fib(1,1)∧∀n∀f∀f(cid:48)[fib(n,f)⊃fib(n+1,f(cid:48))⊃fib(n+2,f +f(cid:48))]. ( , ) Ifallatomicformulasaregivenanegativebias,thenthereexistsonlyonefocusedproofoffib n f :thisonecanbeclassified n asa‘‘backwardchaining’’proofanditssizeisexponentialinn.Ontheotherhand,ifallatomicformulasaregivenapositive bias,thenthereisaninfinitenumberoffocusedproofsallofwhichareclassifiedas‘‘forwardchaining’’proofs:thesmallest suchproofisofsizelinearinn. 1.2. Results Thecontributionsofthispaperarethefollowing.First,weintroduceinSection5anewfocusingproofsystemLJFand showthatitissoundandcompleteforintuitionisticlogic.NotablefeaturesofLJFarethatitallowsforatomsofdifferentbias anditcontainstwoversionsofconjunction:whiletheseconjunctionsarelogicallyequivalent,theyareaffectedbyfocusing differently.Furthermore,inSection6,weshowthatLJFsatisfiescut-elimination.Second,inSection7,weshowhowseveral otherfocusingproofsystemscanbecapturedinLJF,inthesenseoffullcompleteness(one-to-onecorrespondencebetween proofsindifferentsystems).Oneshouldnotethatwhiletherearemanyfocusingproofsystemsforintuitionisticlogicin theliterature,LJFappearstobethefirsttoprovideasingle(intuitionistic)frameworkforcapturingmanyofthem.Third,in Section8,weuseLJFtoderiveLKF,afocusingsystemforclassicallogic. 1.3. Methodologyandrelatedwork There is a number of sequent calculus proof systems known to be complete for intuitionistic logic that exhibit characteristics of focusing. Some of these proof systems fix globally on either forward chaining or backward chaining. The early work on uniform proofs [2] and the LJT proof system [3] are both backward chaining calculi (all atoms have negativebias)whiletheLJQ calculus[3,4]selectstheglobalpreferencetobeforwardchaining(allatomshavepositive bias). The Ph.D. theses of Howe [5] and Chaudhuri [6] also explored various focusing proof systems for both linear and λ intuitionistic logics. Less has been published about systems that allow for mixing bias on atoms. While the RCC proof systemofJagadeesan,Nadathur,andSaraswat[7]isnotafocusingsystemexplicitly,itdoesallowfortwopolaritiesof atoms(agentsandconstraintsarepositiveandgoalsarenegative)andformixingbothforwardchainingandbackward chaininginasupersetofthehereditaryHarropfragmentofintuitionisticlogic:forwardchainingisusedtomodelconstraint propagationandbackwardchainingisusedtomodelgoal-directedsearch. Weareinterestedinprovidingaflexibleandunifyingframeworkthatcancollecttogetherimportantaspectsofmanyof theseproofsystems.Thereareseveralwaystomotivateandvalidatethedesignofsuchasystem.Oneapproachstaysentirely withinintuitionisticlogicandworksdirectlywithinvertibilityandpermutabilityofinferencerules.Suchanapproachhas been taken in many papers, such as [2,8,4]. Our approach uses linear logic, with its exponential operators ! and ?, as a unifyingframeworkforlookingatintuitionistic(andclassical)logic.ThefactthatAndreoli’sfocusedsystemwasdefined for full linear logic provides us with a convenient platform for exploring the issues around focusing and polarity. We translateintuitionisticlogicintolinearlogic,thenshowthatproofsystemsforintuitionisticlogicmatchfocusedproofsof thetranslatedimage(Section3).Acrucialaspectofunderstandingfocusinginintuitionisticlogicisprovidedbyidentifying thepreciserelationshipbetweenAndreoli’snotionofpolaritywithGirard’snotionofpolarityfoundintheLC[9]andLU[10] systems(seeSection4). Another system concerning polarity and focusing is found in the work of Danos, Joinet, and Schellinx [11,12]. Many techniquesthattheydeveloped,suchasinductivedecorations,areusedthroughoutouranalysis.Ourworkdivergesfrom η theirsintheadaptationofAndreoli’ssystem(LLF)asourmaininstrumentofconstruction.TheLK systemof[12]describes p focusedproofsforclassicallogic.ItsconnectionstopolarizationandfocusingwerefurtherexploredandextendedbyLaurent, Quatrini,anddeFalco[13]usingpolarizedproofnets.Itmaybetemptingtospeculatethatthebestwaytoarriveatanotion ofintuitionisticfocusingisbysimplemodificationstothesesystems,suchasrestrictingthemtosingle-conclusionsequents. Closerexamination,however,revealsintricateissuesconcerningthisapproach.Forexample,thenotionofclassicalpolarity appearstobedistinctfromandcontrarytointuitionisticpolarity,especiallyatthelevelofatoms(seeSections4and8). Resolvingthisissuewouldbecentraltofindingsystemsthatsupportcombinedforwardandbackwardchaining.Although η therelationshipbetweenLK andoursystemsisinteresting,wechoseforthisworktoderiveintuitionisticfocusingfrom p focusinginlinearlogicasopposedtoclassicallogic.InSection8,weshowhowaclassicalfocusingcalculuscanthenbe derivedfromthenewintuitionisticsystem. Focusingproofsystemshavebeenappliedinanumberofsettings.Theearliestworkonfocusinginlinearlogicwas motivated,inpart,bylogicprogramming:Andreoli’soriginalfocusingpaper[1]wasusedtojustifythedesignoftheLOlogic programminglanguage[14].ThespecializedproofsystemsfortheLolli[15]andForum[16]logicprogramminglanguages werejustifiedbythecompletenessofuniformproofs,whichcanbeseenasaparticularkindsoffocusedproofsinwhich allatomsaregivennegativepolarity.Chaudhuri,Pfenning,andPricein[17]restrictAndreoli’sfocusingproofsystemfor fulllinearlogictotheintuitionisticfragmentandthenshowthatadoptingdifferentglobalbiasassignmentforatomsleads C.Liang,D.Miller/TheoreticalComputerScience410(2009)4747–4768 4749 Asynchronousphase (cid:96)(cid:96)ΨΨ:∆:∆⇑⇑⊥L,L [⊥] (cid:96)(cid:96)ΨΨ:∆:∆⇑⇑FF.........................,......................................................................GG,L,L [...............................................................................................] (cid:96)(cid:96)ΨΨ:,∆F:⇑∆?⇑F,LL [?] (cid:96)Ψ:∆⇑F,L (cid:96)Ψ:∆⇑G,L (cid:96)Ψ:∆⇑B[y/x],L [(cid:62)] [&] [∀] (cid:96)Ψ:∆⇑(cid:62),L (cid:96)Ψ:∆⇑F &G,L (cid:96)Ψ:∆⇑∀x.B,L (cid:96)Ψ:∆,F ⇑L [R⇑] providedthatF isnotasynchronous (cid:96)Ψ:∆⇑F,L Synchronousphase (cid:96)Ψ:∆ ⇓F (cid:96)Ψ:∆ ⇓G (cid:96)Ψ:·⇑F [1] 1 2 [⊗] [!] (cid:96)Ψ:·⇓1 (cid:96)Ψ:∆ ,∆ ⇓F ⊗G (cid:96)Ψ:·⇓!F 1 2 (cid:96)Ψ:∆⇓F (cid:96)Ψ:∆⇓F (cid:96)Ψ:∆⇓B[t/x] 1 [⊕] 2 [⊕ ] [∃] (cid:96)Ψ:∆⇓F ⊕F l (cid:96)Ψ:∆⇓F ⊕F r (cid:96)Ψ:∆⇓∃x.B 1 2 1 2 (cid:96)Ψ:∆⇑F [R⇓] providedthatF iseitherasynchronousoranegativeliteral (cid:96)Ψ:∆⇓F IdentityandDeciderules IfK apositiveliteral: [I ] [I ] (cid:96)Ψ:K⊥ ⇓K 1 (cid:96)Ψ,K⊥:·⇓K 2 (cid:96)Ψ:∆⇓F (cid:96)Ψ,F:∆⇓F IfF isnotanegativeliteral: [D ] [D ] (cid:96)Ψ:∆,F ⇑· 1 (cid:96)Ψ,F:∆⇑· 2 Fig.1.ThefocusedproofsystemLLFforlinearlogic. toeitherSLD-resolutionorhyper-resolutiononHornclauses.Thepapers[3,11–13]aremotivatedbyfoundationalissuesin λ λ functionprogrammingandthe -calculus.Also,Levy[18]presentsfocus-styleproofsystemsfortypinginthe -calculusand CurienandHerbelin[19](amongothers)havenotedtherelationshipbetweenforwardchainingandcall-by-valueevaluation andbetweenbackwardchainingandcall-by-nameevaluation. Whilethispaperismostlyconcernedwithfirst-orderlogics,webelievethatmostofourresultscanbeextendedto includesecond-orderquantificationaswell.Althoughthispaper,whichisanextendedversionoftheconferencepaper[20], ismostlyself-contained,certainproofsarenotpresentedinfulldetailinordertosavespace:missingdetailscanbefound in[21]. 2. Focusinginlinearlogic Wesummarizethekeyresultsfrom[1]onfocusingproofsforlinearlogic. Aliteraliseitheranatomicformulaorthelinearnegationofanatomicformula.Alinearlogicformulaisinnegation normalformifitdoesnotcontainoccurrencesof−◦andifallnegationshaveatomicscope.IfK isliteral,thenK⊥denotes ⊥ ⊥ itscomplement:inparticular,ifK isA thenK isA. Connectivesinlinearlogicareeitherasynchronousorsynchronous.Theasynchronousconnectivesare⊥,...............................................................................................,?,(cid:62),&, and∀whilethesynchronousconnectivesaretheirdeMorgandual,namely,1,⊗,!,0,⊕,and∃.Asynchronousconnectives arethosewheretheright-introductionruleisalwaysinvertible.Formally,aformulainnegationnormalformisofthree kinds:literal,asynchronous(i.e.,itstop-levelconnectiveisasynchronous),andsynchronous(i.e.,itstop-levelconnectiveis synchronous). AsmentionedinSection1.1,theclassificationofnon-atomicformulasasasynchronousorsynchronousispushedto literalsbyassigningafixedbutarbitrarybiastoatoms:anatomgivenanegativebiasislinkedtoasynchronousbehavior whileanatomgivenpositivebiasislinkedtosynchronousbehavior.InAndreoli’soriginalpresentationoffocusing[1],all atomswereclassifiedas‘‘positive’’andtheirnegations‘‘negative’’.GirardmadeasimilarassignmentforLC[9].Inaclassical setting,suchachoiceispossiblesinceclassicalnegationsimplyflipsbias.Inintuitionisticsystems,however,amorenatural treatmentistoassignanarbitrarybiasdirectlytoatoms.Thisbiasofatomsisextendedtoliterals:negatinganegativeatom yieldsapositiveliteralandnegatingapositiveatomyieldsanegativeliteral. ThefocusingproofsystemLLFforlinearlogic,presentedinFig.1,containstwokindsofsequents.InthesequentΨ:∆⇑L, the‘‘zones’’Ψ and∆aremultisetsandLisalist.Thissequentencodestheusualone-sidedsequent− ?Ψ,∆,L(here,we assumethenaturalcoercionoflistsintomultisets).Thissequentwillalsosatisfytheinvariantthatrequires∆tocontain onlyliteralsandsynchronousformulas.InthesequentΨ:∆ ⇓ F,thezoneΨ isamultisetofformulasand∆isamultiset ofliteralsandsynchronousformulas,andF isasingleformula.Noticethatthebiasofliteralsisexplicitlyreferredtointhe [R⇑]andinitialrules:inparticular,intheinitialrules,theliteralontherightofthe⇓mustbepositive. 4750 C.Liang,D.Miller/TheoreticalComputerScience410(2009)4747–4768 Table1 The0/1translationusedtoencodeLJproofsintolinearlogic. B B1 B0 (B0)⊥ atomQ Q Q Q⊥ true 1 (cid:62) 0 false 0 0 (cid:62) P∧Q !(P1&Q1) !P0&!Q0 ?(P0)⊥⊕?(Q0)⊥ P∨Q !P1⊕!Q1 !P0⊕!Q0 ?(P0)⊥&?(Q0)⊥ P⊃Q !(?(P0)⊥............................................................................................... Q1) !P1−◦!Q0 !P1⊗?(Q0)⊥ ∃xP ∃x!P1 ∃x!P0 ∀x?(P0)⊥ ∀xP !∀xP1 ∀x!P0 ∃x?(P0)⊥ Thefollowingtheorem,whichwasprovedin[1],statesthatLLFissoundandcompleteforlinearlogic. Theorem1. LetFbeaformulaoflinearlogic.TheFisprovableinlinearlogicifandonlyifthesequent·:·⇑FisprovableinLLF. Itisasimpleconsequenceofthistheoremthatchangestothebiasassignedtoatomsdoesnotaffectprovabilityofa linearlogicformula:itcan,however,affectthestructureoffocusedproofs. 3. Translatingintuitionisticlogic Themostwell-knowntranslationofintuitionisticlogicintolinearlogicislikelythe‘‘(·)◦’’translationgivenbyGirardin [22]:there,theintuitionisticimplicationA⊃Bistranslatedintothelinearlogicformula!A−◦B(atomsarealsotranslatedto atoms).Unfortunately,thistranslationrulesoutmodelingcertainkindsofproofsasafocusedproof(inparticular,backward chainingproofs)anditforcesatomstohavenegativepolarity.Forexample,theintuitionisticsequenta,a ⊃ b,b ⊃ c (cid:96) c I hastwodifferentproofscorrespondingtoforwardchainingfroma(⊃ Lwitha ⊃ b)andbackwardchainingfromc (⊃ L withb⊃c).Usingtheabovetranslationonthisintuitionisticsequentyieldsthefocusedsequenta⊥,!a⊗b⊥,!b⊗c⊥;c ⇑· forwhichthereisonlyonefocusedproof:using[D ]with!b⊗c⊥leadstoaproof(correspondingtobackwardchaining) 2 whileusing[D ]on!a⊗b⊥leadstoafailedproofattempt.Thistranslationofintuitionisticlogicintolinearlogicisclosely 2 relatedtotheLJTproofsystemforbackwardchainingproofsearch(seeSection7). Thetranslationwewillusetoderiveaunifiedfocusingsystemforintuitionisticlogic(calledLJFinSection5)isinspired bythepolarizedtranslationofLU.Forthepurposeofprovidingcompletenessproofslateron,wefirstpresentatranslation, giveninTable1,thatmapsunfocusedLJproofstofocusedlinearlogicproofs.Asiscustomary,intuitionisticnegationis definedasA⊃false.ThetranslationinducesabijectionbetweenarbitraryLJproofsandLLFproofsofthetranslatedimage inthefollowingsense.Firstnoticethatthistranslationisasymmetric:theintuitionisticformulaAistranslatedusingA1ifit occursontheright-sideofanLJsequentandasA0ifitoccursontheleft-side.Sincethistranslationisusedtocapturecut-free proofs,suchdistinctionsarenotproblematic.Sincetheleft-handsideofasequentinLJwillbenegatedwhentranslatedto aone-sidedlinearlogicsequent,(B0)⊥isalsoshown. Theliberaluseof!inthistranslationthrottlesfocusinginthefollowingsense.Incontrasttounfocusedsequentcalculus whereinferencerules areappliedindependentlyof eachother,focused proofsystemsorganizea proofintoalternating phasesofasynchronousandsynchronousrules.Focusingontheformula!P,however,forcestheimmediatereleaseofthe focusandreturnsthesequenttoanunfocusedsequent.Furthermore,thetranslationofeveryformulaB1issynchronousor atomicattheouter-mostlayer.Thesecharacteristicsofthetranslationensuresthatafocusedproofisalwaysreturnedto anunfocusedsequentaftertheintroductionofeachcorrespondingintuitionisticconnective,thusmimickinganunfocused sequentcalculus. Although nominally a multiset, the unbounded context of a LLF sequent is, in fact, treated additively. In mapping intuitionisticlogictolinearlogic,theleft-handsidecontextsofsequentsarealsotreatedadditively.Thecontextsnever decreasefromconclusiontopremise.WewillnotbeabletodirectlyaccountforcertainknownoptimizationsforLJproofs: forexample,theleftintroductionruleforimplicationcanbeoptimizedsothattheintroducedimplicationismaintainedin onepremisebutnottheother(c.f.,[23]).However,asourtranslationwillremainfaithfultointuitionisticprovability,one canexpectotherrefinementstoremainadmissibleinthenewintuitionisticsequentcalculusthatwederive.Wetherefore considersuchoptimizationsasanorthogonalissue. Fig.2providesasequentcalculusproofsystemforintuitionisticlogicinwhichtheleft-hand-sideofthesequentarrowis asetofformulas.Ineachleft-introductionrule,theprincipalformulaisassumedtoalsobeaside-formula:inthisway,the principleformulaisretainedinallpremises.ThisvariantofLJbarescloseresemblancestothe‘‘G3i’’calculus[24]particularly sincecontractionandweakeningarenotexplicitinferencerules.InFig.2,theadditiveversionof∧Lisusedinsteadofthe followingmultiplicativerule A,B,Γ (cid:96) R A∧B,Γ (cid:96)I R ∧L. I C.Liang,D.Miller/TheoreticalComputerScience410(2009)4747–4768 4751 A,Γ (cid:96) A ID, Aatomic false,Γ (cid:96) R falseL Γ (cid:96) true trueR I I I A,Γ (cid:96) R Γ (cid:96) A Γ (cid:96) B A ∧iA ,ΓI (cid:96) R ∧L ΓI(cid:96) A∧BI ∧R 1 2 I I A,Γ (cid:96) R B,Γ (cid:96) R Γ (cid:96) A A∨IB,Γ (cid:96) R I ∨L Γ (cid:96) AI ∨iA ∨R I I 1 2 Γ (cid:96) A B,Γ (cid:96) R Γ,A(cid:96) B AI⊃B,Γ (cid:96) RI ⊃L Γ (cid:96) A⊃I B ⊃R I I A∀[tx/Ax,],ΓΓ(cid:96)(cid:96)IRR ∀L ΓΓ(cid:96)(cid:96)I∀AyA ∀R ∃AyA,,ΓΓ(cid:96)(cid:96)I RR ∃L ΓΓ(cid:96)(cid:96)I A∃[tx/Ax] ∃R I I I I Fig.2.Aproofsystembasedon‘‘G3i’’forintuitionisticlogic.In∀Rand∃L,yisnotfreeintheconclusion. Such variations are common in intuitionistic calculi. One of the results of this paper is the further clarification of these variations.Wewilllaterdiscusswhenoneversionof∧mightbepreferabletotheotherandeventuallyofferaproofsystem thatincludesboth. Thefollowingpropositionrelatesfocusedproofsunderthe0/1translationwithintuitionisticproofs.NotethatsinceR1 isalwayssynchronousoratomic,(cid:96)(Γ0)⊥ :⇑R1isinterchangeablewith(cid:96)(Γ0)⊥ :R1 ⇑. Proposition2. Let(Γ0)⊥bethemultiset{(D0)⊥ |D∈Γ}.Thefocusedproofsof(cid:96)(Γ0)⊥ :⇑R1areinbijectivecorrespondence withtheproofsofΓ (cid:96) R. I Proof. Abijectivemappingbetweenproofscanbedescribedbyasimplerecursiononstructureofproofs.Weshowthe followingrepresentativecases. 1. ((D ∧D )0)⊥ =(!D0&!D0)⊥ =?(D0)⊥⊕?(D0)⊥ ∈ (Γ0)⊥: 1 2 1 2 1 2 (cid:96)(Γ0)⊥,(D0)⊥ :R1 ⇑ i [?] (cid:96)(Γ0)⊥ :R1 ⇑?(D0)⊥ i [R⇓] Γ,D (cid:96) R (cid:96)(Γ0)⊥ :R1 ⇓?(D0i)⊥ [⊕] ←→ Γ,D ∧iDI (cid:96) R ∧L 1 2 I (cid:96)(Γ0)⊥ :R1 ⇓?(D0)⊥⊕?(D0)⊥ 1 2 [D ] (cid:96)(Γ0)⊥ :R1 ⇑ 2 2. (G ∧G2)1 =!(G1&G1). 1 1 2 (cid:96)(Γ0)⊥;⇑G1 (cid:96)(Γ0)⊥;⇑G1 1 2 [&] (cid:96)(Γ0)⊥ :⇑G1&G1 Γ (cid:96) G Γ (cid:96) G (cid:96)(Γ0)⊥ :⇓!(G111&G212) [[!D] ] ←→ ΓI(cid:96)I1G1∧GI2 2 ∧R (cid:96)(Γ0)⊥ :!(G1&G1)⇑ 1 1 2 3. ((G⊃D)0)⊥ =(!G1 −◦!D0)⊥ =!G1⊗?(D0)⊥ ∈ (Γ0)⊥: (cid:96)(Γ0)⊥,(D0)⊥ :R1 ⇑ [?] (cid:96)(Γ0)⊥ :⇑G1 (cid:96)(Γ0)⊥ :R1 ⇑?(D0)⊥ [!] [R⇓] Γ (cid:96) G Γ,D(cid:96) R (cid:96)(Γ0)⊥ :⇓!G1 (cid:96)(Γ0)⊥ :R1 ⇓?(D0)⊥ [⊗] ←→ ΓI,D⊃G(cid:96) RI ⊃L (cid:96)(Γ0)⊥ :R1 ⇓!G1⊗?(D0)⊥ I [D ] (cid:96)(Γ0)⊥ :R1 ⇑ 2 4. (D⊃G)1 =!(!D0 −◦G1)=!(G1 ............................................................................................... ?(D0)⊥): (cid:96)(D0)⊥,(Γ0)⊥ :⇑G1 [?] (cid:96)(cid:96)(Γ(Γ0)0⊥)⊥:⇑:⇑GG11.........................,......................................................................?(?D(D0)0⊥)⊥ [...............[..............................................!..................................]] ←→ ΓD,(cid:96)ΓD(cid:96)⊃I GG ⊃R (cid:96)(Γ0)⊥ :⇓!(G1 ............................................................................................... ?(D0)⊥) [D ] I (cid:96)(Γ0)⊥ :!(G1 ............................................................................................... ?(D0)⊥)⇑ 1 4752 C.Liang,D.Miller/TheoreticalComputerScience410(2009)4747–4768 F Fq(right) Fj(left) atomC C C false 0 0 A∧B Aq⊗Bq !Aj⊗!Bj A∨B Aq⊕Bq !Aj⊕!Bj A⊃B (!Aj −◦Bq)⊗1 Aq −◦!Bj Fig.3.Thej/qtranslationforLJQ(cid:48). 5. (false0)⊥ =0⊥ =(cid:62) ∈ (Γ0)⊥: [(cid:62)] (cid:96)(Γ0)⊥ :R1 ⇑(cid:62) (cid:96)(Γ0)⊥ :R1 ⇓(cid:62) [[RD⇓]] ←→ Γ,false(cid:96)I R falseL. (cid:96)(Γ0)⊥ :R1 ⇑ 2 IneachcasethefocusarrowsoftheremainingpremisesoftheLLFproofsalwayspointupwards(⇑),indicatingatermination offocus.ThetranslationensuresthatallformulasG1aresynchronousoratomic,andthus(cid:96)(Γ0)⊥ :⇑G1isprovableifand onlyif(cid:96) (Γ0)⊥ : G1 ⇑isprovable(viathereactionruleR ⇑).Thustheinductivehypothesisappliestotheremaining premises.EveryrightruleofLJisinitiatedbyaD decisionruleandeveryleftruleisinitiatedbyaD rule. 1 2 Thegreatlyconstrainedchoicesofinferencerulesinthefocusedproofsystemcanbeusedtoestablishthatthismapping isbijective. (cid:3) Animportantcharacteristicofthe0/1translationisthatthebiasofatomsdoesnotaffectthestructureofproofs:biasof atomsplayagreaterroleintranslationsthatinsertfewer!’s.Wealsonotethatthistranslationprocedureremainsbijective eveninthepresenceof0.Evenaproofsuchas false(cid:96) A false,B(cid:96) C falsIe,A⊃B(cid:96) CI ⊃L I hasexactlyonecorrespondingfocusedproof.The!exponentialforcescontextstobesplitinthe‘‘rightway’’,preventing occurrencesofmultiple-conclusionsequentsevenwhen0ispresentinthecontext(seecase3above).Dealingwith0will causesomeprobleminothertranslations(see,forexample,Lemma5). The0/1translationformsastartingpointinestablishingthecompletenessofotherproofsystems.Thesesystemscanbe (cid:48) seenasinducedfromalternativetranslationsofintuitionisticlogic.Consider,forexample,theLJQ proofsystempresented in[4].AtranslationtoLLFproofsforthissystemisgiveninFig.3.ThelinearimplicationP −◦ Q isdefinedastheusual P⊥ ............................................................................................... Q.Allatomsmustbegivenpositivebiasforthistranslation.Noticethatthetranslationforimplicationontheleft-hand sideisoftheformA −◦ !B,whichiscomplementarytoGirard’soriginaltranslation:!A −◦ B.The‘‘⊗1’’deviceisawayto controlthestructureoffocusingproofswithoutaffectingprovability.Anotherconsequenceofhavingonlypositiveatoms isthatconjunctionistranslatedusing⊗insteadof&.WeshallreturntoLJQ(cid:48) inSection7,inthecontextofageneralized focusingframeworkforintuitionisticlogic. (cid:48) Withminorchanges,Girard’soriginaltranslationofintuitionisticlogicin[22]inducesthecomplementtoLJQ called LJT [3](whichwasderivedfromLKT[11]).Asalreadynoted,allatomsmustbegivennegativebiasforthistranslation.For amoreextendedtreatmentofLJT,see[21]. (cid:48) GivenatranslationsuchasthatofLJQ,onecangiveacompletenessproofforthesystemusinga‘‘grandtour’’through linearlogicasfollows: 1. Showthataproofunderthe0/1translationcanbeconvertedintoaproofunderthenewtranslation.Thisusuallyfollows fromcut-eliminationinlinearlogic. (cid:48) 2. Defineamappingbetweenproofsinthenewsystem(suchasLJQ)andLLFproofsofitstranslation. 3. ShowsoundnessofthenewsystemwithrespecttoLJ.Thisisusuallytrivial.The‘‘tour’’isnowcomplete,sinceproofsin LJmaptoproofsunderthe0/1translation. / Fig.4furtherillustratesthestrategy.Thelabell rrepresentsthetranslationforsomearbitraryintuitionisticsequentsystem, whichisindicatedby(cid:96) .Thearrowontheleft-hand-sidedepictsProposition2;thetoparrowdepictsStep1,theright-hand- O sideruledepictsStep2,andthebottomarrowdepictsStep3. AnintuitionisticsystemthatcontainsatomsofbothpositiveandnegativebiasisλRCC[7].Twospecialcasesofthe⊃L rulearedistinguishedinvolvingE ⊃ DforpositiveatomE andG ⊃ AfornegativeatomA.Eachrulerequiresthatthe complementaryatom(Eontheleft,Aontheright)ispresentwhenapplied,thusterminatingonebranchoftheproof.One cantranslatethesespecialcasesusingformsE−◦!D(cid:48)and!G(cid:48)−◦A,respectively,inlinearlogic.Thestrategyoutlinedabove canthenbeusedtonotonlyproveitscompletenessbutalsoextenditwithmoreaggressivefocusingfeatures. Ourinteresthereisnottheconstructionofindividualsystemsbutthebuildingofaunifyingframeworkforfocusingin intuitionisticlogic.Suchataskrequiresacloserexaminationofpolarityanditsconnectiontofocusing. C.Liang,D.Miller/TheoreticalComputerScience410(2009)4747–4768 4753 0/1 l/r (cid:96)⇑ (cid:45)(cid:96)⇑ (cid:54) (cid:54) (cid:63) (cid:63) (cid:96) (cid:27) (cid:96) I O Fig.4.Grandtourthroughlinearlogic. 4. Permeableformulasandtheirpolarity Inordertoconstructageneralfocusingschemeforintuitionisticlogic,thenon-linear(exponential)aspectsofproofs needspecialattention,especiallyinlightofthefactthatthe[!]rulestopsabottom-upconstructionoffocusedapplication ofsynchronousrules(thearrow⇓intheconclusionflipsto⇑inthepremise). For our purposes here, a particularly flexible way to deal with the exponentials in the translations of intuitionistic formulasisviathenotionofpermeationthatisusedinLU[10].Inparticular,thereareessentiallythreegradesofpermeation. TheformulaBisleft-permeableifB≡!B,isright-permeableifB≡?B,andneutralotherwise.Withinsequentcalculusproofs, aformulaisleft-permeableifitadmitsstructuralrulesontheleftandright-permeableifitadmitsstructuralrulesonthe right.Anexampleofaleft-permeableformulais∃x!A.Allleft-permeableformulasaresynchronousandallright-permeables areasynchronous.IntheLUsystem,boththeleftandrightsidesofsequentscontaintwozones—onethattreatsformulas linearlyandonethatpermitsstructuralrules.Aleft-permeable(resp.,right-permeable)formulaisallowedtomovebetween bothzonesontheleft(right).Inaddition,LUintroducesatomsthatareinherentlyleftorright-permeableorneutral:one cansimulateLUin‘‘regular’’linearlogicbytranslatingleft-permeableatomsAas!Aandright-permeableonesas?A. Topreservethefocusingcharacteristicsofpermeableatomsaspositivelyornegativelybiasedatoms,weusethefollowing asymmetricaltranslation.Thesuperscript−1indicatestheleft-sidetranslationand+1indicatestheright-sidetranslation: P−1 =!PandP+1 =P,forleft-permeableatomP. N−1 =NandN+1 =?N,forright-permeableatomN. B−1 =B+1 =B,forneutralatomB. The!ruleofLLFcausesalossoffocusinallcircumstances:themainreasonweuseasymmetrictranslationsisthatthey caninsertfeweroccurrencesof!.Thetranslationofpositiveatomsabovepreservespermeationontheleftwhileallowingfor focusontheright.Thatis,left-permeableatomscannowbeinterpretedmeaningfullyaspositivelybiasedatomsinfocused proofs,andduallyforright-permeableatoms.Furthermore,thepermeationofpositiveatomsis‘‘one-wayonly:’’theycannot beselectedforfocusagainoncetheyenterthenon-linearcontext.Inotherwords,thischaracteristicofthefocusingsequent calculusallowsasynchronousformulastobefullydecomposed,uptoandincludingatoms. Intuitionisticlogicusestheleft-permeableandneutralformulasandatoms.LUdefinesatranslationforintuitionistic logicsothatallsynchronousformulasareleft-permeable. Thefinalelementofintuitionisticpolarityisthatneutralatomsshouldbeassignednegativebiasinfocusedproofs.Neutral atomsthatareintroducedintotheleftcontext(e.g.bya⊃Lrule)mustimmediatelyendthatbranchoftheproofinan identityrule.Otherwise,theuniquestoupislostwhenmultiplenon-permeableatomsaccumulateinthelinearcontext. TheLUandLLFsystemsserveasaconvenientplatformfortheunifiedcharacterizationofpolarityandfocusinginall threelogics.Wecannowunderstandtheterminologyof‘‘positive’’and‘‘negative’’formulasineachlogicasfollows: Linearlogic: Positive formulas are synchronous formulas and positively biased neutral atoms. Negative formulas are asynchronousformulasandnegativelybiasedneutralatoms. Intuitionisticlogic: Positiveformulasareleft-permeableformulas(includingleft-permeableatoms).Negativeformulasare asynchronousneutralformulasandnegativelybiasedneutralatoms. Classicallogic: Positiveformulasareleft-permeableformulas.Negativeformulasareright-permeableformulas. 5. TheLJFsequentcalculus TheasymmetricaltranslationofatomsunifiesLU’snotionofpolaritywiththepositive/negativedualityofLLFproofs.We cannowuseaLU-basedtranslationofintuitionisticlogicthatwillinduceanew,focusedsequentcalculusforintuitionistic logic,onethatisevenmoresensitivetothepolarityofformulasthanLLF. 4754 C.Liang,D.Miller/TheoreticalComputerScience410(2009)4747–4768 P+1 =P,P−1 =!P forpositiveatomP N+1 =N−1 =N fornegativeatomN true+1 =true−1 =1 false+1 =false−1 =0 (P∧+Q)−1 =P−1⊗Q−1 (A∧+B)+1 =A+1⊗B+1 (P∧+N)−1 =P−1⊗!N−1 (N∧+P)−1 =!N−1⊗P−1 (A∧−B)−1 =A−1&B−1 (N∧+M)−1 =!N−1⊗!M−1 (A∧−B)+1 =A+1&B+1 (P∨Q)−1 =P−1⊕Q−1 (A∨B)+1 =A+1⊕B+1 (P∨N)−1 =P−1⊕!N−1 (N∨P)−1 =!N−1⊕Q−1 (N∨M)−1 =!N−1⊕!M−1 (P ⊃B)+1 =P−1−◦B+1 (A⊃B)−1 =A+1−◦B−1 (N ⊃B)+1 =!N−1−◦B+1 (∃xP)−1 =∃xP−1 (∃xA)+1 =∃xA+1 (∃xN)−1 =∃x!N−1 (∀xA)−1 =∀xA−1 (∀xA)+1 =∀xA+1 Fig.5.The−1/+1translationofintuitionisticlogic(−1forleft,+1forright).Here,P,Qrepresentpositiveformulas;N,Mrepresentnegativeformulas; andA,Brepresentarbitraryformulas. WefirstmakeanotheradjustmentontheLUtranslationofintuitionisticconjunction.Insteadofusing&or⊗depending onthepolaritiesofthesubformulas,weintroducetwoversionsoftheintuitionisticconjunction:∧+and∧−(Danosetal.used similarconnectives[12]).Theseconnectivesareequivalentinintuitionisticlogicintermsofprovabilitybutdifferintheir impactonthestructureoffocusedproofs.1 Theuseoftwoconjunctionsmeansthatthetop-levelstructureofaformula completely determines its polarity. Using two conjunctives provides some flexibility in capturing different approaches to focusing. For example, Chaudhuri [6, Section 6.4] provides a treatment of conjunction that interprets occurrences of conjunctionsinanasynchronousphaseasasynchronousandinasynchronousphaseassynchronous:suchatreatmentcan becapturedbymapping∧explicitlytoeither∧−or∧+dependingthestructureoftheformulainwhichtheyoccur. Polarityinintuitionisticlogicisdefinedasfollows. Definition3. Atoms in LJF are arbitrarily divided between those that are positive and those that are negative. Positive formulasareofthefollowingforms:positiveatoms,true,false,A∧+B,A∨Band∃xA.Negativeformulasareamongnegative atoms,A∧−B,A⊃Band∀xA. Notice that the classification of atoms as positive and negative is done on possibly open atomic formulas since eigenvariablesoftheproofmayappearfreeinthem.Inthemostgeneralapproachtoassigningbiastoatoms,itmightwell bethecasethatanatomandasubstitutioninstanceofanatomcanbeofdifferentpolarities.Itwouldseemthatthestability ofbiasassignmentunder(first-order)substitutionisanaturalexpectationbutitisnotarequirementforthedescriptionof focusedproofs.Weshallassumesuchstability,however,intheproofofcut-eliminationinSection6.Formoreaboutpossible approachestoassigningbiastoatomicformulas,see[25,26]. Ourfulltranslationofintuitionisticlogicextendsthe−1/+1translationofatoms.Itremainsasymmetricalandeliminates nearlyalloccurrencesof!ontheright-handside.ThetranslationisshowninFig.5.Allpositiveformulasaretranslatedinto left-permeableformulasontheleft-handside.Thepositiveformulasofintuitionisticlogic(andclassicallogic)canbegiven lineartreatmentsontheleft. The+1/−1translationinducestheLJFsequentcalculusdisplayedinFig.6.SequentsinLJFcanbeinterpretedasfollows: 1. Thesequent[Γ],Θ −→ Risanunfocusedsequent.Here,Γ andΘ arebothmultisetsandΓ containsonlynegative formulasandpositiveatoms.ThesymbolRdenoteseithertheformulaRorthe‘‘bracketed’’formula[R].Endsequents ofLJFproofsusuallyhavetheform[],Θ −→R. 2. Thesequent[Γ]−→[R]isaspecialcaseoftheprevioussequentinwhichΘisempty(and,hence,notwritten)andR isoftheform[R].Suchsequentsdenotetheendoftheasynchronousphase:proofsearchcontinueswiththeselectionof afocus. 1 Thereadermaynoticethattherecanalsobetwoversionsoftrue.Itispossibletousethelinearconstant(cid:62)torepresenttrue,butthisisunnecessary sincefalse⊃falsecanbeusedinstead.Insistingondualversionsofallconstantsismoresuitableforclassicallogic(seeSection8). C.Liang,D.Miller/TheoreticalComputerScience410(2009)4747–4768 4755 3. Thesequent[Γ]−→A [R]representsleft-focusingontheformulaA.Provabilityofthissequentisrelatedtotheprovability ofΓ,A(cid:96) R. I 4. Thesequent[Γ]− →representsright-focusingontheformulaA.Provabilityofthissequentisrelatedtoprovabilityof A thesequentΓ (cid:96) A. I Intuitionistic focused proofs are more structured than LLF proofs since the polarities of intuitionistic logic observe stronger invariances. While the non-linear context of LLF sequents can contain both synchronous and asynchronous formulas, the translation of an intuitionistic sequent into a LLF sequent is such that positive formulas, which are asynchronousontheleft,areplacedinthelinearcontext(becauseP−1isalwaysequivalentto!P−1forpositiveP). LikeLLF,akeycharacteristicofLJFistheassignmentofpolaritytoatoms.Toillustratetheeffectoftheseassignmentson thestructureoffocusedproofs,considerthesequenta,a ⊃ b,b ⊃ c (cid:96) cwherea,bandcareatoms.Thissequentcanbe provedeitherbyforwardchaining throughtheclausea ⊃ b,orbackwardchaining throughtheclauseb ⊃ c.Assumethat atomsaandbareassignedpositivepolarityandthatcisassignednegativepolarity.Thisassignmenteffectivelyadoptsthe forwardchainingstrategy,reflectedinthefollowingLJFproofsegment(here,Γ isthemultiset{a,a⊃b,b⊃c}): I [b,Γ]− → Ir [b,Γ]−→c [c] l b ⊃L [b,Γ]−b⊃→c [c] Lf [b,Γ]−→[c] [] [Γ],b−→[c] l R [Γ]− → Ir [Γ]−→b [c] l . a ⊃L [Γ]−a⊃→b [c] Thepolaritiesofaandc donotfundamentallyaffectthestructureoftheproofinthisexample,whileassigningnegative polaritytoatombrestrictstheprooftousethebackwardchainingstrategy: I [Γ]− → Ir [Γ]−→b [b] l a ⊃L [Γ]−a⊃→b [b] Lf [Γ]−→[b] [] [Γ]−→b r I [Γ]− → Rr [Γ]−→c [c] l b ⊃L [Γ]−b⊃→c [c] . Theavailabilityofboth∧− and∧+ offersimportantdesignchoicesforproofsearchstrategies.Forexample,afocused proofsearchofthesequent [a,a⊃b,b⊃c,c ⊃d,c ⊃e]−→d∧−e, requirestheright-sideasynchronous∧−tobedecomposedimmediatelyintodande.Thus,thederivationofcfromthefirst threeformulasinthecontextcannotbesharedbetweenthesesubgoals.Usingd∧+ewilldelaythedecompositionofthe goaluntilitisselectedforfocusatanothertime,makingaforwardchainingstrategypossible(and,hence,ccanbeadded totheleft-contextbeforeprocessingtheconjunctiveright-hand-side).Ontheotherhand,usingasynchronousformulason theright-handsideisconsistentwiththeuniformproofmodeloflogicprogramminginterpreters[2]. / ToprovethecorrectnessofLJFwefollowthe‘‘grandtour’’strategy.Firstweshowthataproofunderthe0 1translation canbetransformedtoaproofunderthe+1/−1translation.Let(cid:96) representsequentsintheunfocusedlinearlogicsequent LL calculus. Proposition4. LetΓ,Rconsistofamultisetofintuitionisticformulas.LetΓ−1consistofallpositiveformulasinΓ−1andΓ−1 2 1 containallnegativeformulasinΓ−1.If!Γ0 (cid:96) R1isprovablethen!Γ−1,Γ−1 (cid:96) R+1isalsoprovable. LL 1 2 LL Proof. For every positive intuitionistic formula P, the linear logic formula P−1 is left permeable (in particular, P−1 is provabilityequivalentto!P−1).WenowarguethatforeveryintuitionisticformulaF,wehaveF1 (cid:96) F+1and!F−1 (cid:96) !F0. LL LL Theproofisbymutualinductiononthesizeofformulas.Weshowthefollowingrepresentativecases. 1. !(P∨N)−1 (cid:96) !(P∨N)0: LL P−1 (cid:96) !P−1 !P−1 (cid:96) !P0 LL LL Cut P−1 (cid:96) !P0 !N−1 (cid:96) !N0 LL ⊕R LL ⊕R P−1 (cid:96) !P0⊕!N0 !N−1 (cid:96) !P0⊕!N0 LL LL ⊕L P−1⊕!N−1 (cid:96) !P0⊕!N0 LL !L !(P−1⊕!N−1)(cid:96) !P0⊕!N0 LL !R !(P−1⊕!N−1)(cid:96) !(!P0⊕!N0) . LL 4756 C.Liang,D.Miller/TheoreticalComputerScience410(2009)4747–4768 DecisionandReactionRules [[NN,,ΓΓ]]−−→→N [[RR]] Lf [Γ[Γ]]−−→P→[P] Rf [Γ[Γ],]P−−→P→[R[]R] Rl [[ΓΓ]]−−→→N Rr N [C,Γ],Θ −→R [Γ],Θ −→[D] [] [] [Γ],Θ,C −→R l [Γ],Θ −→D r InitialRules , [P,Γ]− → Ir, atomicP [Γ]−→N [N] Il atomicN P IntroductionRules [Γ],Θ −→R [Γ],Θ,false−→R falseL [Γ],Θ,true−→R trueL [Γ]− → trueR true [[ΓΓ]]A−−1∧A→→−iA2[[RR]] ∧−L [Γ],Θ[Γ−],→ΘA−→[ΓA],∧Θ−B−→B ∧−R [Γ],Θ,A,B−→R [Γ]− → [Γ]− → [Γ],Θ,A ∧+B−→R ∧+L [ΓA]−A∧+B→B ∧+R [Γ],Θ,[AΓ−],→Θ,RA∨[BΓ−],→Θ,RB−→R ∨L [Γ[Γ]−]−A1A∨iA→2→ ∨R [Γ]−A[→Γ]−A⊃→[BΓ[]R]−→B [R] ⊃L [Γ[Γ],],ΘΘ−,→A−A→⊃BB ⊃R [Γ[Γ],],ΘΘ,,∃AyA−−→→RR ∃L [Γ[Γ]]−−A∃[tx/Ax→]→ ∃R [[ΓΓ]]A−−∀[t→→x/Ax][[RR]] ∀L [Γ[Γ],]Θ,Θ−−→→∀AyA ∀R Fig.6.TheIntuitionisticSequentCalculusLJF.Here,Pispositive,Nisnegative,Cisanegativeformulaorpositiveatom,andDapositiveformulaornegative atom.Otherformulasarearbitrary.Also,yisnotfreeinΓ,Θ,orR. HerePispositiveandNnegative,andtheproofmustappealtothepermeabilityofP−1.Theremainingpremisesfollow frominductivehypotheses. 2. !(A⊃B)−1 (cid:96) !(A⊃B)0:weprovethiscaseintwostages,joinedbyacut: LL !(AAA+++111(cid:96)−−LL◦◦ABB+−−111,)A,BA+−+111(cid:96)(cid:96)(cid:96)LLLLLLBB−B−1−11−!!L◦LL !B−1 (cid:96)LL !B0 !!AAA111(cid:96)(cid:96)(cid:96)LLLLLL!AAA+++111 !!−LR◦L !(A+1−◦B−1),!A+1 (cid:96)LL B−1 !R !A+1−◦!B−1,!A1 (cid:96)LL !B0 −◦R !(A+1−◦B−1),!A+1 (cid:96) !B−1 !A+1−◦!B−1 (cid:96) !A1−◦!B0 LL −◦R LL !L !(A+1−◦B−1)(cid:96) !A+1−◦!B−1 !(!A+1−◦!B−1)(cid:96) !A1−◦!B0 LL !R LL !R !(A+1−◦B−1) (cid:96) !(!A+1−◦!B−1) !(!A+1−◦!B−1) (cid:96) !(!A1−◦!B0) LL LL Cut !(A+1−◦B−1) (cid:96) !(!A1−◦!B0) . LL Thepremisesareeithertriviallyprovableorfollowfrominductivehypotheses. Othercasesaresimilar.Thepropositionholdsbycut-eliminationinthelinearsequentcalculus. (cid:3) ThenextstepinthecompletenessproofconstructsamappingbetweenLJFproofsandLLFproofsofitsimageinlinear logic.Thepossiblepresenceof0causessomeadditionaldifficultyandslightlycompromisestheperfectbijectionbetween proofs. Lemma5. Ifthereisnoproofof!Γ−1 (cid:96) 0andif!Γ−1 (cid:96) ∆+1then∆containsexactlyoneformula. LL LL Proof. Proceedbycontradiction.Assumethereissuchaproofwithanon-singletonright-handsideandconsidersucha proofofminimalheight.Byinspectingthepremisesofeachpossibleinferencefigureforthefinalruleoftheproof,wesee

Description:
The fact that Andreoli's focused system was defined for full linear logic provides us with a convenient platform for exploring the issues around focusing and polarity. We translate intuitionistic logic into linear logic, then show that proof systems for intuitionistic logic match focused proofs of
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.