ebook img

Theoretical aspects of quantum state transfer, correlation measurement and electron-nuclei coupled dynamics in quantum dots PDF

0.32 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Theoretical aspects of quantum state transfer, correlation measurement and electron-nuclei coupled dynamics in quantum dots

Theoretical aspects of quantum state transfer, correlation measurement and electron-nuclei coupled dynamics in quantum dots Toshihide Takagahara andO¨zgu¨r C¸akir 8 0 DepartmentofElectronicsandInformationScience,KyotoInstituteofTechnology, 0 2 Matsugasaki,Kyoto606-8585,JAPAN [email protected] n and a J CREST,JapanScienceandTechnologyAgency,4-1-8Honcho,Kawaguchi,Saitama 2 332-0012,JAPAN 1 ] Abstract. Photonsandelectronsarethekeyquantummediaforthequantuminformationpro- l l cessing basedonsolid state devices. Theessentialingredientsto accomplishthe quantumre- a peaterwereinvestigatedandtheirunderlyingphysicswererevealed. Therelevantelementary h - processes of the quantum state transfer between a single photon and a single electron were s analyzed, to clarify the conditions to be satisfied to achieve the high fidelity of the quantum e m state transfer. AnopticalmethodbasedontheFaradayrotationwasproposedtocarryoutthe Bellmeasurementoftwoelectronswhichisakeyoperationintheentanglementswappingfor . t the quantum repeater and its feasibility was confirmed. Also investigated was the quantum a m dynamicsintheelectron-nucleicoupledspinsysteminquantumdotsandacoupleofnewphe- nomenawerepredictedrelatedtothecorrelationsinducedbythehyperfineinteraction,namely, - d bunchingand revivalin the electron spin measurements. These findingswill pave the way to n accomplishtheefficientandrobustquantumrepeaterandnuclearspinquantummemory. o c Keywords:Bellmeasurement,electronsandphotons,electron-nucleicoupledsystem,Faraday [ rotation,purity,quantumstatetransfer. 1 v 1 INTRODUCTION 1 7 Coherent manipulation of quantum states is a critical step toward many novel technological 8 applicationsranging from manipulationof qubits in quantumlogic gates [1–5] to controlling 1 . thereactionpathwaysofmolecules. Inthefieldofthequantumstatecontrolbyopticalmeans, 1 bothRabioscillationandquantuminterferenceplaythecentralroles.TheexcitonRabisplitting 0 was observed in the luminescencespectrum of a single InGaAs quantum dot and the exciton 8 0 Rabi oscillation was also observed in the spectroscopyof a single GaAs or InGaAs quantum : dot[6–12]. Thetwo-qubitCROT(controlledrotation)gateoperationwasdemonstratedusing v two orthogonally polarized exciton states and a biexciton state in a GaAs quantum dot [13]. i X Unfortunately, however, the decoherence/dephasingtimes of excitonsand biexcitons in these r quantumdotsare limited by the radiativelifetimes( 1 ns) evenat low temperatures. Thusa a ∼ qubitwithalongerdecoherencetimeisdesirablefortheapplicationtothequantuminformation processing. Electronspinsinsemiconductorquantumdots(QDs)areconsideredasoneofthe mostpromisingcandidatesofthebuildingblocksforquantuminformationprocessing[14,15] duetotheirrobustnessagainstdecoherenceeffects[16,17]. IndoubleQDsystems, initializa- tion and coherentmanipulationof the electron spin have been realized, with coherencetimes extendingto1µs[18,19]. Recently, a quantum media converter from a photon qubit to an electron spin qubit was proposedforquantumrepeaters[20,21].Quantuminformationcantakeseveraldifferentforms anditispreferabletobeabletoconvertamongdifferentforms. Oneformisthephotonpolar- izationandanotheristheelectronspinpolarization. Photonsarethemostconvenientmedium forsharingquantuminformationbetweendistantlocations.However,itisnecessarytorealizea quantumrepeaterinordertosendtheinformationsecurelyoveraverylongdistanceovercoming the photonloss. A quantumrepeaterrequirestwo essential ingredients, namely, the quantum state transfer between a photon and an electron spin and the correlation (Bell) measurement betweentwoelectronscreatedbythequantumstatetransferfromtwodifferentphotons. Addi- tionallyitisdesirabletohavealong-livedquantummemorybasedonthenuclearspins. Forthe quantumstatetransfer,astrainedInGaAs/InPquantumdotwasproposedasapreferabledevice based on the g-factor engineering[22]. In the actualoperation, the photoexcitedholes are to be quickly swept out of the quantum dot to project the photon polarization onto the electron spinpolarization,preservingthequantumcoherence.Wehaveanalyzedtheperformanceofthis operationandclarifiedtheconditionstobesatisfiedtoachieveahighvalueofthepurityofthe transferredquantumstateorthefidelityofthequantumstatetransfer. AnotherfundamentalelementforrealizingthequantumrepeateristheBell(quantumcor- relation)measurementfortheentanglementswapping. Inourcasethismeasurementiscarried outfortwoelectronswhicharecreatedbythequantumstatetransferfromtwoseparatephotons. HereweproposeanopticalmethodtodothisBellmeasurementbasedontheFaraday(inthe transmissiongeometry)orKerr(inthereflectiongeometry)rotationandestimatethefeasibility. Theelectronspindecoherencetimereportedsofarforlowtemperaturesisaboutafewmi- crosecond and is not sufficiently long for the secure quantum information processing. Thus the nuclear spin quantum memory will be eventually required and the robust quantum state transfer should be realized between the electron spin and the nuclear spins in order to store andretrievethequantuminformation. Forthatpurpose,thefundamentalfeaturesofdynamics in the electron-nuclei coupled system should be investigated. Here we reveal a sequence of back-actionsbetween the electronspin and the nuclearspins throughthe quantumstate mea- surementsandpredictacoupleofnewphenomena.Thesefindingswillopenthewaytorealize thequantumstatepurificationofnuclearspins,elongationoftheelectronspindecoherencetime andthenuclearspinquantummemory. 2 QUANTUMSTATETRANSFER In the quantumstate transferbetweenthe photonqubitand the electron qubit, the one-to-one correspondence should be established between the photon polarization and the electron spin polarization. In other words, the one-to-onecorrespondencebetween the Poincaresphere for aphotonandtheBlochsphereforanelectronspinshouldberealizedasperfectlyaspossible. Sincethephotonenergyisindependentofthepolarizationdirection,theelectronenergyshould alsobeindependentofthespindirection.Thiscanberealizedbytheg-factorengineering[22]. The light-hole exciton is preferable than the heavy-hole exciton because of the characteristic opticalselectionruleandthepossibleZeemansplittinginthein-planemagneticfield. Inorder tohavethelight-holestatesasthegroundholestates,thestrainedquantumwell(QW)structure isnecessaryandcanberealizedinInGaAs/InPQWstructures.InthesestrainedQWstructures thelight-holestatesarewrittenas[23] 31 2 1 = 10 α + 11 β , (1) |22i r3| i| i r3| i| i 3 1 1 2 = 1 1 α + 10 β , (2) |2 − 2i r3| − i| i r3| i| i wheretheusualangularmomentumrepresentation j,m isemployedand 10 α indicatesa | i | i| i p -likeorbitalwiththeup-spin,forexample. ThentherelevantHamiltonianforthelight-hole z |e2> |e1> y x |lh1> |lh2> Fig.1. Schematicenergylevelsinastrainedquantumwellunderanin-plane(||x)magneticfield. statesunderanin-planemagneticfieldalongthexaxisarerepresentedby 2 0 1 g µ BS = g µ B , (3) − ℓh B x −3 ℓh B (cid:18) 1 0 (cid:19) whereg istheg-factorofthelight-holeandtheeigenstatesaregivenby ℓh 1 31 3 1 1 31 3 1 ℓh = + , ℓh = . (4) 1 2 | i √2(cid:18)|22i |2 − 2i(cid:19) | i √2(cid:18)|22i−|2 − 2i(cid:19) Theselectionrulesoftheopticaltransitioncanbederivedbytakingintoaccounttheconserva- tionoftheorbitalangularmomentumandthedecompositionofthelinearpolarizationintothe circularpolarization: 1 1 xˆcosωt= (xˆ+iyˆ)cosωt+ (xˆ iyˆ)cosωt, (5) 2 2 − 1 1 yˆcosωt= (xˆ+iyˆ)cosωt (xˆ iyˆ)cosωt, (6) 2i − 2i − where xˆ (yˆ) denotesthe unitvector in the x (y)-direction. Assuming ℓh to be the ground 1 | i holestate(namely,g >0),wehavetheopticalselectionrules: ℓh 1 ℓh (c c )= e (7) 1 1 | i −→ √2 | ↑i−| ↓i −| i forthex polarizedlightand − i ℓh − (c + c )= i e (8) 1 2 | i −→ √2 | ↑i | ↓i − | i forthey polarizedlight,respectively,where c ( ) representstheconductionbandelectron − | ↑ ↓ i statewiththeup(down)spininthezdirectionand e (e )istheelectroneigenstatewiththe 1 2 | i | i spinalignedinthe x(x)direction.TheschematicenergylevelsareplottedinFig. 1. − According to these selection rules, we can excite a linear combination of exciton states which have a common hole state. When a linearly polarized light comes in with polarizaion givenby cosθ xˆ+sinθ yˆ, (9) theexcitedstatecanbewrittenas cosθ e ℓh isinθ e ℓh = cosθ e ,h isinθ e ,h , (10) 1 1 2 1 1 1 2 1 − | i| i− | i| i − | i− | i wherethedirectproductstate e ℓh issimplydenotedby e ,h forexampleandtherepre- 1 1 1 1 | i| i | i sentationintheformoftheelectron-holepairisusedinsteadoftheexcitonrepresentation.Itis beyondthescopeofthisarticletodiscussfullytheexcitoneffectinthequantumstatetransfer. |e2> |e1> |h3> |h2> |h1> Fig.2.Schematicrelaxationpathsinthequantumstatetransferfromaphotontoanelectronspin.Curved arrowsindicatethetransfer(tunneling)processofthephotoexcitedhole.|h3irepresentssymbolicallythe finaldestinationoftheextractedhole. Now we studyinfluencesof relaxationprocessesofthe electronandthe holeon thequantum statetransfer. Inthecaseofagate-controlledquantumdot,theelectronisthree-dimensionally confined,whereastheholeisnotconfinedandisabsorbedintothenegativelybiasedgate,leav- ing behindonlythe photoexcitedelectron. Thusthe importantissue is the quantumnatureof theelectronstateafterextractionofthehole:Howmuchistheelectronspincoherenceretained after the process ? To answer this question, we will analyze the time evolution of the whole systembasedonthedensitymatrixformalism.JustafterthephotoexcitationgivenbyEq. (10), thedensitymatrixoftheelectron-holesystemissupposedtobegivenby ρ(t=0)=cos2θ e ,h e ,h +sin2θ e ,h e ,h 1 1 1 1 2 1 2 1 | ih | | ih | +isinθcosθ e ,h e ,h isinθcosθ e ,h e ,h . (11) 2 1 1 1 1 1 2 1 | ih |− | ih | Then the hole is extracted into the negativelybiased gate electrode. In order to simulate this process, we introduce a model consisting of three hole states as depicted in Fig. 2; one of themisthe holestate h createdin a quantumdotbythe photoexcitation,thesecondoneis 1 | i an intermediate hole state h representing a delocalized state around the gate electrode and 2 | i thethirdoneisthe swept-outstate inthe gate. Themostimportantmechanismdegradingthe electronspincoherenceistheelectron-holeexchangeinteractionwhichinducesthe spinstate mixing. Duringthehole extractionto the negativelybiased electrodethe holespin relaxation occursand the electron spin states are mixed up, leadingto the degradationof quantumstate transfer. 2.1 Dynamicsofquantumstatetransfer Tosetuptheequationsofmotionforthedensitymatrix,wetake intoaccountsix basisstates composedofdirectproductsoftwoelectronstates e and e andthreeholestates h , h 1 2 1 2 | i | i | i | i and h : 3 | i e ,h , e ,h , e ,h , e ,h , e ,h , e ,h . (12) 1 1 2 1 1 2 2 2 1 3 2 3 | i | i | i | i | i | i Inthisrepresentation,theequationofmotionforthedensitymatrixisgivenby i ρ˙ = [H,ρ]+Γρ, (13) −~ H =H +H , (14) 0 exch. H =E (e e + e e ) E h h E h h E h h , (15) 0 e | 1ih 1| | 2ih 2| − h1| 1ih 1|− h2| 2ih 2|− h3| 3ih 3| Γρ=t h h ρh h +t h h ρh h t h h ρh h 12 2 1 1 2 23 3 2 2 3 12 1 1 1 1 | ih | | ih | | ih | | ih |− | ih | | ih | t h h ρh h γh h h ρh h + h h ρh h − 23| 2ih 2| | 2ih 2|− ij{| iih i| | jih j| | jih j| | iih i|} Xi6=j +γe e e ρe e γe e e ρe e 1| 2ih 1| | 1ih 2|− 1| 1ih 1| | 1ih 1| γe e e ρe e + e e ρe e , (16) − 12{| 1ih 1| | 2ih 2| | 2ih 2| | 1ih 1|} where t is the transfer (tunneling)rate from the hole state h to h , γe the electron spin ij | ii | ji 1 relaxationrate fromthe electronstate e to e , γe the electronspin decoherencerate and | 1i | 2i 12 γh is the dephasing rate of the hole state coherence between h and h . Concerning the ij | ii | ji electron-holeexchangeinteractionweemploythefollowingHamiltonian: e h e h e h e h e h e h 1 1 2 1 1 2 2 2 1 3 2 3 | i | i | i | i | i | i  e1h1 1 0.9 0.1 0.05 0 0  | i e h 0.9 1 0.05 0.1 0 0  | 2 1i  Hexch. =W · |e1h2i 0.1 0.05 0.2 0.18 0 0  , (17)  |e2h2i 0.05 0.1 0.18 0.2 0 0   e h 0 0 0 0 0 0   | 1 3i   e2h3 0 0 0 0 0 0   | i  where the matrix elements associated with the hole state h is set to be zero because it is 3 | i the swept-outstate into the gate. The short-rangeelectron-holeexchangeinteractionis small sincethespatialoverlapbetweenthe h stateandotherstatesisnegligibleandthelong-range 3 | i electron-holeexchangeinteractionduetothedipole-dipoleinteractionmayalsobesmall. The numericalvaluesinEq. (17)aregivensemi-empirically. 2.2 Purityandfidelityofquantumstatetransfer The time evolutionof the whole system can be examined by the numericalintegrationof the equation (13). The initial state is supposed to be given by Eq. (11). After a sequence of tunneling processes, the hole is eventually settled into the state h . At this stage we are 3 | i concerned with the quantum coherence of the electron spin state. To examine the quantum coherencewecalculatethereduceddensitymatrixoftheelectronbytakingthetraceoverthe holestatesofthedensitymatrixforthewholesystem: ρ =Tr ρ. (18) electron hole Thenthepurityoftheelectronstateisestimatedby =Trρ2 . (19) P electron Wecomparedthepurityfortwocasesoffavorableandunfavorableconditionsforthequantum state transfer. In the favorable case, the magnitude of the electron-hole exchange interaction denotedbyW istakentobe3µeVandtheholetransfer(tunneling)time(1/t = 1/t =1 12 23 ps)isshortenoughtosuppressthespinstatemixingbytheelectron-holeexchangeinteraction. Results are not sensitive to the polarization angle θ of the excitation light in Eq. (9) and are exhibited in Fig. 3. The purity is high enough (> 0.9999) over a nanosecond to guarantee (a) (b) 0.9999 y elit0.9998 d Fi y/ urit0.9997 P 0.9996 0.9995 0 200 400 600 800 1000 Time (ps) Fig.3. Timeevolutionofthepurity(a)oftheelectronspinstateandthefidelity(b)ofthequantumstate transferafterphotoexcitationforthecaseoffavorableconditions. 1 y elit d Fi0.9 y/ (a) urit P (b) 0.8 0 200 400 600 800 1000 Time (ps) Fig.4. Timeevolutionofthepurity(a)oftheelectronspinstateandthefidelity(b)ofthequantumstate transferafterphotoexcitationforthecaseofunfavorableconditions. the secure quantumstate transfer. The decay of the purity is determinedby the electron spin decoherence/relaxationtimeswhicharesupposedheretobe T =1/γe =100µs, T =1/γe =1µs. (20) 1 1 2 12 Intheunfavorablecase, themagnitudeoftheelectron-holeexchangeinteraction(W = 20 µ eV) is rather large and the hole tunneling time (1/t = 1/t =10 ps) is not short enough 12 23 to suppressthe spin state mixingby the electron-holeexchangeinteraction. In this case also, resultsarenotsensitivetothepolarizationangleoftheexcitationlightandareexhibitedinFig. 4. Thepuritydecreasesrapidlywithinseveraltensofpicosecondsafterphotoexcitationdueto theelectron-holeexchangeinteraction.Thecharacteristictimescaleisgivenby~/W andis33 ps. Thenthepurityisdecreasingslowlyduetotheelectronspindecoherenceitself( 1µs). ∼ Wealsoexaminedthefidelityofthequantumstatetransfer. Ideallywewanttopreparethe electronspinstatecorrespondingtothephotonpolarizationstateinEq.(9)as ρ0 =cos2θ e e +sin2θ e e +isinθcosθ e e isinθcosθ e e . (21) electron | 1ih 1| | 2ih 2| | 2ih 1|− | 1ih 2| Thefidelityisdefinedby (t)=Trρ0 ρ (t), (22) F electron electron whereρ (t)isthereduceddensitymatrixoftheelectrondefinedinEq.(18).Thisquantity electron indicates to what extentthe actual state is close to the ideally preparedstate. The results are exhibited by curves (b) in Figs. 3 and 4. Qualitative features are the same as in the case of purity. Basedontheseresults,wecanconcludethatforthesecurequantumstatetransferwehaveto extractthephotoexcitedholequicklybeforethespinstatemixingsetsinduetotheelectron-hole exchangeinteraction. Themodelusedherehasanempiricalcharacterandamorequantitative analysis would be necessary for the definite design of experiments of quantum state transfer [24,25]. 3 QUANTUMCORRELATION(BELL)MEASUREMENTBETWEENTWO ELECTRONS In the scheme of quantum repeater, the primary elements are the quantum state transfer be- tweenaphotonandanelectronandtheentanglementswappingthroughtheBell(correlation) measurementbetweentwoelectronswhicharecreatedthroughthequantumstatetransferfrom two photons. It is preferable to do the Bell measurement between electrons instead of pho- tonsbecausethemismatchbetweenthephotonarrivaltimescanbecompensatedbytherather longcoherencetimeofelectrons,whereasthestorageofphotonsisratherdifficultalthoughthe techniquesforthephotonstorageareprogressingsteadily. Thuswestartthediscussionassum- ingthattwoelectronsarepreparedinasemiconductornanostructure,e.g.,aquantumdot. We proposeanopticalmethodto measurethe spinstate oftwo electronsbasedonthe Faradayor Kerr rotation. Here we employ a linearly polarized off-resonantprobe light and measure the orientationofthe transmitted(reflected)light. Thusthe methodcan benon-destructivein the samesenseasdemonstratedforthecaseofasingleelectron[26,27]. Before going into details, let us review briefly the elementary processes of the Faraday rotation for the case of a single electron. We consider a III-V semiconductorquantumdotin which the hole ground state is the heavy hole state and a magnetic field is applied along the crystalgrowthdirection(namely,perpendiculartothequantumwellplane). Asiswellknown, theright-circularlypolarizedlightdenotedbyσ excitesadownspinelectronfromthevalence + band state 3/2, 3/2 creating a chargedexciton or trion, while the left-circularlypolarized | − i light denoted by σ excites an up spin electron from the valence band state 3/2,3/2 , as − | i exhibited in Fig. 5. When we probe the system with a linearly polarized light along the x direction,i.e., 1 x = (σ + σ ), (23) + − | i √2 | i | i oneofthecircularcomponentsreceivesaphaseshiftandtheFaradayrotationoccurs.Thuswe candistinguishthetwospinstatesofanelectronbythesignoftheFaradayrotationangle. Nowweextendthisargumenttothecaseoftwoelectronsandconsiderrelevantelementary processesforfourstatesoftwoelectrons,namely,thesingletstate(S)andthetripletstateswith the magnetic quantum number 1, 0 and -1 (T ,T ,T ). For the T state, spins of the two 1 0 −1 1 residentelectronsarealignedinthesamedirectionandaσ polarizedlightexcitesadownspin + electronfromthevalencebandcreatingadoublynegativelychargedexcitonX2−,asshownin Fig. 6,inwhichthelowestelectronorbitalstateisoccupiedbyaspin-singletelectronpairand thespindirectionoftheelectroninthesecondlowestorbitalstateisindicatedinthesuperscript andthespindirectionoftheholeisdepictedinthesubscript. ThisT stateisopticallyinactive 1 forthe σ polarizedlight. Forthe T state, a σ polarizedlightexcitesan upspin electron − −1 − from the valence band creating another doubly negativelychargedexciton. This T state is −1 opticallyinactivefortheσ polarizedlight. Thusthesetwostatescanbedistinguishedbythe + Fig. 5. Elementaryprocesses of theFaradayrotationfor thecase ofasingleresident electron. σ +(−) denotestheright(left)circularlypolarizedlight. Theupper(lower)horizontallineindicatestheelectron (hole)level. Athin(thickempty)arrowrepresentsanelectron(ahole)withthespindirectionalongthe arrow. Fig. 6. Elementary processes of the Faradayrotation for the tripletT1 and T−1 states of tworesident electrons. Fig.7. ElementaryprocessesoftheFaradayrotationforthesingletSstateoftworesidentelectrons. signoftheFaradayrotationangle. Ontheotherhand,theSandT states areopticallyactive 0 forbothcircularpolarizationsasexhibitedinFigs. 7and8,andthesignoftheFaradayrotation angleisdeterminedbythecompetitionbetweenthephaseshiftsforeachcircularcomponent. The expressionof the Faradayrotation angle is obtainedin the perturbationtheory and is composedoftwoterms: j P i 2(E ~ω) k P i 2(E ~ω) ϕ |h | σ+| i| j,i− |h | σ−| i| k,i− , (24) ∝ (~2γ2 +(E ~ω)2) − (~2γ2 +(E ~ω)2) jX(σ+) j,i j,i− kX(σ−) k,i k,i− whereiindicatestheinitialstateoftwoelectrons,j (k)thefinalstateoftheopticaltransition for the σ (σ ) component, E = E E with E being the energy of the a state, γ + − a,b a b a a,b thedephasingratecorrespondingtothea − btransitionand~ω denotesthephotonenergyof ↔ thelinearlypolarizedprobelight.Asmentionedbefore,fortheT stateonlytheσ transitions 1 + Fig. 8. Elementary processes of theFaraday rotation for thetriplet T stateof two resident electrons. 0 X2−∗andX2−∗denoteexcitedstatesofthedoublynegativelychargedexciton. ⇑ ⇓ contribute,whereasfortheT stateonlytheσ transitionscontribute.Thusthetwostatescan −1 − bedistinguishedbythesignoftheFaradayrotationangle.FortheSandT states,bothσ and 0 + σ transitionscontributeandthusmoredetailedargumentsarenecessarytodeterminethesign − oftheFaradayrotationangle. NowweexaminetheresonancepositionoftheFaradayrotation anglewithrespecttotheprobephotonenergy~ω. Fromtheelementaryprocessesexhibitedin Figs. 6-8, it isseenthatforthe tripletstates theresonanceoccursataroundtheenergyof the doublychargedexcitonstates(E(X2−)). Ontheotherhand,forthesingletstatetheresonance occursatahigherenergythanE(X2−)becausethelowestorbitalstateisalreadyoccupiedby aspin-singletelectronpairandtheopticaltransitionshouldoccurtothehigherorbitalstate. Now we discuss more details of the Faraday rotation angle for the case of T state. As 0 mentionedbefore,bothσ andσ circularcomponentscontributetotheFaradayrotation.The + − lowest-energyfinalstateoftheopticaltransitionforeachcircularcomponentisgivenby j(σ+)=X2−↓ , k(σ )=X2−↑ . (25) ⇑ − ⇓ The energiesof these states are differentin a magneticfield because the spinconfigurationis differentfor these states. In terms of the electron g-factor g for the conduction(valence) c(v) band,theseenergiesaregivenas 1 E(X2−↓)= (g µ B g µ B)+E , (26) ⇑ ∼−2 c B − v B 0 1 E(X2−↑)= (g µ B g µ B)+E , (27) ⇓ ∼ 2 c B − v B 0 whereE isthelowestenergyoftheinterbandtransition.Thentheenergydifference E(X2−↓) 0 | ⇑ − E(X2−↑) istypicallyaboutonetenthofmeVforamagneticfield about1Tesla andiscom- ⇓ | parable to the dephasingrate of the opticaltransitions. From the formulain Eq. (24) we see thatthedependenceoftheFaradayrotationangleontheprobephotonenergyisdeterminedby the differencebetween two dispersive curveswith nearly equal resonanceenergies. Thus the profileisgivenbythederivativeofthedispersivecurveasshowninFig. 9, dependingonthe signoftheenergydifference.ThesamesituationholdsforthesingletstateS. Fig.9. Dependenceontheprobephotonenergy(~ω)oftheFaradayrotationangleforthetripletT state 0 andthesingletS stateoftworesidentelectrons. Itdependsonthesignoftheenergydifference;namely, (a)|E(X2−↓)−E(X2−↑)|>0,(b)|E(X2−↓)−E(X2−↑)|<0 ⇑ ⇓ ⇑ ⇓ Fig.10. Dependenceontheprobephotonenergy(~ω)oftheFaradayrotationangleforthethreetriplet statesT1,T0,T−1andthesingletstateS oftworesidentelectrons. ThoseforT0andS areexhibitedfor thecaseof|E(X2−↓)−E(X2−↑)|>0. ⇑ ⇓ Summarizingtheseconsiderations,wecanshowtheschematicdependenceoftheFaraday rotation angle on the probe photon energy in Fig. 10. The triplet states T and T exhibit 1 −1 a typicaldispersivelineshape. On theotherhand, the profileforthe tripletT andthe singlet 0 S states is given by the derivative of the dispersive curve, where the case of E(X2−↓) | ⇑ − E(X2−↑) > 0isassumed. Theresonanceoccursataroundtheenergyofthedoublycharged ⇓ | exciton state denoted by E(X2−) for the triplet states, whereas for the singlet state it occurs at a higher energy than E(X2−) by the orbital excitation energy ∆ . Thus when we choose e the probe photon energy at the downward arrow as shown in Fig. 10, the Faraday rotation angleispositivefortheT stateandisnegativefortheT state. FortheT state,theFaraday 1 −1 0 rotationangleisnegativebutthemagnitudeissmall. ForthesingletSstate,theFaradayrotation angle would be vanishingly small because of the large off-resonance. Consequently, we can distinguishbetweenthefourstatesoftwoelectronsbythemagnitudeandthesignoftheFaraday rotationangle.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.