ebook img

The XXL Survey PDF

15 Pages·2016·2.12 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The XXL Survey

Adami, C., Pompei, E., Sadibekova, T., Clerc, N., Iovino, A., McGee, S., Guennou, L., Birkinshaw, M., Horellou, C., Maurogordato, S., Pacaud, F., Pierre, M., Poggianti, B. M., & Willis, J. (2016). The XXL Survey: VIII. MUSE characterization of intra cluster light in a z ~ 0.53 cluster of galaxies. Astronomy and Astrophysics, 592, [A7]. https://doi.org/10.1051/0004-6361/201526831 Publisher's PDF, also known as Version of record License (if available): CC BY-NC Link to published version (if available): 10.1051/0004-6361/201526831 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via EDP Science at 10.1051/0004-6361/201526831. Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Astronomy&Astrophysicsmanuscriptno.n308-aaenglish (cid:13)c ESO2016 January5,2016 The XXL Survey VIII: MUSE characterisation of intracluster light in a z∼0.53 cluster of galaxies (cid:63) C.Adami1,E.Pompei2,T.Sadibekova3,N.Clerc4,A.Iovino7,S.L.McGee9,L.Guennou6,1, M.Birkinshaw5,C.Horellou13,S.Maurogordato8,F.Pacaud10,M.Pierre3,B.Poggianti11,andJ.Willis12 1 AixMarseilleUniversite´,CNRS,LAM(Laboratoired’AstrophysiquedeMarseille)UMR7326,F-13388,Marseille,France 2 EuropeanSouthernObservatory,AlonsodeCordova3107,Vitacura,19001Casilla,Santiago19,Chile 3 LaboratoireAIM,CEA/DSM/IRFU/SAp,CEASaclay,91191,Gif-sur-Yvette,France 4 Max-Planck-InstituteforExtraterrestrialPhysics,Giessenbachstrasse1,D-85748,Garching,Germany 5 HHWillsPhysicsLab.,Univ.ofBristol,TyndallAve.,BristolBS81TL,U.K. 6 Institutd’AstrophysiqueSpatiale(IAS),bat.121,F-91405OrsayCedex,France 7 INAF-OsservatorioAstronomicodiBrera,viaBrera,28,I-20121Milano,Italy 8 Laboratoire Lagrange, UMR7293, Universit de Nice Sophia Antipolis, CNRS, Observatoire de la Cte d’Azur, F-06300, Nice, France 9 SchoolofPhysicsandAstronomy,UniversityofBirmingham,Edgbaston,Birmingham,B152TT,U.K. 10 ArgelanderInstitutfu¨rAstronomie,Universita¨tBonn,AufdemHu¨gel71,D-53121Bonn,Germany 11 INAF-AstronomicalObservatoryofPadova,Italy 12 DepartmentofPhysicsandAstronomy,UniversityofVictoria,3800FinnertyRoad,Victoria,BC,Canada 13 Dept.ofEarth&SpaceSciences,ChalmersUniversityofTechnology,OnsalaSpaceObservatory,SE-43992Onsala,Sweden Accepted.Received;Draftprinted:January5,2016 ABSTRACT Aims.Withinacluster,gravitationaleffectscanleadtotheremovalofstarsfromtheirparentgalaxiesandtheirsubsequentdispersal intotheintraclustermedium.Gashydrodynamicaleffectscanadditionallystripgasanddustfromgalaxies;bothgasandstarscon- tributetointraclusterlight(hereafterICL).ThepropertiesoftheICLcanthereforehelpconstrainthephysicalprocessesatworkin clustersbyservingasafossilrecordoftheinteractionhistory. Methods.ThepresentstudyisdesignedtocharacterisethisICLforthefirsttimeina∼1014M(cid:12)andz∼0.53clusterofgalaxiesfrom imagingandspectroscopicpointsofview.Byapplyingawavelet-basedmethodtoCFHTMegacamandWIRCAMimages,wedetect significantquantitiesofdiffuselightandareabletoconstraintheirspectralenergydistributions.Thesesourceswerethenspectroscop- icallycharacterisedwithESOMultiUnitSpectroscopicExplorer(MUSE)spectroscopicdata.MUSEdatawerealsousedtocompute redshiftsof24clustergalaxiesandsearchforclustersubstructures. Results.AnatypicallylargeamountofICL,equivalentini’totheemissionfromtwobrightestclustergalaxies,hasbeendetectedin thiscluster.Partofthedetecteddiffuselighthasaveryweakopticalstellarcomponentandapparentlyconsistsmainlyofgasemission, whileotherdiffuselightsourcesareclearlydominatedbyoldstars.Furthermore,emissionlinesweredetectedinseveralplacesof diffuselight.Ourspectralanalysisshowsthatthisemissionlikelyoriginatesfromlow-excitationparametergas.Globally,thestellar contributiontotheICLisabout2.3×109 yrsoldeventhoughtheICLisnotcurrentlyformingalargenumberofstars.Ontheother hand, the contribution of the gas emission to the ICL in the optical is much greater than the stellar contribution in some regions, butthegasdensityislikelytoolowtoformstars.Theseobservationsfavourrampressurestripping,turbulentviscousstripping,or supernovaewindsastheoriginofthelargeamountofintraclusterlight. Sincetheclusterappearsnottobeinamajormergingphase,weconcludethatrampressurestrippingisthemostplausibleprocess thatgeneratestheobservedICLsources. Conclusions. This is one of the first times that we are able to spectroscopically study diffuse light in such a distant and massive cluster,anditdemonstratesthepotentialofMUSEobservationsforsuchstudies. Keywords.galaxies:clusters 1. Introduction properties (morphology, star formation rate, colour, etc.) from severalgalaxiesofsimilarmassinthefield(Dressleretal.1980, Thediffuselightwithinagalaxycluster,oftencalledintracluster 1997; Weinmann et al. 2006). Physical processes could drive light(ICL),isafossilrecordoftheformation,accretion,andin- thesedifferences,butluckily,asgalaxiesareaccretedandorbit teractionhistoryofthecluster(e.g.Guennouet.al.,2012).Ithas within acluster, each physicalprocess may leave characteristic beenknownforsometimethatgalaxiesinclustershavedifferent low surface brightness signatures. Gravitational effects, includ- ing mergers and low-energy interactions (Mihos 2004, 2005), Send offprint requests to: C. Adami e-mail: tidal stripping (Henriksen & Byrd, 1996), and high-speed ha- [email protected] rassment(Mooreetal.1998),willstriporejectstellarmaterial (cid:63) BasedonobservationsmadewithESOTelescopesattheLaSilla into the intracluster medium (ICM). This was recently statisti- andParanalObservatoriesunderprogrammesID191.A-0268and60.A- cally studied within the CLASH sample (Postman et al. 2012) 9302. 1 Article published byEDP Sciences,to be cited ashttp://dx.doi.org/10.1051/0004-6361/201526831 Adamietal.:MUSEcharacterisationsofIntraClusterLightinaz∼0.53clusterofgalaxies byBurkeetal.(2015),whoconcludedthatthegrowthofstellar shallowpotentialwell,wheretheencountersareslowerthannor- mass in the ICL is larger than can be provided by the brightest malowingtothelowercharacteristicvelocitydispersion. cluster galaxy (BCG hereafter) close companions, and that the ThepresentstudyisdesignedtocharacterisetheICLusing majority of the ICL mass must come from galaxies which fall bothimagingandspectroscopyforthefirsttimeinamassiveand fromoutsideofthecoreoftheclusters.Thiswouldbeinagree- distant cluster of galaxies. We will investigate the relative con- ment with De Maio et al. (2015) who used the same sample to tribution of old stars, presumably stripped from the interacting conclude that the ICL is built up by the stripping of galaxies galaxies, and the in situ intracluster star formation. While we that are not too faint, and disfavoured significant contribution expect that the first contribution will be dominant, the second totheICLbydwarfdisruptionormajormergerswiththeBCG. seemstohavebeenobservedinVirgo(Verdugoetal.2015). Alternatively,hydrodynamicaleffectssuchasrampressurestrip- WefirstdescribetheclusterfromanX-raypointofview.In pingofcolddiskgasanddust(Gunn&Gott1972)canalsopol- Section3wediscusstheopticalbroadbanddataandthesubse- lute the ICM with gas that may become the material of future quent detection/characterisation of the diffuse light. Sections 4 in situ star formation. We note, however, that studies such as and 5 describe the Multi Unit Spectroscopic Explorer (MUSE) Melnicketal.(2012)clearlydonotfavouraveryintenseinsitu measurements and the characterisation of the cluster ICL. starformation.Excitationprocesseswithinthisgasmayleadto Finally,weconcludeinSection6. detectableemissionlineswithintheICL. We adopt the standard concordance cosmological model CurrentobservationsofICLhaveshownthattherearelarge (H0=72kms−1Mpc−1,ΩΛ =0.74,ΩM =0.26). stellar streams that provide one viable input mechanism to the ICL(Rudicketal.,2009),butonlyahandfulofsuchstreamsare known (e.g. Coma, Centaurus, Virgo, Perseus, Norma) and the 2. XLSSC116fromanX-raypointofview total amount of ICL is almost always equivalent at maximum Our target is a cluster of galaxies detected in the XXL Survey to a few L galaxies in massive clusters (e.g. Guennou et al. (cid:63) (XXL paper I) as a significant extended X-ray source. This is 2012).Fromageneralpointofview,theICLcontributiontothe notoneofthemostsignificantclusters(onlyC2class,seeXXL clusterluminosityislessthanafewdozenpercentagepoints.For paper I), and is not part of the 100 brightest XXL clusters (see example,usingTypeIasupernovae,Sandetal.(2011)estimated Pacaudetal.2015,hereafterXXLpaperII1).However,itvisu- in a large cluster sample the intracluster (intergalactic) stellar allyexhibitsaverylargeamountofdiffuselight(seebelow)and masstobeoftheorderof16%ofthetotalclusterstellarmass. so has probably experienced an unusual evolution. This source Gonzalez et al. (2007) found a value of 19% when expressed isprobablyaffectedbynon-thermalemissionbecausethegalaxy withthesimilarconventionsasinSandetal.(2011). dominatingtheclusterisdetectedasaradiosource(potentially MostoftheliteraturestudiesoftheICLarebasedonimag- coinciding with NVSS J021039-055637, later identified with ingsurveys.Thereare,however,somenoticeableexceptions,for FIRST data at 02h10m39.7sec -05deg56(cid:48)36.9(cid:48)(cid:48) with a possible example in Melnick et al. (2012). These authors used a z=0.29 extensionof∼1.5(cid:48)(cid:48)),anditwasconfirmedasaclusteratz∼0.53 clusterofgalaxies(RXJ0054.0-2823)andstackedseveralspec- (withtheredshiftoftheBCG)inthecourseofthegeneralXXL trafromfourdifferentplacesinthecluster;however,thisstudy follow-up(WHTobservations;seeKoulouridisetal.2015,here- was forced to use the ICL and the BCGs together and to rely afterXXLpaperXII,fordetailsonobservationsanddatareduc- onthesurfacebrightnessprofilestodelineatetheboundariesbe- tion).Itwaspreviouslydetectedasacandidateclusterintheop- tweenthetwocomponents.TheICLcomponentwasassumedto ticalwithaphotometricredshiftof0.47byDurretetal.(2011: be located at more than ∼50 kpc from the BCGs (but a signifi- W1-0957). cantcontaminationbyaBCGisstillpossible).Theyfoundthat themajorityoftheICLstarsinthisclusterareold,butwithhigh metallicitiesprobablyrelatedtothefactthattheconsideredclus- 2.1. X-raymorphologyoftheXLSSC116cluster ter has three interacting giant elliptical galaxies. Interestingly, Figure 1 shows surface brightness contours of the galaxy clus- they also found a 408±20 km/s velocity dispersion for the ICL ter in three X-ray bands: [0.3-0.5], [0.5-2] (usual soft energy very close to the cluster velocity dispersion itself and signifi- band encompassing most of the Bremstrahlung emission) and cantly larger than the BCG velocity dispersion. This also puts [2-10]keV.DespitethelimitednumberofX-raycountsineach theBCG-independentnatureoftheICLonfirmerground.They band and the size of the XMM point-spread function (PSF), finallydetectedextremelyweak[OII]and[OIII]emissionlines surface brightness contours may reveal a bimodality of the ex- withintensityratiosthatmightbeconsistentwiththoseofmetal tended emission. Lower-temperature gas (more prominent in richHIIregions. [0.3-0.5] keV) is shifted with respect to the hotter phases. The The present paper is based on the detection in the XXL [0.5-2]keVcontoursareelongatedandshowan11(cid:48)(cid:48) offsetbe- Survey (Pierre et al. 2015, hereafter XXL paper I) of a clus- tweenthesurfacebrightnesspeakandtheBCG(∼70kpcatthe ter,XLSSC116,atz=0.534withanexceptionalamountofICL clusters redshift). In order to put error bars on the separation, comparedtootherstudiedclustersintheliterature;inthiscluster werandomlyeliminateonethousandtimes50%ofthecountsin thisisequivalenttoalmosttwobrightestclustergalaxies(BCG the 0.5-2 keV bandpass and recalculate the centroid each time. hereafter) in the i’ band, which is nearly ten times larger than Thedistributionofseparationsinthesetrialsgivesameasureof normally observed. The existence of such a system is puzzling theuncertainty.AssumingPoissonstatistics,the1σuncertainty inthecommonscenariosofICLformation(e.g.Guennouetal. using all counts is ∼5(cid:48)(cid:48). This 11±5 (cid:48)(cid:48) shift is relatively impor- 2012). While ICL is expected to be efficiently formed in clus- tant(e.g.Adami&Ulmer2000),potentiallyindicatingthatthe ters/groups, the amount observed in XLSSC 116 is exceptional cluster has a complex formation history. The other considered andlikelyindicatesrecentstrongdynamicalinteractionswithin X-ray bands are also shifted with respect to the BCG position, thecluster.Suchstronginteractionsmayresultfromahighde- gree of substructure merging within a young cluster containing 1 XXL 100 brightest cluster data are available in computer read- a low-temperature intracluster medium. Alternatively, such in- ableformviatheXXLMasterCataloguebrowserhttp://cosmosdb.iasf- teractions may take place in a merging system with a currently milano.inaf.it/XXL 2 Adamietal.:MUSEcharacterisationsofIntraClusterLightinaz∼0.53clusterofgalaxies buttheshiftsaresmallerandnotsignificantgiventhedataavail- (seebelow),thatincludesthedensestpartsofthecluster.Itcon- able.UnlesstheX-rayemissioniscontaminatedbyafaint,unre- tains 806 net counts (thermal + non-thermal emission) in [0.3- solved,point-source,thispeculiarmorphologymaysupportthe 10]keV.WeusedXSpec(Arnaud1996)tocomputebest-fitval- picture of different gas phases in the process of merging. We uesandconfidenceintervals. note,however,thatthetypicalintrinsicXMMPSFwidthwhere We first fit the spectrum with a single-temperature APEC theclusterislocatedisoftheorderof8(cid:48)(cid:48),resultingina9.4(cid:48)(cid:48)total plasma model, fixing the metallicity abundance to 0.3 solar uncertaintyatthisplace.HigherresolutionX-raydata(Chandra) (Grevesse & Sauval, 1998), and we obtain a best-fit tempera- wouldthereforebenecessarytomoreefficientlydiscriminatebe- ture of 2.0+1.3 keV. Since r ∼ 520kpc ≡ 83 (cid:48)(cid:48) at the cluster tweenthedifferentregionspresentlyconsidered. redshift(fr−o0m.5Sunetal.(2050009)T −r relation,andassuming 500 T =2keV),thistemperaturemeasurementroughlycorresponds toT . 500 If we perform a similar fit with the metallicity parameter (abundance) left free, we find a best-fit at T = 2.1+1.3 keV and −0.7 Ab = 0.3(abundanceinsolarunits),butwecannotassignerror barstothemetallicityparametergiventheuncertaintiesinthefit thataretoolarge. A double-component APEC model fit with different tem- peratures and normalisations, both at fixed Ab = 0.3 solar, gives a valley of minima for temperatures T ∼ 2 keV (resp. 1 T ∼ 2keV),correspondingtothepreviouscasewherethenor- 2 malisation of component 2 (resp. component 1) is set to zero. More interestingly, we find a best-fit solution at T = 0.3 and 1 T = 2.1 keV (the two black dots with error bars in figure 2). 2 Althoughthesignificanceislow,thisfindingagainsupportsthe caseforabimodalgasdistribution,withonecoolersubstructure merging into a hotter, 2 keV cluster. According to these spec- tralmodels,thecoolercomponentaccountsfor10%ofthetotal systemluminositywithina90(cid:48)(cid:48)(560kpc)projectedradius. We measure a [0.5-2] keV count-rate of 0.0198 cts.s−1 (±23%)inthisradius,whichtranslatesintoagalacticabsorbed flux f = 1.8×10−14 ergs/s/cm2 (±23%).Thisvaluecorre- [0.5−2] sponds to a rest-frame [0.5-2] keV luminosity L[0.5−2] = 2.0× 500 1043ergs/sandabolometricluminosityLbol =4.7×1043ergs/s. 500 Thepositionoftheclusterintheluminosity-temperatureplaneis fullycompatiblewithrecentfindingsfromtheliterature(Fig.2). 3. CFHTLSandWIRCAMbroadbanddata:diffuse lightdetectionandspectralenergydistribution fitting 3.1. Opticalimagingdata The cluster is located in the CFHTLS W1 field, providing u*, g’, r’, i’, and z’ data. We refer the reader to Coupon et al. (2009) for details. The limiting magnitude of these images is u* =26.3,g’ =26.0,r’ =25.6,i’ =25.4,z’ =25.0,andthe AB AB AB AB AB Fig.1. Upperfigures:X-raymorphologyofXLSSC116asafunction the pixel scale is 0.187(cid:48)(cid:48). In addition, we collected our own ofenergyband.TheimageisCFHT-LSi(cid:48)withX-raycontoursoverlaid. CFHT/WIRCAM K data (subject of a future paper). Briefly, s Crossesindicatethepositionofthesurfacebrightnesspeakineachse- theywereobtainedas2×525secondspointingswitheachpoint- lectedsub-band.Therightpanelsshowthreepoint-sourcesinthevicin- ing consisting of 21 dithers with 25 seconds of exposure per ityofXLSSC116withspatialscalesandcontourlevelsmatchingthose dither,foratotalexposuretimeof1050s.Datawerereducedby ofthemainimage.TheyillustratethesizeoftheXMM-NewtonPSFat the standard TERAPIX pipeline and presented as 1 deg2 tiles thelocationofthecluster.Wenotethepresenceofapoint-sourceinthe projected astrometrically onto CFHTLS optical images (same [2-10]keVbandwestoftheclustercentre.Thissourceismaskedout pixelscale).ThedepthisclosetoK =22(5σlevel)inaKron- intheX-rayanalyses.Lowerfigure:zoomonthesamei(cid:48) imagewith sAB typeaperture. Serna-Gerbal substructure 1 shown as red squares and substructure 2 shownasbluesquares(seebelow).Galaxyredshiftsarealsoshown. Fig. 3 shows the galaxy colour magnitude relation in a 5(cid:48) square around the XLSSC 116 cluster centre. We clearly see a narrow red sequence. Only five galaxies that are spectroscopi- callyclassifiedasclustermembers(seebelow)arebluerthanthis red sequence. Of these, two are close to the BCG, well within 2.2. X-rayspectralanalysisoftheXLSSC116cluster the diffuse light region. The BCG is the brightest cluster mem- TheX-rayspectrumisextractedinaregionofradius90(cid:48)(cid:48)around ber galaxy, but it is very different from a typical cD galaxy, as the BCG position. This corresponds to slightly larger than r weshowlaterusingtheMUSEspectra. 500 3 Adamietal.:MUSEcharacterisationsofIntraClusterLightinaz∼0.53clusterofgalaxies method(theOV WAVpackage,seee.g.Pereira2003;DaRocha & Mendes de Oliveira 2005). OV WAV is a multiscale vision model (e.g. Rue´ & Bijaoui 1997). We briefly outline the main steps of the method. After applying a wavelet transform to an observation,thetoolidentifiesthestatisticallysignificantpixels inthewavelettransformspace(atthe5σlevelinourcase).To define the objects, it groups pixels in connected fields for each scale. After the construction of an inter-scale connectivity tree, fieldswithconnectedpixelsacrossthreeormorescalesareiden- tifiedandassociatedwiththeobjects. We detected small-scale objects (typically the galaxies) in theskyimagetoproduceourobjectimage.Weconsideredchar- acteristicscalesbetween1and512pixelsinwaveletspace(the 1024pixelscaleasinGuennouetal.2012didnotprovideany additionaldetection).Theobjectimagewasthensubtractedfrom the sky image to produce the residual image. This residual im- age includes both hidden features that are typically too faint to satisfythewaveletfirst-passthresholdingconditionsandthedif- fuselightpatches,whicharetoofainttobedetectedasobjects. We did not have to use a second iteration of this process as in Guennou et al. (2012) as the data were of sufficient quality to detectallobjectsofinterestinthefirstpass. Inasecondstepwesearchedforwhatwecallthesignificant ICLsources,i.e.extendedlowsurface-brightnessfeaturesinthe Fig.2.PositionofXLSSC116inthesoft-bandluminosityversustem- residual image. These features were detected in this image by peratureplane(reddotwitherrorbars).Greypointsaremeasurements fromtheXXL100brightestclustersample(Gilesetal.2015,hereafter consideringthepixelswherethesignalislargerthan2.5σwith XXL paper III). The straight line represent the scaling relation from respect to 20 empty areas of the residual image. These sources XXLpaperIIIfittedtotheXXL100sample(forcedtoself-similarevo- were visually inspected to remove obvious numerical residuals lution). Black dots with error bars correspond to the two-component of bright saturated Galactic stars or defects due to image cos- APEC fit to the cluster spectrum, possibly indicating the presence of metics.ThesenumericalresidualsaredescribedinAdamietal. twostructures.Thelowtemperaturepointhasnotemperatureerror-bar (2013); briefly, they can be modelled by Sinc functions, which becausewecannotconstrainitowingtothesmallnumberofphotons. arenegligibleinintensityinthepresentcasebecausetheconsid- eredpointsourcesarefaint. Thisexercisewasdoneindependentlywiththeu*,g’,r’,i’, z’,andK images.WeshowinFigs.4and 5theresultsinthesix s availablebands.Essentially,wedetectacomplexsourceofICL in which several galaxies are embedded. This source (union of allellipsesinfigs.4and 5andunionofregions1and2infigs.12 and 13)is∼60×180kpcinsize,whichisverylargecomparedto thetypicalICLsourcesfoundbyGuennouetal.(2012).Indeed, it is even larger than the plume detected in the Coma cluster by Gregg & West (1998) or the diffuse light regions in Norma describedinFumagallietal.(2014). We measured the source total magnitudes in the several availablebandsbyintegratingthefluxoftheresidualimagesin thepinkellipsesinFigs.4and 5.Thesizeoftheseellipseswere adaptedtothedepthandqualityofeachbandinordertobesten- closethe2.5σdetectionarea.Wenotethatthefluxesinthedif- ferentbandswerenotmeasuredinexactlythesameregionsbe- causethedifferentconsideredbandsdonothavethesamedepth orquality.Forexample,theu*andK bandsaremuchshallower s than other optical bands, so considering exactly the same areas would lead to including significant noise in our flux estimates. The magnitudes are compiled in Table 1, and clearly show an Fig.3.g’-r’versusr’fortheCFHTLSobjectsina5(cid:48) square(allowing extraordinary amount of ICL. We compared these magnitudes a∼1Mpcradiusattheclusterredshift)aroundtheXLSSC116cluster to the magnitude of the BCG in each of five optical bands and centre.Pointsareallthedetectedobjects;filledcirclesarethegalaxies foundthattheICLhasmorethan2timesthefluxoftheBCGin withaMUSEmeasuredspectroscopicredshift(red:SGsubstructure1, g’,r’,i’,orz’. blue:SGsubstructure2,seeSection4.2).Thelargeblueoctagonisthe sumofallthediffuselightcomponentsinthecluster. To the best of our knowledge, this is the first time such a system has been detected. Even the very high concentration of ICLdetectedatz∼2.1intheCLJ1449+0856cluster(Adamiet al. 2013) is far from being at the same level. Moreover, ICL in 3.2. Diffuselightdetection theXLSSC116clusterisclearlyvisibleupto130kpcfromthe Todetectthediffuselight,weappliedthesametoolasinAdami clustercentre,afeaturethatisalsoquiterareinclusters. etal.(2013)andGuennouetal.(2012).Thisisawavelet-based 4 Adamietal.:MUSEcharacterisationsofIntraClusterLightinaz∼0.53clusterofgalaxies Fig.4.Left:originalCFHTLSandWIRCAMimagesintheconsideredbands.Right:residualimagefromOV WAV.Redcontouristhe2.5σlevel fromtheresidualimage.Bluecontoursstartatthe3σlevel(fromtheresidualimage)andprogressbystepsof1σ.Thesecontoursarecomputed withtheresidualimagesandreportedonbothresidualandoriginalimages.Thecyancircle(80kpcindiameter)showsoneoftheemptyresidual fieldsweconsidered.Italsogivesthephysicalsizeofthefigure.Pinkellipsesaretheareaswherewesummedthefluxofthediffuselightinthe residualimage.ThegreencrossshowstheBCG.Fromtoptobottom:u*,g’,r’bands. 5 Adamietal.:MUSEcharacterisationsofIntraClusterLightinaz∼0.53clusterofgalaxies Fig.5.Sameasfig.4butfor(fromtoptobottom):i’,z’,K bands. s Wewillnowfitspectralenergydistribution(SEDhereafter) 3.3. SEDfitting modelsonthediffuselight. ThenextobviousstepistofitaSEDtothemeasuredICLmagni- tudes.WeassumethattheICLsourceisrelatedtotheclusterand 6 Adamietal.:MUSEcharacterisationsofIntraClusterLightinaz∼0.53clusterofgalaxies Table1.Magnitudes(notcorrectedforgalacticextinction,whichislowerthan0.1magnitudeinthelessfavourablecase)ofthedetectedICL sourceandoftheBCGfromu*toK wavelengths. s u*AB g’AB r’AB i’AB z’AB K AB s ICL 23.58±0.16 21.51±0.14 20.03±0.09 19.40±0.02 19.27±0.03 18.66±0.05 BCG 23.339±0.033 22.429±0.011 21.025±0.006 20.160±0.004 19.823±0.006 17.94±0.05 therefore has a redshift of 0.534 (confirmed in the following). findaspectroscopicallyestimatedSFRof10.6±1.5M /yr.Ifwe (cid:12) WeusedtheLePhareSEDfittingtool(Arnoutsetal.1999,Ilbert usethe[OII]flux,theSFRestimateis32.3±0.75M /yr. (cid:12) etal.2006) andfixedtheredshift totheknownvalue.We used Given their different stellar population ages and SFRs, the theCosmossurveytemplates(Ilbertetal.2009)toestimatethe ICLandBCGclearlyhavedifferentstellarpopulations.Thisis closestgalaxytype,andtheBruzual&Charlottemplates(2003) illustratedinFig.7,wherewehavecomparedourSFRandstel- to estimate the stellar population age, stellar mass, and the star lar mass estimates with known literature values from Puech et formationrate(SFR).WealloweddiscretisedE(B-V)valuesbe- al.(2010:emissionlinegalaxies)andLiuetal.(2012:BCGs)at tween 0 and 1.0 with a 0.025 step. Uncertainty on E(B-V) was similarredshifts.TheICLsourcehasastellarmasstypicalofthe incorporatedintotheuncertaintiesgiveninTable2.Wealsore- emission line galaxy sample. The XLSSC 116 BCG has a stel- ferthereadertoIlbertetal.(2010:theirAppendixDandsection larmassclosertotheliteratureBCGs.OurICLsourceseemsto 4.1) for details on how the mass-to-light ratios were taken into exhibitintermediatecharacteristicsthatarebetweenanoldand accountinthemethod.Forreference,wealsogiveinTable2the passive elliptical galaxy and a younger and more active object. resultingstellar-mass-to-lightratiosintheKsbandfortheBCG TheXLSSC116BCGdoesnotseemtobeanormalcDgalaxy andtheICL.WenoteherethattheICLstellar-mass-to-lightra- witharelativelylowstellarmassandahighstarformationrate. tioisonlyvalidforthetotalamountofICLandnotforitssep- The estimates presented in this section are, however, only aratecomponents(seebelow).Wealsonotethatwewouldneed basedonmodelfitting.WenowdiscusstheMUSEICLspectra. deeper Ks images in order to have a more precise value of the Ks-band stellar-mass-to-light ratio for the ICL, given the very lowsurfacebrightnessoftheICLfeatures(seee.g.fig.5). 4. MUSEdataanalysis In Fig. 6 we show the best-fitting SED, and Table 2 gives 4.1. MUSEopticalspectroscopicdataandredshift thecharacteristicsoftheICL.WeseethattheICLiswellmod- measurement elled by an early-type elliptical galaxy SED. We note that this does not conflict with having ICL emission lines in addition to We were awarded four hours of MUSE Science thisellipticalgalaxySEDbecausewidebandphotometryisonly Verification Time (# 60.A-9302) in order to observe weaklysensitivetonarrowbandemissionlines. the cluster using integral-field spectroscopy. MUSE (see TheageoftheICLstellarpopulationis2.3Gyrwithanun- http://www.eso.org/sci/facilities/develop/instruments/muse.html) certaintyallowingagesbetween1and6Gyr.TheSFRispoorly isasecondgenerationinstrumentfortheVeryLargeTelescope constrainedandislikelyoftheorderof5M(cid:12) /yr,butcouldbe (VLT) and is an integral-field spectrograph operating in the aslowas0.07. visiblewavelengthrange.Weobtainedthedatainthewide-field A common criticism of ICL searches is that it is often dif- mode with adaptative-optic mode off, simultaneously covering ficulttodiscriminatebetweentheBCGhaloandtheICLitself. a 1×1 arcmin field from ∼480 to ∼930nm with a final spectral However,inthepresentcasewenotethatgiventheICLexten- resolution of 1.25Å per pixel. The spatial resolution was of sion,thereisnowaytohavesuchanextendedBCGhalo.Thus, the order of 0.2(cid:48)(cid:48) before convolution with the seeing, which it is likely that the diffuse light is only mildly contaminated by variedbetween0.85and1.2(cid:48)(cid:48) duringtheJunerun,andbetween theBCGhalo. 0.84 and 1.07(cid:48)(cid:48) during the August run. The observations were We have previously carried out several simulations (pre- centredontheXLSSC116BCGandexecutedinservicemode sented in Guennou et al. (2012) and Adami et al. (2013)) to be during the nights of 25-26 June and 20-22 August 2014. We reasonablysurethatourdataarenotheavilypollutedbytheun- obtained four one-hour observing blocks, each consisting of derlying BCG. However, we perform an additional test in this four exposures separated by 90◦ rotation, to average out the paper by analysing the BCG in the same way as the ICL (see patterns of the slicers and channels seen by the detector. The table 2 and Fig. 6). The flux from the BCG was considered in datawerereducedfollowingtherecipesoftheMUSEpipeline, itsTERAPIX/CFHTLSellipse:3.5×1.4(cid:48)(cid:48) (∼23×10kpc)ellipse version 0.18.2. The June data were taken at a temperature andwithatrigonometricorientationof311.7degrees.First,we below7◦,whichcausedproblemswiththecorrectidentification notethattheBCGisnotpassive(besttype:Sd,highSFR).This of the 10th slice of IFU no. 6. To obviate the problem, we isingoodagreementwiththegalaxybeingaradiosource(prob- followedtheworkaroundrecommendedintheMUSEcookbook able) or a UV source (possible): NVSS J021039-055637 and and used dedicated trace tables. The reduction steps for each GALEXASCJ021039.47-055645.5areclosetoitsposition(re- individual exposure included bias, flat-field, wavelength and spectively at ∼2(cid:48)(cid:48) and 9(cid:48)(cid:48)). We also show the MUSE spectrum flux calibration, and correction for the telluric absorption lines (described below) of the BCG in Fig. 6. The spectrum clearly using standard stars and geometric correction. Dedicated sky showsstrongemissionlines.Thisobjectisclearlyformingstars observations were taken in an area adjacent to the cluster and veryactively.WedonothaveaccesstotheHαlineintheMUSE were reduced following the same recipe and were subtracted spectra, so we cannot directly measure the SFR from this line. from the corresponding science data. The 16 final cubes were However, using the Moustakas et al. (2010) Sd galaxies (to be combined using relative RA and DEC offsets, and keeping consistent with the best-fit type), we estimated an (Hα)/Hβ ra- the whole wavelength range. The spectra were extracted by tioof4.85±0.7.MeasuringthefluxundertheHβlineinFig.6, summing all the pixels in several elliptical regions of different translating it into an Hα flux, and using Kennicutt (1998), we extensions using ds9 (see Table 3 for a list of successful 7 Adamietal.:MUSEcharacterisationsofIntraClusterLightinaz∼0.53clusterofgalaxies Table2.CharacteristicsoftheICLandoftheBCG(type,age,stellarmass,SFR,E(B-V)andstellar-mass-to-lightratiosintheKsband).Wegive firsttheSED-estimatedSFR,andthenthespectroscopicallyestimatedSFR. Galaxytype Age log10(StellarMass) log(SFR) E(B-V) logM/LK s 109Gyr M M /yr M /L (cid:12) (cid:12) (cid:12) (cid:12) ICL Ell 2.3[1.1;5.9] 10.7[10.5;10.9] 0.7[-1.2;1.3]/0.11[0.04;0.18] 0.10±0.03 0.69[0.52;1.10] BCG Sd 9.3[7.9;9.8] 10.9[10.4;11.2] 1.9[1.5;2.7]/1.03[0.96;1.08] 0.72±0.18 0.71[0.25;0.99] Table3.J2000coordinates,redshifts,i’bandmagnitude,Serna-Gerbal Table4.CharacteristicsofSGdetectedsubstructures.Massestimates substructurenumberoftheCFHTLSobjectswithasuccessfulMUSE arestatisticallyaffectedby4.61013M(cid:12)uncertainties. redshiftmeasurement,andspectralqualityflag(seetext). SGnumber Numberofgalaxies Vel.dispersion Mass RA(2000) DEC(2000) z i’ SGsub. flag km/s 1013M (cid:12) 32.6571 -5.9526 0.5363 21.06 1 3 1 20 570 3 32.6556 -5.9416 0.5328 20.31 1 4 2 4 170 0.4 32.6578 -5.9413 0.5308 23.43 1 2 32.6580 -5.9434 0.5263 25.91 1 2 32.6647 -5.9380 0.5299 21.69 1 3 32.6703 -5.9394 0.5315 21.59 1 3 32.6726 -5.9492 0.5334 22.31 1 2 32.6623 -5.9414 0.5394 20.27 2 4 centage of galaxies with a successful redshift measurement, is 32.6607 -5.9449 0.5382 21.40 2 4 90%downtoi’∼20.5and80%downtoi’∼22intheMUSEfield 32.6628 -5.9498 0.5345 23.71 1 2 ofview. 32.6636 -5.9490 0.5288 21.89 1 3 32.6677 -5.9495 0.5314 23.78 1 2 32.6657 -5.9481 0.5394 20.73 2 4 4.2. Structureofthecluster 32.6670 -5.9477 0.5294 22.89 1 2 32.6677 -5.9465 0.5391 23.01 2 2 Given the number of available spectroscopic redshifts, we can 32.6647 -5.9454 0.5327 21.91 1 2 investigatethepresenceofpossiblesubstructuresinthecluster. 32.6643 -5.9447 0.5344 22.31 1 3 To this end, we have applied the Serna-Gerbal (1996, hereafter 32.6655 -5.9433 0.5345 20.16 1 3 SG)hierarchicalmethodalreadyextensivelydescribedinseveral 32.6668 -5.9416 0.5323 21.89 1 3 32.6681 -5.9432 0.5328 21.93 1 2 papers (e.g. Guennou et al. 2014 and references therein). This 32.6677 -5.9424 0.5317 21.74 1 3 methodisquitepowerfulforshowingevidenceofsubstructure; 32.6697 -5.9426 0.5336 20.81 1 4 thecodealsoestimatesthemassofthesubstructures.Massesare 32.6707 -5.9424 0.5338 23.15 1 2 computedthroughabasicversionofthevirialtheorem(neglect- ingelectromagneticfieldsandonlyusingclassicalestimatorsfor thegalaxyvelocitydispersion).Theseestimatessufferfromrela- tivelylargeuncertaintiesoftheorderof4.61013M(cid:12).Thisvalue redshifts). Narrow- or broadband images can be obtained by wasstatisticallyestimatedfromthedataofGuennouetal.(2014) collapsingthefinalcubeintheselectedwavelengthrange. by comparing the SG estimates and the masses deduced from The redshifts were obtained by using the EZ redshift mea- theGiodinietal.(2009)clusterscalingrelation.Guennouetal. surement code (Garilli et al. 2010) on the final 1D spectra, al- (2014),however,alsoshowedthatforagivenparent-clusterthe lowing an additional smoothing of 3 pixels in order to find the relativemassesbetweensubstructureswerestillreliable. redshift value more easily when needed. The redshift measure- mentsweredoneinthesamewayasfortheVIPERSsurvey(e.g. More precisely, the SG hierarchical method calculates the Guzzoetal.2014)andaredshiftmeasurementqualityflagwas potential binding energy between pairs of galaxies and detects assigned between 1 and 4. Flag 1 means that we have a 50% substructuresbytakingpositions,magnitudes,andredshiftsinto chanceofhavingthecorrectredshiftestimate;flag2,75%;flag account. We required at least four galaxies in a given sub- 3,95%;andflag4,morethan99%.Weonlyconsideredobjects structure.TheSGmethoddetectstwosuchsubstructuresinthe withflags2,3,and4assuccessfulmeasurements.Statistically, XLSSC 116 cluster (see table 4). The first substructure has 20 thismeansthatwemayhavethreeobjectswithanincorrectred- galaxies,anestimatedmassof3×1013M(cid:12),andavelocitydisper- shiftinTable3. sionof570km/s.Thesecondsubstructureissmaller:4galaxies, and the estimated mass and velocity dispersion are 4×1012 M A detailed study of the individual galaxy spectra, and their (cid:12) and 170 km/s. This second substructure probably corresponds comparisonwithotherclustersdetectedintheXXLSurvey,will to the low-temperature component detected in the X-ray data beundertakeninafuturepaperfollowingthecompletionofthe (thebrightestgalaxyofthissubstructureisveryclosetotheX- surveyspectroscopicfollow-up.However,infig.8weshowthe raypeakofthelow-temperaturecomponent;seefigure1)andis meanandmedianspectraofallthegalaxies(excludingtheBCG) at a greater distance (∼2000 km/s) (see blue solid histogram in spectroscopically measured and found to be inside the cluster. fig.9). Eachspectrumwasputintherestframebasedonthemeasured redshiftandwecomputedthemeanandmedianspectrum.This Galaxiesthataremembersofthetwodetectedsubstructures givesameanandmedianviewoftheclustergalaxypopulation. are also well mixed inthe cluster red sequence (see fig. 3). We This spectrum is nearly elliptical, with prominent absorption note that a velocity dispersion of 570 km/s in a relaxed clus- lines (e.g. H&K), a strong Balmer break, but without any sig- ter would suggest an X-ray temperature on the order of 2 keV nificant emission lines. We show later that the BCG has a very (Rosati et al., 2002), in good agreement with our X-ray mea- differentspectrum.Thecompletenesslevel,intermsoftheper- surements. 8 Adamietal.:MUSEcharacterisationsofIntraClusterLightinaz∼0.53clusterofgalaxies Fig.7. Comparison of our stellar mass and SFR estimates for the XLSSC116ICLsource(redverticallineforSEDestimationandred verticaldottedlineforspectroscopicestimation)andBCG(bluevertical lineforSEDestimationandblueverticaldottedlineforspectroscopic estimation)withthePuechetal.(2010)emissionlinegalaxies(contin- uoushistograms)andtheLiuetal.(2012)BCGs(dashedhistograms). Upperfigure:stellarmass,lowerfigure:SFR. 5. NatureoftheclusterdiffuselightwithMUSEdata Thefirstquestionwewanttoanswerconcerningthediffuselight inclustersiswhetherthereisanyindicationoflineemittinggas. Doestheoldstellarpopulationofdiffuselight(aspreviouslyde- tected)alsogiverisetointergalacticgasionisation?Orperhaps somecollisionaleffectscanionisegas? Thefirstwaytoansweristoreconstructnarrowbandimages withspectraldatacentredonmajoremissionlinesatthecluster Fig.6.Spectralenergydistributionfittedontheavailableu*,g’,r’,i’, redshift.GiventheavailableMUSEdata,webuilt[OII](5699- z’,andKsmagnitudes(3σerrorbarsarealsoshown).Adoptedredshift 5729A),Hβ(7432-7471A),and[OIII](7655-7696A)images and best-fit model are given in each case. Upper figure: diffuse light, (lower and upper spectral bounds of these images were chosen middle figure: BCG. The lower figure is the MUSE spectrum of the approximatelyasthemeanlinewavelength±2timestheveloc- BCG. itydispersionofthemainclusterstructuredetectedbelow).This gives evidence of a new diffuse light region completely invisi- ble in any of the broadband images directly south of the BCG 9

Description:
3 Laboratoire AIM, CEA/DSM/IRFU/SAp, CEA Saclay, 91191, Gif-sur-Yvette, France. 4 Max-Planck-Institute for .. centre. Points are all the detected objects; filled circles are the galaxies with a MUSE measured . and with a trigonometric orientation of 311.7 degrees. First, we note that the BCG is not
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.