sensors Article Integrated Toolset for WSN Application Planning, Development, Commissioning and Maintenance: The WSN-DPCM ARTEMIS-JU Project ChristosAntonopoulos1,†,KaterinaAsimogloy2,†,SarahChiti3,†,LucaD’Onofrio3,†, SimoneGianfranceschi3,†,DanpingHe4,†,AntonioIodice5,†,StavrosKoubias1,†, ChristosKoulamas6,†,LucianoLavagno7,†,MihaiT.Lazarescu7,*,†,GabrielMujica4,†, GeorgePapadopoulos6,†,JorgePortilla4,†,LuisRedondo8,†,DanieleRiccio5,†,TeresaRiesgo4,†, DanielRodriguez8,†,GiuseppeRuello5,†,VasilisSamoladas2,†,TsenkaStoyanova1,†, GerasimosTouliatos1,†,AngelaValvo3,† andGeorgiaVlahoy2,† 1 AppliedElectronicsLaboratory,DepartmentofElectrical&ComputerEngineering, UniversityofPatrasCampusofRion,Patras26500,Greece;[email protected](C.A.); [email protected](S.K.);[email protected](T.S.);[email protected](G.T.) 2 TelecommunicationSystemsInstitute,TUCCampus,Kounoupidiana,Chania73100Greece; [email protected](K.A.);[email protected](V.S.);[email protected](G.V.) 3 INTECSS.p.A.,ViaGiacomoPeroni130,Rome00131,Italy;[email protected](S.C.); [email protected](L.D.);[email protected](S.G.);[email protected](A.V.) 4 CentrodeElectrónicaIndustrial,UniversidadPolitécnicadeMadrid,C/JoséGutiérrezAbascal,2, Madrid28006,Spain;[email protected](D.H.);[email protected](G.M.); [email protected](J.P.);[email protected](T.R.) 5 UniversitàdegliStudidiNapoliFedericoII,Dip.diIngegneriaElettricaedelleTecnologie dell’Informazione,viaClaudio21,Napoli80125,Italy;[email protected](A.I.); [email protected](D.R.);[email protected](G.R.) 6 IndustrialSystemsInstitute—ISI/R.C.“ATHENA”,PSPBldg.,StadiouStrt.,Platani,Patras26504,Greece; [email protected](C.K.);[email protected](G.P.) 7 PolitecnicodiTorino,dip.ElettronicaeTelecomunicazioni,corsoDucadegliAbruzzi24,Torino10129,Italy; [email protected] 8 MétodosyTecnologíadeSistemasyProcesosS.L.C/SantaLeonor65,Edif.C,Pl.4ª,Madrid28037,Spain; [email protected](L.R.);[email protected](D.R.) * Correspondence:[email protected];Tel.:+39-011-090-4111;Fax:+39-011-090-4099 † Theseauthorscontributedequallytothiswork. AcademicEditor:DavideBrunelli Received:3March2016;Accepted:23May2016;Published:2June2016 Abstract: InthisarticlewepresentthemainresultsobtainedintheARTEMIS-JUWSN-DPCMproject betweenOctober2011andSeptember2015. Thefirstobjectiveoftheprojectwasthedevelopment of an integrated toolset for Wireless sensor networks (WSN) application planning, development, commissioningandmaintenance,whichaimstosupportapplicationdomainexperts,withlimited WSN expertise, to efficiently develop WSN applications from planning to lifetime maintenance. The toolset is made of three main tools: one for planning, one for application development and simulation(whichcanincludehardwarenodes),andonefornetworkcommissioningandlifetime maintenance. The tools are integrated in a single platform which promotes software reuse by automaticallyselectingsuitablelibrarycomponentsforapplicationsynthesisandtheabstractionof theunderlyingarchitecturethroughtheuseofamiddlewarelayer. Thesecondobjectiveoftheproject wastotesttheeffectivenessofthetoolsetforthedevelopmentoftwocasestudiesindifferentdomains, onefordetectingtheoccupancystateofparkinglotsandoneformonitoringairconcentrationof harmfulgassesnearanindustrialsite. Sensors2016,16,804;doi:10.3390/s16060804 www.mdpi.com/journal/sensors Sensors 2016, 16, 804 2 of 40 Sensors2016,16,804 2of40 Keywords: wireless sensor networks; simulation; Internet of Things; design flow; assisted deployment Keywords:wirelesssensornetworks;simulation;InternetofThings;designflow;assisteddeployment 1. Introduction 1. Introduction Wireless sensor networks (WSN) are employed in a wide range of applications and application Wirelesssensornetworks(WSN)areemployedinawiderangeofapplicationsandapplication domains, and are the subject of considerable research efforts and technological advances to expand domains,andarethesubjectofconsiderableresearcheffortsandtechnologicaladvancestoexpandtheir their applicability. WSNs were among the enabling technologies of the Internet of Things (IoT) applicability. WSNswereamongtheenablingtechnologiesoftheInternetofThings(IoT)paradigm paradigm since it was coined more than 15 years ago [1], and consolidated and expanded their since it was coined more than 15 years ago [1], and consolidated and expanded their application application domains as the IoT paradigm evolved. domainsastheIoTparadigmevolved. However, the spread of WSN-based solutions is still limited by several factors, such as technical However,thespreadofWSN-basedsolutionsisstilllimitedbyseveralfactors,suchastechnical complexity, perceived reduced reliability and overall cost. The development of efficient WSN complexity, perceived reduced reliability and overall cost. The development of efficient WSN applications requires different and complementary views, but competency separation between the applicationsrequiresdifferentandcomplementaryviews,butcompetencyseparationbetweenthe typical stakeholders and the engineering disciplines concurring in the WSN domain is not yet mature, typicalstakeholdersandtheengineeringdisciplinesconcurringintheWSNdomainisnotyetmature, which leads to significant inefficiencies. For instance, WSN design and planning can be effort- and whichleadstosignificantinefficiencies. Forinstance,WSNdesignandplanningcanbeeffort-and risk-intensive, because they require detailed consideration of connectivity, coverage, cost, network risk-intensive,becausetheyrequiredetailedconsiderationofconnectivity,coverage,cost,network longevity, and service quality. In addition, predicting WSN performance before its real deployment longevity,andservicequality. Inaddition,predictingWSNperformancebeforeitsrealdeploymentis is very challenging, which leads to costly trial-and-error procedures. verychallenging,whichleadstocostlytrial-and-errorprocedures. ThTeh aeiamim ofo tfhthe eAARRTTEEMMIISS--JJUU ffuunnddeedd pprroojejecctt“ “WWSNSND Depelpolyomyemnet,nPtl, aPnlnainnngi,nagn,d aCndom Cmomissmioinsisniogn&ing & MMaainintetennaanncec”e”( W(WSNS-ND-PDCPMC)Mp)r epsernesteedntiendt hiins atrhtiisc learwtiacslet owbausil dtoa nbuinitledg raante dinptelagtrfaotremd tpolsautfpopromrt to sutphpeosryt sttheem siynstteegmra itnotresgtroadtoerssig tno, ddeesvieglno,p d,etevset,lodpe,p tleosyt,a dnedpmloayi natnadin mWaSinNtaaipnp WlicSaNtio anpsp.lTichaetipornosje. cTthe proacjekcnt oawcklendogweldedfrgoemd ftrhoemb etghien bneinggintnhiantgt htheatte tchhen ticeaclhwniocrakl wofosryks otef msysintetemg rianttoergsraretoliress rheeliaevsi lhyeaovnily one xeixsitsitnigngh ahradrwdawrearaen dansodf tswoaftrwecaorme pcoomnepnotsnaenndtss ahnoudl dshfoocuulds ofnocaupsp loicna taiopnp-lsipcaetciiofinc-psapretcs,ifaics sphaorwtsn, as shoinwFnig iunr eFi1g.ure 1. FigFuigrue r1e. 1W.WSNSN-D-DPCPCMM totooolsleset thheelplpss ssyysstteemm iinntteeggrraattoorrss ttoo ffooccuusso onnc cuustsotommererr erqeuqiureirmemenetnstbsy bhyi dhiindging momsto ssttrsutrcutuctruarla alnadnd imimpplelemmeenntatattiioonn ddeettaaiillss ooff WWSSNN ppllaattffoorrmmc coommppoonnenetnst.s. Sensors2016,16,804 3of40 ThustheprimarydesignobjectivesoftheWSN-DPCMplatformwere: ‚ Amodulardesignwithcomponentsthatperformwell-definedtasksandcommunicatethrough well-definedinterfacesanddatamodels,inordertosimplifythemaintenanceandevolutionof theplatforminlinewiththefastevolutionpaceofWSNresearchandtechnology; ‚ Tobeaccessibletoapplicationdomainexpertswhileallowingexperienceddeveloperstooptimize thedesignsasmuchaspossible; ‚ ToreuseopenorclosedsourceIPblocksinordertoincreasethereliabilityofWSNprojects,to reducethedevelopmenteffort,andtofostercommercialexploitationoftheplatform; ‚ Toallowthedeveloperstofocusonapplication-specificrequirementsandimplementationofthe WSNapplicationbyreducingtheeffortneededtoselectandadapttheexistingcomponentstothe application,aswellastoreducetheefforttoplan,commission,troubleshootandmaintainthe WSNduringitslifetime. Inordertomeettheseaims,theWSN-DPCMplatformincludesseveralusefulcapabilities,such asradiofrequency(RF)simulation,networksimulationwithhardware-in-the-loop(HiL)capabilities, topologyoptimization,automaticsoftwaresynthesis,monitoring,debugging,asdescribedintherest ofthearticle. TheeffectivenessoftheWSN-DPCMtoolsetistestedintwocasestudiesindifferentdomains. ThefirstisaWSN-basedsystemtomonitortheoccupancystateofparkinglots,ofwhichaprototype hasbeentestedintheparkingoftheUniversidadPolitécnicadeMadrid(UPM),Spain[2,3].Thesecond casestudyisaWSN-basedsolutionformonitoringairconcentrationofharmfulgasesnearanindustrial site,ofwhichaprototypehasbeentestedattheINTECSpremisesnearPisa,Italy[4,5]. Notethatboth casestudiesrefertooutdoordeploymentscenarios. Infact,theproposedtoolkitisprimarilyintended foroutdoorWSNapplicationsespeciallybecausetheraytracing-basedRFsimulationiseffectiveto simulateoutdoorelectromagneticfieldpropagation. Forindoorenvironmentsasimpleheuristicpath lossone-slopemodelmaybeused,butwithsignificantlylowerpredictionaccuracy[6]. Therestofthepaperisorganizedasfollows:Section2brieflyreviewsthestateoftheart. Section3 presentstheWSN-DPCMtoolsetarchitectureandthetypicalapplicationdesignflow. Section4details the main tools of the platform. In Section 5 the two use cases of the project are presented, and concludingconsiderationsaremadeinSection6. 2. RelatedWork ThemainadvancementoftheWSN-DPCMplatformwithrespecttothestateoftheartisthatit providesacompleteintegratedtoolsetforWSNdesignandmanagement,whichisahighlydesired feature[7]. ExistingWSNframeworkssuchasProFuNTG[8]orGOAT[9]provideafullsetoftools tosupportnetworksimulation, application-logicdesignandnetworkmonitoring. However, their featuresandscopearefocusedonspecificsegmentsofnetworkdevelopmentandmaintenance,and donotaggregateorenablesupportforthewholeWSNtoolchain,fromdevelopmenttodeployment andmaintenance. AlmosteveryWSNframeworkandoperatingsystemprovidesintegratedsimulationsupport. RecentsurveysofsimulationtoolsforWSN[10–13]listdozensoftools,includinginstruction-level simulators for popular microprocessor families, RF connectivity simulators, mobility simulators, protocol-levelsimulators,etc. Operatingsystem-basedsimulators,likeTOSSIM[14]andCOOJA[15], provide good support for code written for the respective platforms, and are often coupled with hardware-levelemulatorsforpopulararchitectures,forinstruction-levelsimulation. Suchtoolsare best suited to develop and test low-level components, such as routing protocols. Several of the availabletools,suchasCastalia[16],MiXiM[17]andNesCT[18]areextensionsbuiltontopofthe general-purposediscrete-eventsimulatorOMNeT++[19]. Thesetoolsprovidehigher-levelabstraction oftheWSNandingeneralcanscaletolargernetworksandlongersimulatedperiods. Sensors2016,16,804 4of40 AnimportantoriginalfeatureoftheWSN-DPCMtoolsetisasite-specificRFsimulationusinga newraytracing-basedRFsimulatorthatiscustomizedforWSNapplicationsandconsidersindetail thesurroundingenvironmentandmainobstacles. Manywirelessnetworksimulationtools,suchas OMNeT++[19]andTOSSIM[14],currentlyrelyonverysimple,heuristicpropagationmodelsthatdo notaccountforthedetailsofthesurroundingenvironment. Ontheotherhand,theelectromagnetic propagationpredictiontoolsthataccountforcomplexoutdoorenvironment[20–23]aretailoredfor radioandtelevisionbroadcasting,cellulartelephonysystemsorWi-Fi,andhavenotbeenemployed forWSNplanning. Several high-level programming abstractions and design automation have been proposed to improveapplicationdevelopmentproductivity. Shimizuetal.[24]proposeapplicationdecomposition atnetwork-,group-andnode-levelandaDomain-SpecificModelingLanguageoptimizedforeach level. Application development using this model is restricted mainly to optimization of several parameters. REMORA [25] is an advanced component-based design framework that uses C-like behavioral models wrapped in an XML-based abstraction of, e.g., services, interfaces and events. Therun-timeoverheadislow,buttheapproachcannothandlearbitrarybehavioralcodeorhardware specifications. Songetal.[26]demonstratedamodel-basedhardware-softwareco-designframework basedonwidelyusedtoolslikeMathworksSimulink[27]andStateflow[28].Theyprovideahigh-level graphicalapplicationentrybasedonabstractconcurrentmodels,node-levelsimulation,automatic generation of network simulation models (including hardware-in-the-loop) and implementation models for popular embedded OSs. However, the developer is required to manually define and connectallmodulesthatcomposetheapplication. InHiLtesting,theprogramundertestrunsonthephysicalsensornodeswithsomeassistant middleware. Forexample,TOSSIMsimulatesthesensornetworkbyreplacinglow-levelcomponents andintroducingadiscreteeventqueue.DeveloperscantesttheprogrambeforetheTinyOSapplication isdeployed.However,TOSSIMcannotrevealifthelengthofamessageissettobelessthanitsintended sizeoritcannotrevealproblemsstemmingfromthedurationoftasks,sincethetasksinTOSSIMare executedinstantaneously. Moreover,ithasnotageneralmechanisminordertoaccuratelyestimate thepowerconsumptionofthesensornodes. In[29]asolutionaimingtoalleviatetherequirementthat notallTinyOSprogramsrunonphysicalnodesisproposed,becausethatincreasescostsexcessively whilebeinginconvenient,sotheyallowonlyonephysicalnodetoexistwhichcanbeconfiguredtobe aneighborofanyvirtualnode. Thus,thepotentialfaultswhichcannotbecapturedbypuresimulation testing tools can be captured through the interaction between the physical node and other virtual nodes. AnotheradvantageoftheirworkisthatthepowerconsumptionofanodeinalargeWSNcan beestimatedthroughtheuseoflow-costdigitalmultimeters. Someconsiderationsnottakenunder accountonthatworkincludethesignalgainsthatcurrentlyaredesignatedbytheuserandthefact thatpowerconsumptionestimationmaybeimproved. In [30] a hybrid simulation framework for WSN application development is proposed, that interconnectsavirtualnetworkwithaphysicalnetworkandthenallowsonetosimulatethenetworkas awhole. Theauthorscreatedanovelmodel-basedhybridsimulationframeworkforWSNapplications, introducingthenotionofhybridsimulation. TheyexploitHiLextensionsinordertolinksomeof the simulated WSN nodes with hardware-dependent features. Thus, by using Hy-Sim users can buildahybridnetworkconsistingofvirtualandrealnodesandthensimulateitasawhole. Actually, Hy-Simsupportstheexistenceofpurelyvirtualnodes,ofpurelyphysicalnodes,butalsoofpartially simulatednodes. Thelattercanhaveaccesstorealsensorsinordertocompletepartoftheiroperations. Moreover,Hy-Simallowsnodestohaveaccesstoarealchannelandevenhaveaccesstodatacoming fromrealsensors. Although there have been contributions in the literature regarding the optimization of the wireless sensor networks from the point of view of planning and simulation technologies, there isstillashortageofmethodologiesandframeworkstocarryoutthein-fielddeployment,configuration and performance assessment of the overall system application. In [31], the authors proposed an Sensors2016,16,804 5of40 embedded initialization and maintenance mechanism in which a flooding-based synchronization strategyisadoptedtoconfigurediscoveryandexpirationtimewindowsintowhichnodescanperform neighborsearchandlinkassessment. Operationalmodesaretriggeredbydedicatedpointsofthe network,suchassinkandrootnodes,fromwhichthemodechangingprocessisrealized. Inorderto enhancethefloodingprocessandwake-upcalls,techniquessuchasTrickle[32]arealsoconsidered. Another maintenance system to be embedded into the sensor nodes has been proposed in [33], whichintendstoprovidemaintenanceservicesduringtheoperationalstageoftheWSNbydefining systemcoherencystatepolicies. Suchmaintenancepoliciesmainlyrelyontriggeringconditionswhen encounteringsensingfailuresandcommunicationcoveragefailures,particularlyconsideringprotocol coherent states, which are organized as Global view of coherent states (system-wise, such as time synchronizationrequirements),andLocalviewofcoherentstate(node-wise,suchasneighborhood awareness). Themaintenanceenginecollectsthecoherentrequirementsandstates,andthenfloods the list of protocols for the maintenance service to the network. Other works, such as the one proposed in [34], make use of Deployment Support Networks (DSN), which are wireless network temporarilyinstalledalongsidetheactualWSNduringthedeploymentprocess.Themaintargetofthis infrastructureistoprovidetwodifferentradiocommunicationcapabilities,oneforpassivelistening ofnetworktrafficandonefordebuggingchannelconnectionsthroughDSNnodestodistributethe gatheredinformationtoanearbysinkpoint,fromwhichthedeploymentanalysiswillbeperformed. Therefore, such a debugging implementation relies on a passive monitoring system based on the deploymentofadditionalnetworkplatforms. 3. WSN-DPCMArchitectureandDesignFlow The WSN-DPCM toolset flow was designed to reduce the application development and deploymenteffortandthetime-to-marketfornewWSNapplications. Itenablessoftware-assisted engineeringandprovidesmostofitsintegratedcapabilitiesasservicesovertheInternet. ItsoperationflowiscorrelatedwiththeDPCMdatamodel,whichholdsallinformationitems usedbythedifferenttoolsofthePlatformasinput/output,fromthecreationofanewProjecttoonline monitoringofthedesignedWSNnetworkinareal-lifeenvironment. Modelentitiescanbecreated, modifiedordeletedthroughoutatoolsetsession. ThehierarchyofthemodelisshowninFigure2. Itcomprisesthefollowingmainentitytypes: ‚ PROJECT—projectdescriptionandattributes. ItincludesreferencestotheUSERandthelistof PLANentitiesdefinedfortheProject. ‚ PLAN—deployment plan definition and attributes. It includes references to SIM entities as a resultofthesimulationsexecutedovertheplanspecification,theCONNECTIVITYmatrixentity as attachment and all references to the definition entities of the node types considered by a particulardeployment. ‚ USER—contactinformationandcredentialsoftheproject’suser. ‚ CONNECTIVITY MATRIX—structured file in JSON format that contains the communication propertiesandtransmissionvaluesestimatedbythesimulationoftheradiolinksbetweeneach pairofnodes. ‚ NIDDEF—typedefinitionentityfornetworkinterfacedevices(NID,e.g.,gateways). Itcontains all details that characterize a NID type structurally (type identifier, nature, functional blocks, parametersetc.) andfunctionally(properties,configurationchoices,etc.). Thisspecificationis correlatedwiththeembeddedcodegeneratedforthisparticulartypeofnode. ‚ ROOTDEF—typedefinitionentityforsinknodedevices, similartotheNIDDEFentity. Itcan containnodeprogrammingsoftwarewhenthecodesynthesisphaseiscompleted. ‚ NODEDEF—type definition entity for regular leaf node devices, similar to the NIDDEF and ROOTDEFentities. Itcancontainnodeprogrammingsoftwarewhenthecodesynthesisphase iscompleted. ‚ SIM—RF simulation entity that contain its configuration attributes and results for the targetednodes. Sensors2016,16,804 6of40 Sensors 2016, 16, 804 6 of 40 Sensors 2016, 16, 804 6 of 40 FFiigguurree 22.. DDiiaaggrraamm ooff tthhee ddaattaa mmooddeell hhiieerraarrcchhyy aanndd tthhee mmuullttiipplliicciittiieess aammoonngg iittss eennttiittiieess.. Figure 2. Diagram of the data model hierarchy and the multiplicities among its entities. The platform is based on three main tools, the Planning Tool, the Development Tool and the TThhee ppllaattffoorrmm iiss bbaasseedd oonn tthhrreeee mmaaiinn ttoooollss,, tthhee PPllaannnniinngg TTooooll,, tthhee DDeevveellooppmmeenntt TTooooll aanndd tthhee Commissioning & Maintenance Tool, and supporting components, Library of components and the CCoommmmiissssiioonniinngg && MMaaiinntteennaannccee TTooooll,, aanndd ssuuppppoorrttiinngg ccoommppoonneennttss,, LLiibbrraarryy ooff ccoommppoonneennttss aanndd tthhee Middleware, each consisting of integrated services that are accessible through a local/web GUI MMiiddddlleewwaarree,, eeaacchh ccoonnssiissttiinngg ooff iinntteeggrraatteedd sseerrvviicceess tthhaatt aarree aacccceessssiibbllee tthhrroouugghh aa loloccaall//wweebb GGUUII (WebTop Environment) and/or RESTful services (Figure 3). ((WWeebbTToopp EEnnvviirroonnmmeenntt))a anndd//oorr RREESSTTffuull sseerrvviicceess ((FFiigguurree 33)).. Figure 3. Overview of the WSN-DPCM Toolset communication and typical development flow. Figure 3. Overview of the WSN-DPCM Toolset communication and typical development flow. Figure3.OverviewoftheWSN-DPCMToolsetcommunicationandtypicaldevelopmentflow. The WebTop Environment is a web desktop application that requires no local installation and The WebTop Environment is a web desktop application that requires no local installation and acts as a unique entry point to the toolset through user authentication. It provides the main user TheWebTopEnvironmentisawebdesktopapplicationthatrequiresnolocalinstallationandacts acts as a unique entry point to the toolset through user authentication. It provides the main user interface to the WSN-DPCM toolset, all visualization support needed by its tools and other asauniqueentrypointtothetoolsetthroughuserauthentication. Itprovidesthemainuserinterface interface to the WSN-DPCM toolset, all visualization support needed by its tools and other information, as well as the controls needed to advance through the development flow. As shown in totheWSN-DPCMtoolset,allvisualizationsupportneededbyitstoolsandotherinformation,aswell information, as well as the controls needed to advance through the development flow. As shown in Figure 3, it has control interfaces with each of the main platform tools in order to control their asthecontrolsneededtoadvancethroughthedevelopmentflow. AsshowninFigure3,ithascontrol Figure 3, it has control interfaces with each of the main platform tools in order to control their execution (e.g., start, stop, status) and data interfaces with the Project Repository of the platform in interfaceswitheachofthemainplatformtoolsinordertocontroltheirexecution(e.g., start, stop, execution (e.g., start, stop, status) and data interfaces with the Project Repository of the platform in order to check the advance status of the various development stages, as reported by the tools. status)anddatainterfaceswiththeProjectRepositoryoftheplatforminordertochecktheadvance order to check the advance status of the various development stages, as reported by the tools. The Planning Tool (PT) provides the developer with a graphical input interface for the statusofthevariousdevelopmentstages,asreportedbythetools. The Planning Tool (PT) provides the developer with a graphical input interface for the deployment field map, for the definition of WSN node types and their positions in the field, and for ThePlanningTool(PT)providesthedeveloperwithagraphicalinputinterfaceforthedeployment deployment field map, for the definition of WSN node types and their positions in the field, and for other platform tools that need to analyze various aspects of node deployment (e.g., RF propagation, fieldmap,forthedefinitionofWSNnodetypesandtheirpositionsinthefield,andforotherplatform other platform tools that need to analyze various aspects of node deployment (e.g., RF propagation, signal strength and coverage strength, optimal topology and connectivity). It has a control interface toolsthatneedtoanalyzevariousaspectsofnodedeployment(e.g.,RFpropagation,signalstrength signal strength and coverage strength, optimal topology and connectivity). It has a control interface with the WebTop Environment and a data interface with the Project Repository of the platform to andcoveragestrength,optimaltopologyandconnectivity). IthasacontrolinterfacewiththeWebTop with the WebTop Environment and a data interface with the Project Repository of the platform to save new projects or retrieve older ones. EnvironmentandadatainterfacewiththeProjectRepositoryoftheplatformtosavenewprojectsor save new projects or retrieve older ones. retrieveolderones. Sensors2016,16,804 7of40 AnimportantPTanalysisisradiocoverageofthenodesbasedontheirpositionsintheapplication field,theirradiocharacteristicsandfieldfeatures. Thisanalysisiscontrolledfromtheuserinterface ofthePlanningTool. Theresultsaregraphicallyoverlaidontheapplicationfieldmapanddetailed informationisalsoavailableintextualformforeachnodeinthefield. Thetoolusestheresultsofradio simulationtocalculatethenodeconnectivitymatrix,whichissavedintheProjectRepositoryforlater usebytheNetworkSimulatorwithintheDevelopmentTool. ThedeploymentplansdesignedbythePTtoolareliveelementsthatcanbeadaptedandrefined usingthefeedbackfromsimulationanalysisorthedeploymentreportsproducedbyPlatformtools andsystems. Ingeneral,theDPCMtoolsetconsidersaniterativeapproachtosolutionprototyping using the proposed work flow (Figure 3) through sequences of planning, simulation, synthesis, deployment, monitoring activities, by updating the data models to the new environment and prototyperequirements. TheDevelopmentTool(DT)allowsthedevelopertoproducetheapplication-specificsoftware to program the WSN nodes and to simulate their behavior in the field using network simulation, eitherpurelyinsoftwareorincludingrealhardwarenodes(hardware-in-the-loopsimulation: HiL)to increaseresultaccuracy. HiLisatechniqueincreasinglyconsideredinthedevelopmentandtestingof embeddedsystems,wherethemaingoalistotesttheembeddedsystemitselfinsteadofanabstract model. The complexity of the real plant under control is embodied in the simulation, while the designedsystemmustbetestedusingrealisticsimulationconditionsinavirtualenvironment. HiL isakindofreal-timesimulationwheretheinputandoutputsignalsofthesimulatorshowthetime dependentvaluesastheyareintherealprocess. ThetoolmaintainsacontrolinterfacewiththeWebTopEnvironmentoverwhichitcanbestarted and can communicate the completion status for its internal development steps (e.g., application synthesis,networksimulation). IthasalsoadatainterfacewiththeProjectRepositoryoftheplatform tosavenewprojectsandresults(e.g.,nodeapplicationspecifications,simulationresults)andtoretrieve olderones. AsshowninFigure3,DTinterfaceswiththePlanningToolmainlytoextractthelistofrequested nodetypesandtheirfeaturesfromthenetworkplanssavedbyPTintheProjectRepositoryorthenode connectivitymatrix. Foreachnodetype,DTautomaticallycreatesadevelopmentprojectskeletonfor whichitprovidesseveralnode-levelapplicationdevelopmentflows. Forapplicationdomainexperts, thetooloffersaguided,graphicalflowbasedonstatecharts,whichrequiresjustbasicprogramming skills. Nevertheless,experiencedprogrammerscanuseotherinputmethods,whichallowthemafiner controlovernodeprogramdevelopment. Regardlessoftheinputmethodoftheapplication-specific businesslogic,DTprovidesautomaticsynthesisofthenecessarysoftwareandhardwaretosupport theapplicationrequirementsusingalibraryofhardwareandsoftwarecomponents,withorwithout thesupportofanembeddedoperatingsystemormiddleware. Thesynthesisprocessaimstohide mostimplementationdetailsthatarenotexplicitlyaddressedbytheapplicationspecification(e.g., somelow-levelsensorimplementations,OStasks,interfaces)andtofacilitatesoftwarereuse,allowing thiswaythedeveloperstofocusonapplication-specificissues. TheCommissioningandMaintenanceTool(CMT)assiststhedeveloperinthepreparationofthe nodesforfielddeployment,duringtheactualfielddeploymentoperations,andformonitoringand debuggingafterdeploymentforlong-termmaintenance. For node preparation for in-field deployment, the CMT uses the programming images and configurationssavedintheProjectRepositorybytheDevelopmentToolforallnodes,andthenode typeandfieldpositionsavedintherepositorybythePlanningTool. Oncedeployedinthefieldand activated,theactualoperationconditionsofthenodesarecollectedbytheCMTandcanbecompared withtheresultsoftheradioandnetworksimulationssavedintheProjectRepositorytocorrectand optimizevariousnetworkparameters. TheCMTisinsyncwiththedeploymentspecification,being abletoreconfigureitselfautomaticallywheneveranewPlanisgeneratedormodified,orthefirmware imagesarechanged,reconfiguredorregenerated. Sensors2016,16,804 8of40 The Middleware (MW) provides an abstraction layer for node resources, software and network services, and communication capabilities within the network. This layer allows to write implementation-independentapplicationstoincreasesoftwarereuseanddevelopmentproductivity. ItcaninterfacewiththeDevelopmentTooltosupportapplicationsynthesisanditsembeddedsupport isusedatrun-timebytheCMTtomonitortheoperationofthenetwork. AtypicalapplicationdevelopmentusingtheWSN-DPCMplatformstartsbyauthenticatingthe developerwiththeplatform,throughtheWebtop-basedUI(seethelowerpartofFigure3). TheUI helpsthedevelopertofollowtheplatformdevelopmentflowbyactivatingonlythecommandsthat meetallconditionstobeexecuted. Forinstance,atthebeginofanewprojectonlythePlanningTool canbeactivatedtoallowthedevelopertoinput,e.g.,thedeploymentfieldmap,thedefinitionofthe nodetypesandtheirpositionsintheapplicationfield. Afterwards,thedevelopercanrunasimulation oftheRFpropagationtoestimatethenumberandqualityofRFcommunicationlinks. Ifthesearenot satisfactory,thedevelopercanrevisitthemapandnodepropertiesandmakethenecessarychangesto fulfillallqualitycriteria. Once a field plan is approved and saved in the Project Repository (PR), the UI activates the nextdevelopmentstepintheflow,theDevelopmentTool. Thistoolcollectsnodedataandnetwork connectivityfromtheplan.Nodetypesareautomaticallyextractedandforeachofthemthetoolcreates aprojecttemplatethatcanbeusedbythedevelopertosubsequentlyspecifyallnodecharacteristics andtheapplicationitneedstorun. Foreachoftheseprojects,thedevelopercanruntheapplication synthesis engine whose output are software for node programming, hardware specification and networksimulationmodel. Thelattercanbeusedtogetherwiththeconnectivitymatrixgeneratedby theRFsimulatorinthePlanningTooltoperformpuresoftwarenetworksimulationormixed,with hardwarenodesintheloop. Ifthesynthesisorsimulationresultsarenotsuitable,thedevelopercan iterativelychangethenodespecificationsorthesimulationparameterswithintheDevelopmentTool, orcangobacktothePlanningTool,e.g.,tochangenetworkcompositionortopology. WhennodedevelopmentiscompletedandsavedintheProjectRepository,theUIenablesthenext developmentstep,theCommissioningandMaintenanceTool.Thistoolextractsthenodeprogramming software,configurationsandhardwarespecificationsfromtherepositoryandusethemtoprogram deployment-readynodes. Moreover,itusesthefieldmapandnodelocationsfromtheplangenerated bythePlanningTooltoprogramtheCMTinterfaceforlong-termnetworkmonitoringandtoprogram theHand-helddevicesthatwillbeusedduringnetworkdeploymentandforin-fielddebugging. Ifthe datacollectedinthefieldarenotsatisfactory,thedevelopercangobacktothePlanningorDevelopment toolstomakethenecessaryamendmentstothenetworkplan,ornodeorapplicationspecifications. Iftheenvironment(i.e.,thescenarioinwhichsensorsaredeployed)changes,theRFsimulation andtheconnectivitymatrixcanberunagainforallnodesintheupdatedscene. Ifonlysomenodes changed,thesimulationcanberunjustforthosenodestosavecomputationtime(seeSection4.1.2). Iftheconnectivitymatrixchanges,thenetworksimulationoftheDevelopmentToolmayneedtobe runagaintocheckthesuitabilityofthenewnetwork. However,ifnewnodetypesareaddedoreither thenodeorapplicationspecificationschange,thenitisnecessarytore-runthesynthesisengineofthe DevelopmentTooltoupdatethesimulationmodels,thenodeconfigurationandprogrammingcode, andthehardwareconfiguration. TheCommissioningandMaintenanceToolshouldalsobeupdatedwiththenewplan,software andhardwarecomponentsinordertocorrectlyinterfaceandinterpretthefielddataduringdeployment andthelong-termnetworkexploitation. 4. MainToolsoftheWSN-DPCMPlatform TheoperationofthethreemaintoolsoftheWSN-DPCMplatform(PlanningTool,Development Tool,andCommissioning&MaintenanceTool,seeFigure3)iscontrolledfromaweb-basedplatform, whiletheoperationoftheunderlyinghardwareandsoftwarecomponentsandservicesisabstracted throughaMiddlewarecomponent,alsodevelopedwithintheproject. Sensors2016,16,804 9of40 Sensors 2016, 16, 804 9 of 40 4.1. Tool for WSN Application Planning and RF Simulation 4.1. ToolforWSNApplicationPlanningandRFSimulation The Planning Tool consists of: ThePlanningToolconsistsof: An input interface that displays the map of the deployment field and allows WSN node selection ‚ AninputinterfacethatdisplaysthemapofthedeploymentfieldandallowsWSNnodeselection and positioning, aAn sdetp oofs iftuionnctiniogn,al components for RF propagation simulation and node connectivity prediction. ‚ AsetoffunctionalcomponentsforRFpropagationsimulationandnodeconnectivityprediction. Different types of nodes can be selected from those available in the repository and/or new ones can bDe idffeefriennetdt ybpye tshoef dneovdeelospcearn. bOensceel escetleedctefrdo,m thteh nosoedaevs acialanb blee ipnlathceedr eopno tshiteo rmyaapn dw/itohr an ecwlicokn oens tchaen bdeedsierfiedn edpobsyittihoen.d eTvheelo poethr.eOr nfcuenscetiloecntaeld ,ctohmepnoondeenstcsa ninbteegprlaatceedd oinn tthheem PaTp wariteh daecslcicrkiboend thine tdhees ifroeldlopwoisnitgi.o n. TheotherfunctionalcomponentsintegratedinthePTaredescribedinthefollowing. 44..11..11.. 33DD BBuuiillddiinngg RReeccoonnssttrruuccttiioonn TToo imimpprorovveet htehsei msiumlautiloantioancc uarcaccuyr,a3cDy, re3cDo nrsetrcuocntsiotrnuoctfiopnh yosifc aplheynsviicraoln menevnitroisnvmeeryntd eiss irvaebrlye. Wdehsiernabelne.v Wirohnemn eenntvdireosncmripentito dneisscrniopttiaovna iisla nbolet aovraiislatboloe eoxrp ise ntosoiv eex,ptheensdiveve,e tlhoep edresvneeloepdetros nbueeildd tiot bbuyitlhde imt bsyel tvheesm. selves. HHoowweevveerr,, ffoorr mmaannyy rardaidoi oprporpoapgaagtiaotnio enxpexeprtesr tthset phreeppraerpatairoant ioofn thoef etnhveireonnvmireonntm meondteml ios dmeolries cmhoarlleecnhgainllge ntghianng tahnaanlyaznianlgy ztihneg rthadeiroa dpieorpfoerrmfoarnmcaen. cBee.sBideseisd, ems,omsto srterseesaeracrhc hrerseusultlst spprreesseenntteedd iinn aaccaaddeemmiicc ccoonnfefererenncecsesr eruesuesteh ethsaem seamenev ireonnvmiroenntmtoenatn atloy zaentahleyizrew tohrekira nwdocrakn naontdte sctatnhneorto btuesstt ntehses raonbduasctncuesrsa caynfdo arcdciuffrearceyn tfoern dviifrfoenrmenetn etns.vironments. FFoorr ththisisp uprpuorpseo,steh, etWheS NW-DSPNC-MDPtoCoMls ettoinocllsuedt esinaclfuudnectsi ona alfcuonmctpioonnaeln tctohmatpcoanneanutt otmhaatt iccaallny areuctoonmsatrtuiccatltlyh erethcoirndstdriumcte nthsieo nthfirrodm di2mDeinmsiaogne sfr(oFmig u2rDe 4im).aItgeexs t(eFnidgsurthe e4a).l gIto reixthtemndpsr othpeo saeldgoirnit[h3m5] panrodpuosseesds uibn- s[a3m5]p lainndg aunsdesra nsudbo-msafmeaptluinregs ealnedct ioranntdecohmn iqfeuaetsufroer isteelreacttiivoenl etaercnhinngiqfuroesm fiomr aigteesr.atTivhee leesatirmniantged frcoomnfi imdeangceesv. Talhuee eosftiemacahtecdla csosnffoirdeeancche pviaxleulec oafn ebaechre cilnatsesr pforer teeadchas paixperlo cbaanb bileit yredinistterripbruettieodn auss ian gprsoobfatbmilaitxyt rdainstsrfiobrumtiaotnio unsitnogc aslocfut lmataext etxratunrsefolramyoautitopno ttoe nctailaclus.late texture layout potentials. Figure 4. Work flow of the 3D outdoor environment reconstruction. Figure4.Workflowofthe3Doutdoorenvironmentreconstruction. The work flow of the method is shown in Figure 4. Meaningful object classes are recognized The work flow of the method is shown in Figure 4. Meaningful object classes are recognized through a machine learning mechanism, which consists of a training phase followed by an evaluation throughamachinelearningmechanism,whichconsistsofatrainingphasefollowedbyanevaluation phase. The training phase uses an image database through which the features of images are learned phase.Thetrainingphaseusesanimagedatabasethroughwhichthefeaturesofimagesarelearnedand and discriminated for the concerned types of objects. After an image is properly recognized, the discriminatedfortheconcernedtypesofobjects. Afteranimageisproperlyrecognized,thealgorithm algorithm automatically assigns different volumetric information according to scale ratio and automaticallyassignsdifferentvolumetricinformationaccordingtoscaleratioandempiricalmaterial empirical material for each object, as it can be seen in Figure 4. foreachobject,asitcanbeseeninFigure4. 4.1.2. RF Simulation and Connectivity Matrix 4.1.2. RFSimulationandConnectivityMatrix This component has two main functions within the WSN-DPCM platform: to allow the developer ThiscomponenthastwomainfunctionswithintheWSN-DPCMplatform: toallowthedeveloper to check node connectivity for a given placement in the application field and to generate the input data tochecknodeconnectivityforagivenplacementintheapplicationfieldandtogeneratetheinput Sensors 2016, 16, 804 10 of 40 Sensors2016,16,804 10of40 for the topology reduction and network simulation components of the WSN-DPCM platform. Its main features have been recently presented at a conference [36] and are here better detailed. dataforthetopologyreductionandnetworksimulationcomponentsoftheWSN-DPCMplatform. The component calculates the received signal strength for each node when each of the other Itsmainfeatureshavebeenrecentlypresentedataconference[36]andareherebetterdetailed. nodes in the network is transmitting (one at a time) using an electromagnetic solver, or RF tool. It Thecomponentcalculatesthereceivedsignalstrengthforeachnodewheneachoftheothernodes receives as input a digital description of the application scene and the technical specifications of the inthenetworkistransmitting(oneatatime)usinganelectromagneticsolver,orRFtool. Itreceivesas transmitting antenna. The former is provided using a file in Keyhole Markup Language (KML) inputadigitaldescriptionoftheapplicationsceneandthetechnicalspecificationsofthetransmitting format that describes the buildings, and a raster file that describes the topography of the terrain, i.e., antenna.TheformerisprovidedusingafileinKeyholeMarkupLanguage(KML)formatthatdescribes the Digital Terrain Model (DTM), if available. The format employed for building description thebuildings, andarasterfilethatdescribesthetopographyoftheterrain, i.e., theDigitalTerrain simplifies data import from various sources, such as local authorities, Google Earth or Google Maps, Model(DTM),ifavailable. Theformatemployedforbuildingdescriptionsimplifiesdataimportfrom or reconstructions from aerial photography using the component described in Section 4.1.1. Relative varioussources,suchaslocalauthorities,GoogleEarthorGoogleMaps,orreconstructionsfromaerial permittivity and conductivity of building walls and terrain can be added to improve simulation photographyusingthecomponentdescribedinSection4.1.1. Relativepermittivityandconductivityof accuracy, otherwise the simulator uses sensible defaults based on area type (historical, residential, buildingwallsandterraincanbeaddedtoimprovesimulationaccuracy,otherwisethesimulatoruses business district). The transmitting antenna is described by its position, radiated power, pointing sensibledefaultsbasedonareatype(historical,residential,businessdistrict). Thetransmittingantenna direction, radiation diagram and polarization. isdescribedbyitsposition,radiatedpower,pointingdirection,radiationdiagramandpolarization. The solver is based on a 3D space analysis similar to that described in [22,23] using a ray tracing Thesolverisbasedona3Dspaceanalysissimilartothatdescribedin[22,23]usingaraytracing algorithm that considers direct, reflected and diffracted rays. In particular, reflections are computed algorithmthatconsidersdirect,reflectedanddiffractedrays. Inparticular,reflectionsarecomputed using Geometrical Optics (GO) and diffractions are evaluated using the Uniform Theory of uDsiifnfrgacGteioonm (eUtrTicDal).O Tphtiec su(sGerO )maanyd adlisfofr ascetlieocnt saa r“efaesvta lmuaotdeed”u tshinagt othnelyU ancifcoorumntTsh feoorr ythoef Ddiirfefrcatc tainodn (rUefTleDct)e.dT hraeyuss, etro mavaoyidal msoossetl ceoctmap“uftaasttiomnoadl elo”atdh awthoinclhy ias cdcuoue ntots dfiofrfrtahceteddi rreacytsa. ndreflectedrays,to avoidThmeo rsetscuolmtinpgu etaleticotrnoamllaogandewtich fiicehldis isd pureotvoiddeifdf roanc treedguralayrs .2D grids (“layers”) located on surfaces at weTllh-deerfeisnueldti nhgeieglhectstr aobmoavgen tehteic gfireoludnids p(orro vabidoevde othner erogoufl,a irf 2tDheg grridids p(“olianyte irss ”o)nl otocpat eodf ao nbusiuldrfiancge)s. aAtcwcoerldl-idnegfilyn,e da h3eDig mhtaspa bios voebtthaeingerdo,u wndhi(cohr asbhoovwest htheer ofoiefl,dif ltehveeglsr idprpoodiuncteids obnyt othpeo ftraanbsumildititningg). Aanctceonrndain ginly ,thae3 Dcomnsaipdeirseodb tsacienneed., Twhhei cmhashpo iws sstthoerefide lidn lgeveoeltsifpf rfoodrmucaetd; bity ctahne tbrea ndsimspitltaiynegda nbtye ntnhae iWnethbTeocpon ussidere riendtesrcfaencee .(GThUeI)m aanpd isopsttoiornedalilny gsueopteirffimfopromseadt; iotnc aan Gboeodgilsep Elaayrethd bimyatghee W(ase bsThoopwuns ienr iFnigteurrfaec 5e)(, GaUndI)/oarn dit ocpanti obnea lplyasssuepde troim thpeo sceodnonnecatiGviotyo gmleaEtrairxt hmiomdauglee.( aTshseh loawttenri,n bFaisgeudr eon5 )t,haen dfi/eoldr imtcaapns pberopdauscseedd btoy tthhee ceolencntreocmtivaigtynemtiac tsroixlvmero, dcoumle.pTuhtees laanttde rs,tboareses dthoen fitehled fiveallduems arpadsiparteodd ubcye edabchy tahneteenlencat r(onmodagen) eatti cthseo llvoecra,tcioomnsp ouft easlla ontdhesrto arnestetnhneafise (lndovdaelus)e sinr aad “iactoendnbeycteivaicthy amnatetrninxa”.( nTohdise )maatttrhixe lcoacna tbioen esaosiflyal lcootnhveerratendte innn aas b(innoadreys )minatarix“c iofn rneeccetiivveirty fimeladt rtihx”re.sThhoilsdm leavtreilxs caarne bdeeefianseildy. cNonovne-zreterdo ienleambeinntasr yofm thater imxaiftrriexc eciavne rbfiee dldistphlraeysehdo lbdyl ethveel sGaUreI adse fiarncesd c.oNnonne-czteinrog ethleem ceonrtrsesopfothnedminagt rnioxdceasn, baes dshisopwlany iend Fbiyguthree 6G. UIasarcsconnectingthecorrespondingnodes,asshowninFigure6. (a) (b) FFiigguurree 55.. 22DD ggrraapphhiiccaall ddiissppllaayy ooff tthhee ccoommppuutteedd ffiieelldd rraaddiiaatteedd bbyy oonnee ooff tthhee nnooddeess ((aa)) tthhaatt ccaann bbee ssuuppeerriimmppoosseedd ttoo GGooooggllee EEaarrtthh iimmaaggee ooff tthhee aarreeaa ((bb))..
Description: