ebook img

The Work of Niels Henrik Abel PDF

157 Pages·2007·3.57 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Work of Niels Henrik Abel

The Work of Niels Henrik Abel ChristianHouzel 1 FunctionalEquations 2 IntegralTransformsandDefiniteIntegrals 3 AlgebraicEquations 4 HyperellipticIntegrals 5 AbelTheorem 6 Ellipticfunctions 7 DevelopmentoftheTheoryofTransformation ofEllipticFunctions 8 FurtherDevelopmentoftheTheoryofEllipticFunctions andAbelianIntegrals 9 Series 10 Conclusion References During his short life, N.-H. Abel devoted himself to several topics characteristic of the mathematics of his time. We note that, after an unsuccessful investigation of the influence of the Moon on the motion of a pendulum, he chose subjects in puremathematicsratherthaninmathematicalphysics.Itispossibletoclassifythese subjectsinthefollowingway: 1. solutionofalgebraicequationsbyradicals; 2. newtranscendental functions,inparticular ellipticintegrals, ellipticfunctions, abelianintegrals; 3. functionalequations; 4. integraltransforms; 5. theoryofseriestreatedinarigourousway. The first two topics are the most important and the best known, but we shall see that there are close links between all the subjects in Abel’s treatment. As the firstpublishedpapersarerelatedtosubjects3and4,wewillbeginourstudywith functionalequationsandtheintegraltransforms. 22 C.Houzel 1 Functional Equations In the year 1823, Abel published two norwegian papers in the first issue of Ma- gasinet for Naturvidenskaberne, a journal edited in Christiania by Ch. Hansteen. In the first one, titled Almindelig Methode til at finde Funktioner af een variabel Størrelse,naarenEgenskabafdisseFunktionererudtryktvedenLigningmellom toVariable(Œuvres,t.I,p.1–10),Abelconsidersaverygeneraltypeoffunctional equation: V(x,y,ϕα, fβ,Fγ,... ,ϕα, f β,F γ,...) 0, where ϕ, f,F,... are ′ ′ ′ = unknownfunctionsinonevariableandα,β,γ,... areknownfunctionsofthetwo independent variables x,y. His method consists in successive eliminations of the unknownϕ, f,F,... betweenthegivenequationV 0andtheequationsobtained = by differentiating this equation with α constant, then with β constant, etc. If, for instanceα const,thereisarelationbetweenx and y,and ymaybeconsideredas = afunctionofx andtheconstantvalueofα;ifn isthehighestorderofderivativeof ϕpresentinV,itispossibletoeliminateϕαanditsderivativesbydifferentiatingV n 1timeswithαconstant.Wetheneliminate fβanditsderivative,andsoon,until + wearriveatadifferentialequationwithonlyoneunknownfunctionofonevariable. Naturally, all the functions, knownand unknown, are tacitly supposed indefinitely differentiable. Abelappliesthistotheparticularcaseϕα f(x,y,ϕβ,ϕγ),where f,α,β and = γ are given functions and ϕ is unkown; he gets a first order differential equation with respect to ϕ. For instance, the functional equation of the logarithm logxy = logx logycorrespondstothecasewhereα(x,y) xy,β(x,y) x,γ(x,y) y + = = = and f(x,y,t,u) t u;differentiatingwithxy const,weget0 xϕx yϕ y, ′ ′ fromwhich,with=y +const,wegetϕx c,whe=rec yϕ y.Inthe=samew−ay,the = ′ = x = ′ functionalequationforarctangent, x y arctan + arctanx arctany, 1 xy = + − correspondstoα(x,y) = 1x+xyy,β(x,y) = x,γ(x,y) = y and f(x,y,t,u) = t+u; differentiatingwithαconsta−ntgives0 (1 x2)ϕx (1 y2)ϕ y,whenceϕx ′ ′ ′ c ifc (1 y2)ϕ y. = + − + = 1 x2 = + ′ + Whenβ(x,y) x,γ(x,y) yand f(x,y,t,u) t u,wegetfirst = = = · ∂α ∂α ϕy ϕx ϕx ϕ y 0, ′ ′ · ∂y − · ∂x = whence ϕ′x asaknownfunctionofxifyissupposedconstant.Forα(x,y) x y, ϕx = + this gives ϕ′x c ϕ′y, so logϕx cx(for ϕ(0) 1) and ϕx ecx; for ϕx = = ϕy = = = α(x,y) xy, ϕ′x c,sologϕx clogx (ϕ(1) 1)andϕx xc. = ϕx = x = = = Alltheseexampleswereclassicalasisthenextone,comingfrommechanics.The lawofcompositionoftwoequalforcesmakinganangle2x leadstothefunctional equation TheWorkofNielsHenrikAbel 23 ϕx ϕy ϕ(x y) ϕ(x y) (1) · = + + − ; where ϕx is the ratio of the resultant force to one of the two equal forces. Differ- entiating with y x const, one gets ϕx ϕy ϕx ϕ y 2ϕ(x y); another ′ ′ ′ + = · − · = − differentiation,withx y const,givesϕ x ϕy ϕx ϕ y 0.Ifyisregardedas ′′ ′′ − = · − · = constant,thisgivesϕ x cϕx 0andϕx αcos(βx γ)withα,βandγ constant. ′′ From(1),oneseesthat+α 2=andγ 0=andthepro+blemimposesϕ π 0,so = = 2 = β 1andϕ(x) 2cosx. = = (cid:2) (cid:3) HereisanothercaseofapplicationofAbel’sgeneralmethod:theequationhas theformψα F(x,y,ϕx,ϕx,... , fy, f y,...),whereαisagivenfunctionofx ′ ′ = and y and ϕ, f,ψ are unknown functions. By differentiating with α constant, one gets arelation between x,ϕx,ϕx,... and y, fy, f y,..., whencetwodifferential ′ ′ equations,withrespecttoϕandto f,consideringsuccessively yandx asconstant; if ϕ and f are determined, it is easy to determine ψ by the functional equation. In particular, if ψ(x y) ϕx f y fy ϕx, so that α(x,y) x y, the ′ ′ + = · + · = + differentiationwithαconstantgivesϕx f y fy ϕ x 0,andϕx asin(bx c), ′′ ′′ · − · = = + fy a sin(by c) then ψ(x y) aabsin(b(x y) c c) so that ψα ′ ′ ′ = + + = + + + = aabsin(bα c c). ′ ′ + + Inthecaseofψ(x y) f(xy) ϕ(x y),onegets0 f (xy)(y x) 2ϕ(x y). ′ ′ + = + − = − + − Abeltakesxy casconstantandwritesϕα kα,whereα x yandk f′(c), = ′ = = − = 2 soϕα k kα2;thenhetakesx y cconstantandwrites f β c 2ϕ′c,so = ′+ 2 − = ′ = ′ = c fβ c cβ.Finally ′′ ′ = + k ψ(x y) c cxy k (x y)2 ′′ ′ ′ + = + + + 2 − orψα c cx(α x) k k(2x α)2 c kα2 k xα(c 2k) (2k c)x2 = ′′+ ′ − + ′+2 − = ′′+2 + ′+ ′− + − ′ andweseethattheconditionc 2kisnecessary;ψα k c kα2. ′ = = ′+ ′′+ 2 Thethirdexampleisϕ(x y) ϕx fy fx ϕy,whichgives + = · + · 0 ϕx fy ϕx f y f x ϕy fx ϕ y (2) ′ ′ ′ ′ = · − · + · − · ; ifonesupposesthat f(0) 1andϕ(0) 0,onegets0 ϕx ϕx c fx c by ′ ′ = = = − · + · making y 0(c f (0)andc ϕ(0));so fx kϕx kϕx and,substituting ′ ′ ′ ′ ′ = = =− = + thisvaluein(2)andmaking yconstant:ϕ x aϕx bϕx 0etc. ′′ ′ + + = Abelreturnedtothestudyoffunctionalequationsinthepaper“Recherchedes fonctions de deux quantite´s variables inde´pendantes x et y, telles que f(x,y), qui ontlaproprie´te´que f(z, f(x,y))estunefonctionsyme´triquedez,xety”,published inGermaninthefirstvolumeofCrelle’sJournalin1826(Œuvres,t.I,p.61–65). Theconditionofthetitlecharacterisesacompositionlawwhichisassociativeand commutative;itmaybewrittenas f(x,y) f(y,x), f(z, f(x,y)) f(x, f(y,z)) = = = f(y, f(z,x))or f(z,r) f(x,v) f(y,s) (3) = = if f(x,y) r, f(y,z) v and f(z,x) s.Differentiating with respect to x,to y = = = andtozandmultiplyingtheresults,onegets 24 C.Houzel ∂r ∂v∂s ∂r ∂v ∂s . (4) ∂x∂y∂z = ∂y∂z ∂x But, by the definition of v, the quotient of ∂v by ∂v is a function ϕy when z is ∂y ∂z regarded as constant; in the same manner, ϕx is the quotient of ∂s by ∂s, so (4) ∂x ∂z becomes ∂rϕy ∂rϕx andthisgivesr asanarbitraryfunctionψ ofΦ(x) Φ(y), ∂x = ∂y + whereΦ isaprimitiveofϕ.So f(x,y) ψ(Φ(x) Φ(y));puttingthisexpression = + in (3) and making Φz Φy 0 and Φx p, one gets Φψp p c, where = = = = + c Φψ(0),andthenΦf(x,y) Φ(x) Φ(y) cor = = + + Ψf(x,y) Ψ(x) Ψ(y) (5) = + whereΨ(x) Φ(x) c.Inotherwords,Abelfindsthat f isconjugatetotheaddition = + lawbythefunctionΨ:hehasdeterminedtheone-parametergroups. ThesecondvolumeofCrelle’sJournal(1827)(Œuvres,t.I,p.389–398)contains anotherpaperofAbelonafunctionalequation: ϕx ϕy ψ(xfy yfx) ψ(r), (6) + = + = where r xfy yfx; this equation includes, as particular cases, the laws of addition f=or log (+fy 1y, ϕx ψx logx) and for arcsin (fy 1 y2, = 2 = = = − ϕx ψx arcsinx).Onehasϕx ψr ∂r,ϕ y ψr ∂r,soϕx ∂r ϕ y ∂r = = ′ = ′ · ∂x ′ = ′ · ∂y ′ · ∂y =(cid:4) ′ · ∂x or ϕ y (fy yf x) ϕx (fx xf y), (7) ′ ′ ′ ′ · + = · + whence,for y 0, = aα ϕx (fx αx) 0, (8) ′ ′ − · + = where a ϕ(0), α f(0) and α f (0), a differential equation which deter- ′ ′ ′ = = = mines ϕ if f is known. Substituting in (7), one gets (fx αx)(fy yf x) ′ ′ + + = (fy α y)(fx xf y)or ′ ′ + + 1 1 (α fy fy f y α yf y) (α fx fx f x αxf x) m, ′ ′ ′ ′ ′ ′ ′ ′ y − · − = x − · − = necessarilyconstant.So f x (fx αx) (mx α fx) 0, (9) ′ ′ ′ · + + − = which determines f; as this differential equation is homogenenous, it is easily integretedbyputting fx = xz,intheformlogc−logx = 12log(z2−n2)+2αn′ logzz−nn, wherem n2andcisaconstantofintegration.Onegets + =− c2n (fx nx)n+α′(fx nx)n−α′, = − + TheWorkofNielsHenrikAbel 25 withc α,thenϕby(8)and(6)isverifiedifψx ϕ x ϕ(0).Abelexplicitly = = α + treatsthecaseinwhichn α 1: fx α 1x,thenϕx aαlog(α x) k = ′ = 2 = + 2 (cid:2) (cid:3) = + + andψx 2k aαlog(α2 x). = + + Therelationα2n (fx nx)n+α′(fx nx)n−α′,whichdetermines f,allowsusto = − + express fx nx,andthenxand fx,intermsof fx nx v;turningbackto(8),this givesϕx −aα log(cnx cfx).Whenn 0,the+relatio=nwhichdetermines f takes = n+α′ fx + = theformeα′x fx andwehaveϕx aαlogcα aαx ,ψx 2aαlogcα ax . = α = α′ + fx = α′ + f(αx) Theequation (6(cid:5))sig(cid:6)nifies that αf xfy+αyfx = fx · fy and Abel verifies that it is satisfied. Another particular case i(cid:5)s that in(cid:6)which α′ . When m is finite, (9) = ∞ reducestoxf x fx 0,sothat fx cx;whenmisinfiniteandequals pα,(9) ′ ′ − = = − becomesxfx px fx 0and fx pxlogcx.Inthislastcase,onegetsby(7) − − = = yϕ y xϕx 0,whencexϕx kconstantandϕx klogmx(anewm)andthen ′ ′ ′ − = = = ψ(pvlogc2v) klogm2v. = AmemoirleftunpublishedbyAbelisdevotedtotheequationϕx 1 ϕ(fx), + = where f isgivenandϕunknown(Œuvres,t.II,p.36–39,mem.VI).Abelintroduces afunctionψ suchthat fψy ψ(y 1);onemaytakeψ arbitrarilyontheinterval = + 0,1 and define ψ on 0, by ψ(y n) fn(ψy) (and on ,0 by [ ] [ +∞[ + = ] − ∞ ] ψ(y n) f n(ψy) if f is bijective). For x ψy, the functional equation − − = = becomes 1 ϕψy ϕψ(y 1), so that ϕψy y χy where χ is any periodic + = + = + functionof ywithperiod1.Denotingtheinversefunctionofψ by`ψ,Abelgets ϕx `ψx χ(`ψx). = + Asanexample,hetakes fx xn andψy any,sothat`ψx loglogx−logloga and = = = logn loglogx logloga loglogx logloga ϕx − χ − , = logn + logn (cid:7) (cid:8) forinstanceϕx loglogx ifχ 0anda e. = logn = = Abel treats in a similar manner the general equation F(x,ϕ(fx),ϕ(ψx)) 0, = where F, f andψ aregivenfunctionsandϕ isunknown.Supposingthat fx y t = andψx y or y ψ(‘fy),onehas F(‘fy,u ,u ) 0,whereu ϕy; t 1 t 1 t t t t 1 t t this diffe=renc+e equat+ion=has a solution u θt and ϕz + θ(=‘y). For instan=ce the t t equation(ϕx)2 ϕ(2x) 2leadsto(u )2 =u 2and=,ifu a 1,thisgives ut = a2t−1 + a2=t1−1;onth+eotherhand ytt+1== 2t+y1t,+sothat yt =1c=·2t−+1 a(cconstant) and2t 1 x.Finally,ϕx bx b x (b a1/c).Aswesee,thistypeofequations − = c = + − = is treated with a method different from the preceeding one, by reduction to finite differenceequation. Anothertypeoffunctionalequationisrelatedtothedilogarithm x2 x3 xn ψx x ... ... , = + 22 + 32 + + n2 + whichAbelstudiesintheposthumousmemoirXIV(Œuvres,t.II,p.189–193)after Legendre’s Exercices de Calcul inte´gral. The study is based on the summation of 26 C.Houzel theseries(for x 1)intheformofanintegral | |≤ dx ψx log(1 x) (10) =− x − (cid:9)0 andAbelreproducesseveralfunctionalequationsgivenbyLegendre,asforexample π2 ψx ψ(1 x) logx log(1 x). + − = 6 − · − Butheaddsaremarkablenewproperty: x y y x ψ ψ ψ (11) 1 x · 1 y = 1 x + 1 y (cid:7) − − (cid:8) (cid:7) − (cid:8) (cid:7) − (cid:8) ψy ψx log(1 y)log(1 x) − − − − − for(x,y)intheinteriordomainofthefigure Inordertoprove(11),Abelsubstitutes a y forx in(10): 1 a · 1 y − − a y dy dy 1 a y ψ log − − 1 a · 1 y =− y + 1 y (1 a)(1 y) (cid:7) − − (cid:8) (cid:9) (cid:7) − (cid:8) − − dy y dy log 1 log(1 y) =− y − 1 a + y − (cid:9) (cid:7) − (cid:8) (cid:9) dy a dy log 1 log(1 a) − 1 y − 1 y + 1 y − (cid:9) − (cid:7) − (cid:8) (cid:9) − y dy a ψ ψy log 1 = 1 a − − 1 y − 1 y (cid:7) − (cid:8) (cid:9) − (cid:7) − (cid:8) log(1 a)log(1 y), − − − TheWorkofNielsHenrikAbel 27 wheretheremainingintegraliscomputedbytakingz a asvariable: = 1 y − dy a dz a log 1 log(1 z) ψz ψ const. 1 y − 1 y = z − =− =− 1 y + (cid:9) − (cid:7) − (cid:8) (cid:9) (cid:7) − (cid:8) Theconstantofintegrationisdeterminedbytaking y 0andisfoundtobeψa. = Abelwasthefirstmathematiciantogiveageneraland(almost)rigourousproof ofNewton’sfamousbinomialformula m(m 1) m(m 1)(m 2) (1 x)m 1 mx − x2 − − x3 ... (12) + = + + 2 + 2 3 + · He published his demonstration in the first volume of Crelle’s Journal (1826, Recherches sur la se´rie 1 mx m(m 1)x2 m(m 1)(m 2)x3 ..., Œuvres, t. I, + + 2− + −23 − + p.218–250).HeusesanideaofEuler,alreadyexploit·edbyLagrangeandCauchy: writingϕ(m)thesecondmemberof(12),oneprovesthat ϕ(m n) ϕ(m)ϕ(n), (13) + = sothatϕ(m) Am (1 x)m form rationalaswasobservedbyEuler.Lagrange = = + extendedthisprooftoeveryvalueofmadmittingthatϕisananalyticfunctionofm. Cauchyusedananalogousstrategyformrealand x <1usingthecontinuityofϕ, | | forwhichhisproofwasunfortunatelyincomplete.Abelconsidersthemostgeneral case,with x andm complex,with x < 1or x 1andRem > 1(if x 1, | | | | = − = − oneneedsRem >0). For m k ki, ϕ(m) f(k,k)(cosψ(k,k) isinψ(k,k)), with f, ψ ′ ′ ′ ′ = + = + continuous functions of k, k real. The continuity is almost established by Abel ′ in his theorem V, but this theorem is not entirely correct. The concept of uniform convergencedidnotexistatthattimeanditwasnoteasytogiveageneraltheorem for the continuity of the sum of a series of continuous functions. The functional equation(13)becomes f(k ℓ,k ℓ) f(k,k)f(ℓ,ℓ) (14) ′ ′ ′ ′ + + = ; ψ(k ℓ,k ℓ) 2mπ ψ(k,k) ψ(ℓ,ℓ), ′ ′ ′ ′ + + = + + where m is an integer, which must be constant because of the continuity of ψ. In afirststep,Abeltreatsthefunctionalequationforψ;puttingθk ψ(k,k ℓ) ′ ′ = + = 2mπ ψ(k,k) ψ(0,ℓ)hegets ′ ′ + + θk θℓ a θ(k ℓ), (15) + = + + witha 2mπ ψ(0,k) ψ(0,ℓ),whence ′ ′ = + + θk ck a, (16) = + wherecisafunctionofk,ℓ.Indeed,takingℓ k,2k,... ,ρkin(15)andadding ′ ′ = theresults,Abelgetsρθk (ρ 1)a θ(ρk)andθρ ρ(θ(1) a) afork 1, = − + = − + = 28 C.Houzel ρ anaturalinteger;then,fork µ (µ,ρ N,ρ 0),ρθ µ (ρ 1)a θµ = ρ ∈ (cid:6)= ρ = − + andθ µ cµ a,withc θ(1) a.Thisformulaisex(cid:5)ten(cid:6)dedtothenegative ρ = ρ + = − values(cid:5)of(cid:6)kusingθ( k) 2a θkand,bycontinuity,toeveryrealvalueofk.So − = − ψ(k,k ℓ) ck 2mπ ψ(0,k) ψ(0,ℓ), (17) ′ ′ ′ ′ + = + + + wherec θ(k,ℓ),afunctionofk andℓ.Fork 0,thisgives ′ ′ ′ ′ = = ψ(0,k ℓ) 2mπ ψ(0,k) ψ(0,ℓ), ′ ′ ′ ′ + = + + afunctionalequationwhichmaybetreatedas(15)andwhichhasthesolution ψ(0,k) βk 2mπ, ′ ′ ′ = − withanarbitraryconstantβ;then(17)becomes ′ ψ(k,k ℓ) θ(k,ℓ) k β(k ℓ) 2mπ, ′ ′ ′ ′ ′ ′ ′ + = · + + − alsoequalto2mπ ψ(k,k) ψ(0,ℓ) ψ(k,k) βℓ by(14),sothatψ(k,k) ′ ′ ′ ′ ′ ′ + + = + = Fk k βk 2mπ,with Fk θ(k,ℓ)independentofℓ and F(k ℓ) Fk ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ · + − = + = = F(0) βaconstant.Finally = ψ(k,k) βk βk 2mπ. (18) ′ ′ ′ = + − To treat the functional equation (14) for f, Abel writes f(k,k′) eF(k,k′) and = F(k ℓ,k ℓ) F(k,k) F(ℓ,ℓ), a functional equation analog to that for ψ ′ ′ ′ ′ + + = + with m 0, so its solution is of the form F(k,k) δk δk, with two arbitrary ′ ′ ′ = = + constantδ,δ.Finally ′ ϕ(k k′i) eδk+δ′k′(cos(βk β′k′) isin(βk β′k′)) (19) + = + + + anditremainstodeterminetheconstantsβ,β,δandδ. ′ ′ Fork 1andk 0,ϕ(1) 1 x 1 αcosφ iαsinφ,whereα x <1 ′ = = = + = + + =| | andφ argx;thisgiveseδcosβ 1 αcosφandeδsinβ αsinφ,sothat = = + = αsinφ eδ (1 2αcosφ α2)12 and tanβ ,β s µπ, (20) = + + = 1 αcosφ = + + with π s π andµ Z.Now,fork 0andanyk,let p fαandq θα −2 ≤ ≤ 2 ∈ ′ = = = designate the real and the imaginary part of the series ϕ(k), which are continuous functionsofαafterAbel’stheoremIV(whichiscorrect);onehas fα eδkcoskscoskµπ eδksinkssinkµπ, = − θα eδksinkscoskµπ εδκcoskssinkµπ = + andcoskµπ e δk(fα cosks θα sinks),sinkµπ e δk(θα cosks fα sinks), − − = · + · = · − · independent of α by continuity. For α 0, eδ 1 and s 0 after (19) whereas = = = fα 1andθα 0,sokµπ 0and = = = TheWorkofNielsHenrikAbel 29 fα (1 2αcosφ α2)2k cosks, θα (1 2αcosφ α2)2k sinks (21) = + + = + + ; thisisCauchy’sresultfor fα iθα 1 x k(cosks isinks) (1 x)k. + =| + | + = + Abel now considers the case in which m in is purely imaginary; then the = series (12) is convergent for any value of n by d’Alembert’s rule (which is Abel’s theoremII)andAbelstatesitscontinuityasafunctionofnasaconsequenceofhis theoremV.Hewritestherealandimaginarypartsoftheseriesintheform p 1 λ αcosθ ... λ αµcosθ ... 1 1 µ µ = + + + + and q λ αsinθ ... λ αµsinθ ... , 1 1 µ µ = + + + whereλ δ δ ...δ ,θ µφ γ γ ... γ and µ 1 2 µ µ 1 2 µ = = + + + + ni µ 1 − + δ (cosγ isinγ ). µ µ µ µ = + From(19)heknowsthat p eδ′ncosβ′nandq eδ′nsinβ′n;inordertodetermine = = δ′resp.β′,hetakesthelimitsof eδ′nconsβ′n−1 resp. eδ′nsninβ′n forn =0.Asδµ → µµ−1 andγ π(µ 2;forµ 1,γ π),hegets λµ 1 andγ µ(φ π) π µ → ≥ = 1 = 2 n → µ µ → + − 2 so 1 1 β αcosφ α2cos2φ aα3cos3φ ... , ′ = − 2 + 3 − 1 1 δ αsinφ α2sin2φ α3sin3φ ... ′ =− + 2 − 3 + Now,computinginthesamemannerthelimits,fork =0,of fαk−1 and θkα,onegets from(21) 1 1 δ αcosφ α2cos2φ α3cos3φ ... (22) = − 2 + 3 − 1 1 and β αsinφ α2sin2φ α3sin3φ ... , = − 2 + 3 − sothatβ δandδ β.Thesum(19)oftheseries(12)form k ki is ′ ′ ′ = =− = + eδk−βk′(cos(βk δk′) isin(βk δk′)) + + + withβandδasin(20).LetusinterpretAbel’sresult:writingδ iβ log(1 x), + = + onegets mlog(1 x) (k ik)(δ iβ) kδ kβ i(kβ kδ), ′ ′ ′ + = + + = − + + sothatϕ(m) (1 x)m. = + Comparing(20)and(22),Abelgets 1 1 1 log(1 2αcosφ α2) αcosφ α2cos2φ α3cos3φ ... 2 + + = − 2 + 3 − 30 C.Houzel and αsinφ 1 1 arctan αsinφ α2sin2φ α3sin3φ ... (23) 1 αcosφ = − 2 + 3 − ; + bymakingαtendtoward 1,1log(2 2cosφ) cosφ 1cos2φ 1cos3φ ... ± 2 ± =± −2 ±3 − and 1φ sinφ 1sin2φ 1sin3φ ... for π < φ < π. If φ π and 2 = − 2 + 3 − − = 2 1 α 1in(23),onegetsGregory’sseriesarctanα α 1α3 1α5 ... − ≤ ≤ = − 3 + 5 − Takingx itanφandm realinthebinomialseries,Abel’sfinds = m(m 1) m(m 1)(m 2)(m 3) cosmφ (cosφ)m 1 − (tanφ)2 − − − (tanφ)4 ... , = − 1 2 + 1 2 3 4 − (cid:7) · · · · (cid:8) m(m 1)(m 2) sinmφ (cosφ)m mtanφ − − (tanφ)3 ... = − 1 2 3 + (cid:7) · · (cid:8) for π φ π (forφ π,m mustbe> 1). −4 ≤ ≤ 4 =±4 − Now,taking x 1andm > 1,hefindsastherealpartof | |= − (1 x)m(cosα isinα) + − : m m(m 1) cosα cos(α φ) − cos(α 2φ) ... + 1 − + 1 2 − + · mφ m (2 2cosφ)2 cos α mρπ = + − 2 + (cid:7) (cid:8) where ρ is an integer such that φ 2ρπ π (with the restriction m > 0 in case of equality). The substitution|s −φ 2x| ≤and α mx,mx π,m x π or = = + 2 + 2 m x π π giveAbelvariousformulae,forinstance + 2 − 2 (cid:2) (cid:3) (cid:2) (cid:3) m m(m 1) (2cosx)mcos2mρπ cosmx cos(m 2)x − cos(m 4)x ... = + 1 − + 1 2 − + · m m(m 1) (2cosx)msin2mρπ sinmx sin(m 2)x − sin(m 4)x ... = + 1 − + 1 2 − + · for2ρπ π x 2ρπ π.Abelwasthefirsttoproverigourouslysuchformulae − 2 ≤ ≤ + 2 form noninteger;inalettertohisfriendHolmboe(16January1826,Œuvres,t.II, p. 256), he states his result and alludes to the unsuccessful attempts of Poisson, Poinsot,PlanaandCrelle. Other examples of functional equations in Abel’s work may be mentioned, as thefamousAbeltheorem(see§5),whichmaybeinterpretedinthisway.Inaletter toCrelle(9August1826,Œuvres,t.II,p.267),Abelstateshistheoremforgenus2 inaveryexplicitmanner:heconsidersthehyperellipticintegralϕ(x) (α+βx)dx = √P(x) where Pisapolynomialofdegree6;thenAbel’stheoremisthefunctionalequation (cid:10) ϕ(x ) ϕ(x ) ϕ(x )=C (ϕ(y ) ϕ(y )),wherex ,x andx areindependant 1 2 3 1 2 1 2 3 + + − + variables,C isaconstantand y , y aretherootsoftheequation 1 2

Description:
functional equations and the integral transforms. The Legacy of Niels Henrik Abel – The Abel Bicentennial, Oslo 2002. Springer-Verlag 2004. (Editors
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.