Mon.Not.R.Astron.Soc.000,000–000(0000) Printed7February2017 (MNLATEXstylefilev2.2) The weak Fe fluorescence line and long-term X-ray evolution of the Compton-thick AGN in NGC7674 1,2 2 2,3 4 2 5,6,7 P. Gandhi, A. Annuar, G.B. Lansbury, D. Stern, D.M. Alexander, F.E. Bauer, 8 9 1 10,11,12 13 S. Bianchi, S.E. Boggs, P.G. Boorman, W.N. Brandt, M. Brightman, 14 15 14,16 17 18 F.E. Christensen, A. Comastri, W.W. Craig, A. Del Moro, M. Elvis, 19,20 21 13 22 22 23 M. Guainazzi, C.J. Hailey, F.A. Harrison, M. Koss, I. Lamperti, G. Malaguti, 15,24 8 25,26 5 13 3,4,13 A. Masini, G. Matt, S. Puccetti, C. Ricci, E. Rivers, D.J. Walton , 27 W.W. Zhang Authoraffiliationsappearattheendofthepaper. 7February2017 ABSTRACT WepresentNuSTARX-rayobservations oftheactivegalacticnucleus(AGN)inNGC7674. ThesourceshowsaflatX-rayspectrum,suggestingthatitisobscuredbyCompton-thickgas columns.Baseduponlong-termfluxdimming,previousworksuggestedthealternatepossibil- itythatthesourceisarecentlyswitched-offAGNwiththeobservedX-raysbeingthelagged echofromthetorus.Ourhigh-qualitydatashowthesourcetobereflection-dominatedinhard X-rays, but with a relatively weak neutral FeKα emission line (equivalent width [EW] of ≈0.4keV)andastrongFeXXVIionisedline(EW≈0.2keV).Weconstructanupdatedlong- termX-raylightcurveofNGC7674andfindthattheobserved2–10keVfluxhasremained constantforthepast≈20years,followingahighfluxstateprobedbyGinga.Lighttraveltime arguments constrain the minimum radius of the reflector to be ∼3.2pc under the switched- offAGNscenario,≈30timeslargerthantheexpecteddustsublimationradius,renderingthis possibilityunlikely.ApatchyCompton-thickAGN(CTAGN)solutionisplausible,requiring aminimumline-of-sightcolumndensity(NH)of3×1024cm−2 atpresent,andyieldsanin- trinsic2–10keVluminosityof(3–5)×1043ergs−1.Realisticuncertaintiesspantherangeof ≈(1–13)×1043ergs−1.Thesourcehasoneoftheweakestfluorescencelinesamongstbona fideCTAGN,andispotentiallyalocalanalogueofbolometricallyluminoussystemsshowing complex neutral and ionised Fe emission. It exemplifies the difficulty of identification and propercharacterisationofdistantCTAGNbasedonthestrengthoftheneutralFeKαline. Keywords: Seyfert–X-rays:individual(NGC7674) 1 INTRODUCTION veryfewrobust(bonafide)CTAGNareknown(DellaCecaetal. 2008;Gouldingetal.2012;Gandhietal.2014). Obscuredactivegalacticnuclei(AGN)dominatetheoverallpopu- One candidate of a nearby, luminous CTAGN is NGC7674, lation of AGN in the cosmos, especially the efficiently-accreting thebrightestmemberoftheHickson96interactinggalaxygroup. sources which power the cosmic hard X-ray background radia- NGC7674 is a known Seyfert 2, showing strong narrow optical tion (e.g. Setti & Woltjer 1989; Comastri et al. 1995; Gandhi emissionlineswithfullwidthsathalfmaximum(FWHM)ofless & Fabian 2003; Gilli et al. 2007; Treister et al. 2009; Ballantyne than 500kms−1 in spectral observations carried out over three etal.2011;Uedaetal.2014).Yet,findingandcharacterisingthese decadesago(Feldmanetal.1982).Thesourcealsoshowsapro- objects is made difficult by the strong absorption they can suf- lificoutflow,whichmanifestsasaprominentshoulderontheblue fer across the electromagnetic spectrum. In particular, the census wings of all the prominent narrow optical lines. The outflow has ofthesourceshiddenbehindextremeobscuringcolumndensities been studied in detail using HST spectroscopy by Fischer et al. ofgas–inparticularCompton-thickAGNwithcolumndensities (2013),whofindblueshiftsofupto∼1700kms−1(andevenlarger NH∼>1.5×1024cm−2; hereafter, CTAGN – remains highly in- FWHM)alongthenarrowlineregionalignedwiththejetaxisofthe complete (see Ricci et al. 2015 and Koss et al. 2016 for recent source.Intheradio,NGC7674showsatleastthreeseparatecom- updatesonthehardX-rayselectedCTAGNcensus).Evenlocally, pact components in VLBI observations on scales of ≈0.7arcsec (cid:2)c 0000RAS 2 P.Gandhietal. corresponding to ≈0.4kpc, and there have been suggestions that Table1.ObservationLog the collimated ejecta associated with the radio source could also drive the optical-emitting line outflow (Unger et al. 1988). Even higherresolutionVLBIobservationsbyMomjianetal.(2003)re- Mission Instrument(s) Observationdate Exposure vealacomplex‘S’–shapedstructure,whichcouldresultfromin- ks teractionsofthejetwiththeinterstellarmedium.Usingthe[OIII] NuSTAR FPMA/B 2014-09-30 52.0/51.9 emissionlineasabolometricluminosityindicator,Xuetal.(1999) Suzaku XIS0/1/3 2013-12-08 52.2/52.2/52.2 classifyNGC7674asaradioquietAGN. Swift XRT 2011-01-28...2014-10-08† 48.8† The source was first reported to be a refection-dominated AGN by Malaguti et al. (1998) from BeppoSAX X-ray observa- †ForSwift,17observationsarecombinedhere.SeeAppendixfordetails. tionscarriedoutin1996,withthedirect(intrinsic)continuumbe- ingfullyabsorbedbyaCompton-thickgascolumn.BeppoSAXde- tectedNGC7674overtheenergyrangeof∼0.1–60keV.Malaguti tanceof126Mpccorrectedtothereferenceframedefinedbythe etal.reportedacomplexstructuretotheneutralFeKαline,andes- cosmic microwave background. The source systemic redshift is timatedahighintrinsicAGNluminosityassumingascatteringge- z=0.0289.AllX-rayspectralfittingiscarriedoutwiththeXSPEC ometrysimilartoNGC1068. ButtheBeppoSAXobservationwas package v12.9.0 (Arnaud 1996) and uncertainties are quoted at notthefirstX-rayobservationofthesource.Asdetailedinahistor- 90%confidence,unlessstatedotherwise. icalX-rayanalysisbyBianchietal.(2005),thesourcewaslikely detectedbytheHEAOmissioninthelate1970sata2–10keVflux level almost 30times brighter (Grossan 1992) and subsequently 2 OBSERVATIONS with an intermediate flux by Ginga (Awaki et al. 1991). Bianchi et al. (2005) discuss several potential caveats to these detections, AlogoftheNuSTAR,SuzakuandSwiftX-rayobservationsanal- includingHEAOcontaminationbynearbysources,andsystematic ysedhereinispresentedinTable1,andtheindividualdatasetsare uncertaintiesrelatedtothebackgroundlevelmeasuredbyGinga, describedinthissection. andconcludethatthecombinedweightofevidencefavoursthehis- toricalsourcedetectionsbeingreal,althoughtheGingafluxmea- surement is considered to be more reliable of the two, due to a 2.1 NuSTAR more robust background determination. The Ginga spectrum is a lightly absorbed power law (with NH<2×1022cm−2) with an NGC7674 was observed by NuSTAR (Harrison et al. 2013) for about52ksofexposureon2014Sep30(ObsID708023010).NuS- upper limitof80eV tothe equivalent width(EW)of any neutral FeKαemissionline.Thesourcethendeclinedbyanorderofmag- TARisthefirstorbitingtelescopecapableoffocusingX-raysabove ∼10keV, operating over the energy range of 3–79keV. The data nitudeincontinuumfluxbythetimeitwasobservedbyBeppoSAX wereprocessedusingstandardstepsandtheNuSTARDataAnalysis to be Compton-thick. Such behaviour might argue for the source beingamemberoftheclassof‘changing-look’AGN(e.g., Matt Software(NUSTARDAS)v.1.3.0whichisprovidedaspartofHEA- et al. 2003), associated with clumps of obscuring clouds transit- SOFT27andassociatedFTOOLS(Blackburn1995).NuSTARCALDB calibrationfileswereusedtogeneratecleanedeventfilesafterfil- ingacrosstheline-of-sight(l.o.s)resultinginapparentchangesin NH(l.o.s). The most famous example of this class is NGC1365 teringforSouthAtlanticAnomalypassagesandthestandarddepth whichshowsdramaticNHvariabilityontimescalesofdays(Risal- cut,inSoourrdceerstopercetdraucweeirnesterxutmraecntetadlubsaicnkggarocuirncdu.laraperture45(cid:2)(cid:2)in itietal.2005). radiuscentredonthesourcepositioninbothfocalplanemodules However, an XMM-Newton observation carried out 6 years (FPMs). Background spectra were extracted from source free re- later(in2004)alsoshowedareflection-dominatedspectrumcom- gionsonthedetector.Thenuproductstaskwasusedtoextract pletelyconsistentinshapeaswellasfluxwithBeppoSAX,unlike these calibrated spectra and to generate corresponding response what may be expected in a changing-look AGN. Bianchi et al. files. All spectra were grouped to a minimum signal-to-noise of (2005)interpretthesourceaspotentiallyhavingswitched-off,with atleast4pergroupedenergybinafterbackgroundsubtractionfor thespectrumobservedbyBeppoSAXandXMM-Newtonbeingthe fittingpurposes. reflection component which is delayed with respect to the direct, ThesourceiswelldetectedinbothFPMswith3–78keVcount illuminating power law (PL). Another source that has been dis- ratespersecondof2.92±0.08(FPMA)and2.53±0.08(FPMB). cussedfromthesetwoopposingperspectivesrecentlyisNGC7582 (Rivers et al. 2015). Bianchi et al. (2005) also found a relatively weakFeKαemissionlineinNGC7674,possiblyblendedwithan 2.2 Suzaku ionisedFeXXVIlineat6.97keV. Approximately 10 years after the last XMM-Newton obser- About 52ks of exposure were obtained on 2013 Dec 08 with vation, NGC7674 was observed by Suzaku in 2013 and then by Suzaku. The X-ray Imaging Spectrometer (XIS; Koyama et al. NuSTAR in 2014, in addition to several snapshot observations by 2007) is sensitive over ≈0.5–10keV. Standard FTOOLS software theSwiftsatellitebetween2011to2014.Here,wepresentaspec- forSuzakuwasusedfordatareductionandcleanedeventfilegen- tral analysis of these unpublished observations, and combine this erationwithrecommendedfiltering.Sourcecountswereextracted with historical data to study the long-term source evolution. We fromwithina3.4arcminradiusapertureforintegratingXISsource discuss and place constraints on the switched-off AGN as well counts,andbackgroundcountsfromalargersource-freepolygon. as the CTAGN scenarios. Finally, we touch upon the relevance The generated spectra and responses of the two front-illuminated of the complex Fe lines for the identification and characterisa- tionofdistantCTAGN.WeassumeH0=67.3kms−1Mpc−1 and ΩΛ=0.685 (Planck Collaboration 2014), corresponding to a dis- 27 https://heasarc.gsfc.nasa.gov (cid:2)c 0000RAS,MNRAS000,000–000 NuSTARobservationsofNGC7674 3 (FI) detectors were combined together, and this was analysed si- ofNGC7674withafluxF14−195=9.9+−52..14×10−12ergs−1cm−2, multaneouslywiththeback-illuminated(BI)detectordata.Forthe consistentwiththatinferredfromourNuSTARanalysisdescribed fitting,weignoretheenergyrangesof1.7–1.9keVand2.1–2.3keV later. becauseofcalibrationuncertainties. The source was also observed by the Hard X-ray Detector (HXD;Takahashietal.2007;Kokubunetal.2007).TheHXD/PIN 2.4 OpticalSpectroscopy data (the PIN array is sensitive between ≈15–60 keV) were re- In preparation for, and in support of, the NuSTAR observations, duced using standard tasks. The FTOOLS routine hxdpinxbpi we also obtained optical spectroscopy of NGC7674 using the is a pipeline task that first extracts spectral counts and corrects Low ResolutionImaging Spectrometer (LRIS)on the Keck Tele- these for deadtime. Using the ‘tuned’ background model for the scope (Oke et al. 1995). The observations were carried out on targetobservationprovidedbytheSuzakuteamasastartingpoint 2014June25 through a 1(cid:2).(cid:2)0 wide slit, using both the blue (600 (Fukazawaetal.2009),hxdpinxbpialsooutputsabackground linesmm−1)grismandthered(400linesmm−1)grating,withthe spectrumincluding thecosmicX-raybackground (CXB)compo- D560 dichroic. The night was photometric, with seeing close to nent. However, after background subtraction, the residual source 0(cid:2).(cid:2)7. count rate was found to be 0.013ctss−1 (15–60 keV), which is Thebluespectralregionisdominatedbystrongemissionlines ≈5.0% of the gross count rate and similar to the level of back- withblueshiftedcomponents,asreportedinmanypreviousworks groundreproducibilityforobservationsafter2012.28Weconserva- (e.g.Feldmanetal.1982).Theredspectralregioncontainstheiso- tivelyconsiderthesourceasanon-detectionbutnotethatfittinga latedCaIIabsorptiontriplet,whichcanbeusedtoestimatethecen- PLtothedetectednetcountsbetween15and60keVreturnsanob- tral black hole mass. This estimate is presented in the Appendix. servedfluxF15−60≈5×10−12ergs−1cm−2,whichissimilarto Theinstrumentalresolutionintheredspectralregionwasmeasured theobservedNuSTARfluxinthesamebandwiththebestfitmodels to be 7.4A˚ (FWHM) using arc lamp spectra, corresponding to a thatwewilldiscussintheResultssection. velocity resolution of σinstr.=107kms−1 close to the observed NGC7674isalsotoofainttobedetectableintheHXD/GSO wavelengthoftheCatripletfeature. arraysensitivetomuchhigherenergies,andthosedataarenotcon- sideredhere. 2.5 X-raySpectralAnalysisMethodology 2.3 Swift In this section, we start by checking for consistency of the data betweenthevariousmissions,andthendescribethedetailsofthe ThesourcehasbeenobservedbySwift(Gehrelsetal.2004)on17 spectralanalysismodels. occasions2011onwards,withexposuretimesrangingover≈470– 5100susingtheX-RayTelescope(XRT;Burrowsetal.2005)sen- sitive to photons between ∼0.3–10keV. The individual observa- 2.5.1 Basiccharacterisation tions are listed in the Appendix. We extracted source and back- ground spectra, together with response files, using the standard Fig.1showstheNuSTAR,Suzaku,andSwiftdatasetsoverplotted XRT Data Analysis Software tools with HEASOFT. The version incountrateunits,stretchingovertwodecadesinobservedenergy of XRTPIPELINE used was 0.13.0. Source counts were extracted from 0.5–78keV. The spectral shape approximately matches be- withina20(cid:2)(cid:2) radiusaperture,andbackgroundwasextractedfrom tweenthemissionsandinstrumentsovercommonenergyranges. an off-source sky region. Upper limits (for detection significance In particular, there appears to be a broad hump dominating the lessthan10−3)wereestimatedusingthesostacommandinthe NuSTARbandabove10keVandasharpemissionfeaturearound XIMAGEpackage. 6keV.Thesearestronglyreminiscentofreflectionresultingfrom Wefirstanalysedthespectraindividually,butthesourceliesat ComptonscatteringandneutralFefluorescence,acommonchar- thelimitofdetectabilityintheseobservations,yieldingonlyweak acteristicofobscuredAGNX-rayspectra.Thehumpextendsdown detectionsforobservationslongerthan2ks,andnon-detectionsin to∼3keVinalldatasets,belowwhichadifferentcomponentap- other cases. Nevertheless, the individual observations (detections pearstodominateinboththeSuzaku/XISandSwift/XRTdatawith andlimits)allowafirstcheckforanystrongvariationswithtime. thespectrumrisingandpeakingaround1keV(thisisrelatedtothe These fits are also described in the Appendix, and no significant peakintheeffectivearea,inthespectralunitsofFig.1.). variationsarefound. Fitting a PL to the continuum over the common energy We then extracted a coadded XRT spectrum by combin- range of 3–10keV (after ignoring the range of 5.5–7keV around ing the event files of the individual observations. This yields a the neutral FeKα line) simultaneously to all missions returns a dataset with a total exposure time of 48.8ks. The source is well photon index Γ=0.73±0.11 with an acceptable fit statistic of detected in this combined exposure, with a net count rate of χ2/dof=99.9/92.Thisismuchharderthanthetypicalintrinsicpho- 7.9(±0.4)×10−3cts−1overtheenergyrangeof0.5–10keV. tonindices((cid:4)Γ(cid:5) ∼ 1.9)seeninAGNX-rayspectra(cf. Nandra Thesourceisclassifiedasanon-detectionbytheBurstAlert etal.1997;Mateosetal.2005;Piconcellietal.2005)andissugges- Telescope(BAT;Barthelmyetal.2005)sensitiveover14–195keV tiveofheavyobscuration.Fittingthesamemodeltothedatafrom using standard analysis adopted for the 70-month all-sky survey each mission separately, the observed 2–10 keV fluxes span the (Baumgartner et al. 2013), and we do not consider the BAT data range of F2−10≈(7–14)×10−13ergs−1cm−2 between the mis- further in this work. We do note, however, that a custom analy- sions(withtheharderSwiftphotonindexgivingthehighestflux), sis by Koss et al. (2013) finds a 4.2σ detection at the position andarefullyconsistentwitheachotherat90%confidence. We note a mild discrepancy in the Swift XRT data with re- specttotheothermissions.Whenexaminingtheindividualphoton 28 www.astro.isas.jaxa.jp/suzaku/analysis/hxd/pinnxb/ indicesintheabovefittoeachmissionseparately,wefindΓXRT=– tuned/140530bgdd.pdf 0.68±1.26.ThisisharderthanthemedianΓvaluefromtheother (cid:2)c 0000RAS,MNRAS000,000–000 4 P.Gandhietal. missionsat90%confidence.Butat95%confidence,wefindthat in NGC7674 will require high spatial and spectral resolution allmissionsdoagree.Thecauseofthisslightmismatchisnotclear observations with Chandra and Athena, respectively. Our main butisunlikelytoberelatedtodifferingaperturesizesusedforex- focusistheoriginofthehigherenergyX-rays,soweusetheAPEC tracting spectra for the different missions, because we expect the andPLsoft componentssimplytoensurethatthespectralfitsover unresolvedAGNalonetobethedominantcontributorattheseen- the soft regime are statistically acceptable. In addition, we may ergies.Instead,atsoftenergies,onemayexpectspatiallyextended expect spatially extended soft emission to contribute in differing emissionandlargerdifferences,whichwewilldiscusslater.Inany amounts to the Suzaku and Swift spectra because of the differing case, since this discrepancy is relatively mild, and since all other spectral extraction apertures tuned to the sizes of the respective observations are fully consistent with each other, we consider a telescope point spread functions. We account for this simply by jointanalysisoftheNuSTAR,SuzakuXIS,andcoaddedSwiftXRT allowing the APEC components to vary independently between datatobejustified,andthisistheapproachwefollowintherestof thesetwomissions.Theonlycross-checkrequiredinthisregardis thispaper. thatthesoftX-rayfluxmeasuredbySwiftXRT(withthesmaller aperture) should not exceed that observed in Suzaku XIS. This cross-checkwasappliedpost-fittingandfoundtoholdforthebest 2.5.2 Reflectionmodels fitspresentedinthefollowingsections. Withregardtoothercomponents,somemodelspreferredsev- For the detailed spectral fits, we will be fitting X-ray reflection erallayersofabsorptioninadditiontoGalactic,asfollows: modelsovermuchofthehardX-rayenergyrange.Therearesev- eralcanonical modelsavailable forfittingheavilyobscuredAGN (i) Nuclearobscuration:Allmodelswithatransmissioncompo- spectrainXSPEC.Traditionally,PEXRAV(Magdziarz&Zdziarski nentrequiredathicknuclearabsorber,whichweassociatewiththe 1995) and its successor PEXMON including fluorescence (Nandra classical compact torus having a l.o.s. column density ‘NH(nuc)’ etal.2007)havebeenusedtocharacterisereflectionfeatures.These wellabove1024cm−2. assume a slab obscurer/reflector with an infinite optical depth, as (ii) Hostgalaxyabsorption:Most models preferred the inclu- may be expected in a standard geometrically-thin accretion disc. sionofaweakabsorberscreeningthesoftthermalandpowerlaw TheincidentsourceinX-raysisassociatedwithpowerlawradia- components (denoted by ‘NH(host)’ with values of a few times tion(PLAGN)fromahotelectronaccretiondisccorona.Morere- 1021cm−2).Thiscorrespondstoweakhostgalaxyreddeningand cently,therearemodelswhichsimulateX-rayprocessinginfinite isconsistentwithopticalreddeningoftheNarrowLineRegion,as opticaldepthtoroidalmediawhicharemorephysicallyappropriate wediscusslater. forobscuredAGN.Murphy&Yaqoob(2009)providetabulatedre- (iii) Scatteringscreen:Onealternativescenariothatwewillin- sultsofMonteCarlosimulationsofanAGNilluminatingadough- vestigate requires an additional absorbed power law continuum nutshapedtoruswithafixedopeningangleandcoveringfactorof component, which can potentially be attributed to scattering of 0.5 (the MYTORUS model). Brightman & Nandra (2011) assume, theintrinsicPLAGN intothel.o.s.Thescatteredfractionisfscatt, instead,atorusdefinedasaconicalsectionofaspherewithvari- i.e.PLscatt=fscatt×PLAGN.Absorptionisrequiredforthiscom- ableopeningangleandhencevariablecoveringfactor(theTORUS ponent, but as we will discuss later, the data cannot distinguish model). Both models assume Solar abundances and treat absorp- between the two possibilities of (a) a screen that absorbs only tion,reflectionandFeKαfluorescenceself-consistently.MYTORUS the scattered power law, and (b) a screen that affects all the additionallyallowsthefreedomtovarytheparametersofthescat- compact nuclear components (direct, reflected, as well as scat- terer,thel.o.sobscurer,andthefluorescer,decoupledfromonean- tered), with both possibilities allowed for in our analysis. We other.Bothtorusmodelsassumethatthereisnoe-foldingcut-off follow the more generic case (b) above, and term this compo- energytoPLAGN.Forconsistency,wemakethesameassumption nent‘NH(scatt).’Itshowsintermediatecolumndensityvalueswith inPEXMON.Allmodelsassumeauniformgasdensityspatialdis- NH(scatt)∼1023cm−2. tribution. Finally, we found that inclusion of a Hydrogen-like FeXXVI line Sincethegeometryoftheobscuring/reflectingmediumisun- at 6.97keV, probably related to the ionised scattered continuum, known,wewilluseallthreegeometriesaboveandinvestigatethe providedasignificantimprovementinallmodels. rangeinintrinsicpropertiesthatcansatisfytheobservations. 2.5.3 Additionalmodelcomponents Our model values at any energy E can most generically be de- scribedasfollows. Fixed Galactic absorption (PHABSGal) with NH=4.27×1020cm−2 (Dickey & Lockman 1990) was in- cluded in all models. We also included constants to account for F(E) = Ce−τ(Gal)e−τ(host)[APEC(s)+PLsoft cross-calibration uncertainties between the various detectors and +e−τ(scatt)[Torus(Γ, NH(nuc)) + PLscatt(Γ) + Line]], missions. We found that one or two APEC (Smith et al. 2001) components and a soft power law (PLsoft) were required to where‘Torus’representsoneofourthreeprimarymodelsincluding represent the energy range below ∼2keV in some models. We either(i)PEXMON(ModelP),or(ii)Brightman&NandraTORUS emphasisethatthesecomponentsaremeanttoserveasparametri- (Model T), or (iii) Murphy & Yaqoob MYTORUS (Model M), in sationsonly.Previousworkshaveshownthattheoriginofthesoft ordertomodeltheprimarynuclearobscurerandreflectorwithcol- X-ray photons in obscured AGN is a complex mixture of AGN umndensityNH(nuc).‘C’representscross-calibrationconstants, photoionisation, starburst emission, and power law contributions τ istheopticaldepthNH×σ(Ez)attherest-frameenergyEz of from X-ray binaries, among various possible origins (e.g. Sako the absorber, and ‘Line’ refers to the FeXXVI emission line. We etal.2000;Kinkhabwalaetal.2002;Cappietal.2006;Guainazzi emphasise that not all models require the complexity implied by & Bianchi 2007). Separating these various possible components theabovegenericdescriptionofcomponents. (cid:2)c 0000RAS,MNRAS000,000–000 NuSTARobservationsofNGC7674 5 1 0 0. V−1 0−3 e 1 k 1 − s s Ct 4 0− NuSTAR FPMA 1 NuSTAR FPMB Suzaku XIS/FI 5 Suzaku XIS/BI − 0 1 Swift XRT 1 10 Energy (keV) Figure1.TheNuSTAR,SuzakuandSwiftdataplottedinobservedcountrateunits. 3 RESULTS end,theSuzakuXISdatarequiretwoAPECcomponentswithtem- peratureskT≈0.1and0.6keV,whereastheSwiftXRTdataprob- 3.1 ModelP:PEXMON ingsmalleraperturesrequireonlyasinglelowertemperaturecom- We began with fitting Model P (PEXMON). This slab reflection ponent. The APEC abundances are ∼0.01–0.2. Multiple thermal model can fit the Compton hump successfully but strongly over- models with widely differing temperatures and abundances are predictstheFeKαlinestrengthwhenusingfixedabundancesatthe quite common in luminous infrared galaxies (e.g. Ranalli et al. Solarvalue.Lettingtheelementalabundance(A=AFe)varyfreely 2008) and have also been seen in other CTAGN (e.g. Konami yieldsanacceptablesolution(χ2/dof=324.7/305)withΓ=2.1+0.2, et al. 2012). There is, however, strong degeneracy between the −0.1 A=0.5±0.1andaslabinclinationofatleast77deg.Theinclina- abundancesandtemperaturesindatawithlowspatialandspectral tionaffectsthe‘peakiness’oftheComptonhump,withlowerincli- resolution, and tieing all the Suzaku and Swift model abundances nationsbeingtoo‘peaky’ascomparedtothedata.29ThismodelP toeachotheralsoyieldsanacceptablesolution(χ2/dof=332/307) solutionisplottedinFig.2andfitparametersarelistedinTable2. withaglobalabundanceA=0.27+−00..5164,aSwiftAPEC3component ThebottompanelinthesamefiguredemonstratesthestrongFeKα temperatureofkT3=0.19+−00..0038keV,andnosignificantchangesto residualswithAfixedtoSolarandΓ=2.1(fixedtothesamevalue thecorrespondingtemperaturesforthe APEC1 and APEC2 Suzaku asthecanonicalmodelP);lettingΓvaryfreelydidnotprovidea components.However,weemphasisethatwearenotattemptingto betterfitthanthatstatedinTable2. constraintheoriginofthesoftX-rayemissionindetailhere. A transmitted component of the direct AGN power law The best fit model needs only one additional layer of ab- (PLAGN)isincluded inthis model.Comptonscatteringandpho- sorbing column density NH(host)=4.0+−21..16×1021cm−2. This is toelectricabsorptionbythetorusaresimulatedwithstandardmul- a rather thin screen and corresponds to an optical extinction tiplicative models CABS and ZPHABS, respectively, with the gas EB−V=0.7+−00..43mag for a standard Galactic gas-to-dust ratio columndensityNH(nuc)tiedbetweenthetwomodels.Thebest-fit (Bohlinetal.1978).Thisisconsistentwiththereddeningexpected NH(nuc)=3.4−+00..86×1024cm−2.Thereflectioncomponentdomi- fromtheBalmerdecrementof4.80(Bassanietal.1999).Removing natestheabsorbedtransmittedcomponentovertheentirespectral this layer significantly worsens the fit to χ2/dof=342.1/306. But rangeprobed,i.e.thesourceisfullyreflection-dominated.Theex- mostofthechangeisconcentratedatthesoftestenergies(resulting cessofthereflectioncomponentisafactorof∼3around30keV. inanincreasedAPECtemperature)whichwearenotmodellingin We note that excluding the transmission component results in a detail;theprimaryAGNreflectioncomponentisunaffected. moderateincreaseinthefitstatistictoχ2/dof=334.5/306,which is only marginally significant at the 3σ level. In other words, a 3.2 ModelT:TORUS transmissioncomponentisnotstronglyrequired. Wefindthatthecross-calibrationconstantsbetweenthevar- PEXMON assumes a slab geometry with infinite density, which is ious missions are consistent with 1 within the uncertainties. The unlikelytoberepresentativeofthetoroidalobscurerenvisagedby strengthoftheFeXXVIlineisEW(FeXXVI)≈200eV.Atthesoft AGNunificationschemes.SowenextturnedtotheBrightman& Nandra TORUS model.Thisalsoallowsustoexplorealternatives to our low AFe solution, because abundances are fixed at Solar 29 Foranillustrationofthiseffect,seeFig.5ofMagdziarz&Zdziarski values in this model. In this case, an acceptable solution may be (1995). found if we effectively dilute the continuum emission from the (cid:2)c 0000RAS,MNRAS000,000–000 6 P.Gandhietal. Fe K(cid:31) Fe XXVI −1 V e 10−3 PEXMON k APEC −1 s −2 m c V 2 e 10−4 Transmitted k PL AGN or err 2 el)/ d 0 o m − −2 a at d ( 1 10 Observed frame Energy (keV) error 2 el)/ 0 d o m 2 − − ata 4 A=1 (fixed) d − ( 1 10 Figure2.PEXMONmodelfittotheSuzakuXISFI(black),XISBI(red),NuSTARFPMA(green),FPMB(blue)andSwiftXRT(cyan)data.Thecentralpanel showsthefitresiduals.TheFeabundanceforthisfitiscloseto0.5(Table2).ThebottompanelshowstheresidualstoafitwithfixedabundanceA=1.Notice thestrongover-predictionattheneutralFeKαenergy. torusattheFeKαlineenergywithastrongerscatteredcomponent affectsPL(scatt)alonealsoyieldsafullyacceptablesolutionwith (PLscatt).30 Such a solution is plotted in Fig.3, where NH(nuc) χ2/dof=323.3/300. This consistency results from the fact that is above 1025cm−2, well within the Compton-thick regime. The PLscatt completely dominates over the TORUS reflection contin- scattered fraction is fscatt≈4%, which raises the continuum at uumatenergiesofaroundafewkeV–energiesbelowwhichgas the FeKα line energy sufficiently to produce a fully acceptable withanintermediatecolumndensityof∼1023cm−2isaneffective fit(χ2/dof=320.2/300).Forthisfit,wefrozetheinclinationangle absorber(cf.Fig.3). pθilnocraotifotnheoftotrhuesftuollbreacnlgoeseoftopoedssgieb-loenc,oavseirsinrgecfoamctmoresn(dBerdigfhotrmeaxn- This above NH(scatt) column is ≈20times higher than the etal.2015).Thereareuncertaintiesinthe TORUS modelatedge- hostgalaxy absorbinglayer (NH(host))discussedintheprevious sub-section,andwouldimplycorrespondinglyhigheropticalred- oninclinations,asdiscussedbyLiu&Li(2015).Wecheckedthat varyingθincdidnotaffectourfinalinferences.Thebestfitopening dening.Sohowviableisthis?NGC7674isaknownluminousin- angleisθtor=62+−1151deg.Smalleropeninganglesproduceaworse fraredgalaxywithongoingstarformationandphysicalinteractions withitsneighbouringgalaxies–allofwhichcouldresultinobscur- fitbecausetheyresultinComptonhumpspeakierthanrequiredby thedata.31Largevaluesofθtorarealloweduptoθtor=77deg,be- ingmatterbeingstrewnaroundthehostgalaxyonmultiplescales. Otherexamplesofnearbygalaxieswithcomplexmultiplelayersof yondwhichthetoruseffectivelybecomestoogeometricallythinto absorptionidentifiedbyNuSTARincludeNGC7582(Riversetal. produceasufficientlystrongComptonhump. 2015)andIC751(Riccietal.2016).Therefore,thepresenceofan In this model, however, an additional intermediate column obscurer NH(scatt)∼1023cm−2 is required, so as not to over- additionalabsorberintheinnermostpartsofthehostgalaxywhich obscurestheemergentfluxfromthenuclearregionsisnotimplau- produce the soft X-ray flux. We note that in our model configu- ration, NH(scatt) affects PLscatt as well as the compact nuclear sible. TORUS component.ButmodifyingthemodelsuchthatNH(scatt) Detailedspatiallyresolvedstudiesofthenuclearregionsofar neitherrequire,norruleout,suchascreen.Forexample,thestudy 30 See the presentation by T. Yaboob at ofFischeretal.(2013)doesnotshowanobvious[OIII]fluxdecre- mentatthenucleus,butthespatialresolutionoftheirspectralsam- http://cxc.cfa.harvard.edu/ChandraDecade/ for more plingis≈30pc,muchlargerthanthetypicalsizesofcompacttori, discussionsofsuchawarmscattererscenario. 31 seeFig.1ofBrightmanetal.(2015)foranillustrationoftheeffectof andmaypotentiallyallowforadditionalabsorbersbelowtheres- changingθtor. olutionlimit.Alternatively,theoutflowinggasassociatedwiththe (cid:2)c 0000RAS,MNRAS000,000–000 NuSTARobservationsofNGC7674 7 powerfulnuclearoutflowknowninNGC7674mayalsoserveasa We first confirmed that simply decoupling the normalisation screeningmediumforX-rays. constantofthefluorescencelineALfromthenormalisationofthe Insummary,theintroductionofNH(scatt)isclearlysomewhat ComptonscatteringcomponentAS allowedaverygoodfit(with adhocandismotivatedbytheadoptedscatteringscenarioinafixed afittedsub-unityvalueofAL=0.26±0.06)withnoextraPLscatt Solarmetallicitytorusmodel.Nevertheless,wecannotruleitout component required, equivalent to model P. The problem is that baseduponthepresentevidence,andwealsonotethatthepresence suchadecouplingcannotbeself-consistentlyinterpretedashaving ofaPLscattcomponent,itself,isnotsurprising,withthemeasured sub-Solar abundances, because of the assumption of Solar abun- fscatt valueofafewpercentbeingfullyconsistentwiththatseen dances for the Compton scattering component that produces the inothernearbyAGN(e.g. Cappietal.2006).Wehaveintroduced overallcontinuumshapeoftheComptonhump. this only as one possible scenario, and as we will discuss in the Wealsoattemptedmorecomplexscenarios,includingthepos- followingsection,morecomplexmodelscouldalleviatetheneed sibilityofhavingmultiplescatterers.Suchascenarioincludestwo forthisscreenaltogether. components inclined at orthogonal angles of 0 [face-on] and at The soft energies can be fitted in a very similar fashion to 90deg [edge-on] with AS=AL for each component, and is dis- Model P, with one difference being the presence of a significant, cussed at length by Yaqoob (2012). But these models appeared butfaint,PLsoft component.PLsoft dominatesonlyinaverynar- torequireextremedecouplingbetweenthetwoscatterers.Forin- rowenergyrangearound2keV,asaresultofwhichwefoundthat stance, allowing freely varying cross-normalisation constants be- itsphotonindexneededtobefixed,otherwisethefitattempteda tween these scatterers, the face-on reflection component (AS0 in very hard slope with contribution to the highest energy NuSTAR Yaboob’sterminology)prefersanormalisation∼>5timesstronger range.ThiscomponentisnotrequiredinmodelPbecausethere- than the edge-on component (AS90) responsible forthe l.o.s. ob- flectedcomponentismuchmoreprominentinthatcase,leavingno scuration. This implies a strong departure from the default time- deficitaround2keV(cf.Fig.2).Sincethepurposeofthiscompo- steadyilluminatedMYTORUSgeometrywithcoveringfactorof0.5. nentistoaccountforthesoftenergies,wefixedΓsoft=2.0,simi- Suchascenariowithstrongvariabilityoncharacteristictimescales lartothespectralslopeoftheemissionfromX-raybinaries(e.g. relevanttotheinnertorusisdiscussedandarguedagainstinSec- Ranallietal.2003).Wealsocheckedthatallowingsmallvariations tion4.2.3. of ΔΓsoft=±0.3 do not affect the modelling of the main AGN Alternatively, the column densities between the two scatter- component. ersmayalsobeuntied.Thisisequivalenttosimulatingaclumpy medium with the line-of-sight obscuration differing from global. Such a solution is shown in Fig.4. The spectrum can be crudely 3.3 ModelM:MYTORUS fit(χ2/dof=371/301)withalowl.o.scolumnassociatedwiththe edge on obscurer NH(nuc)=1.3(±0.3)×1023cm−2, This com- Wefirstfittedastandard‘coupled’MYTORUSmodelherewithall ponent is denoted by ‘MYT(Z90)’ in the figure, as in Yaqoob parameters between the l.o.s. and toroidal scattering components (2012). However, this also requires a very hard photon index for tTi,edantdoethaechfiottshtaetri.sTtihcisofsoχlu2/tdioonf=is3v2e5ry/3s0i0miislacroimnpesastiebnlceewtoithmboodtehl PLAGN, with Γ=1.40+−0u.08 pegged at the lower limit allowed by themodel.Theout-of-sightglobalcolumnfromtheface-onscat- pthreevdioeruisvemdoedqeulast.oQriaulancotiltuamtivneldye,nmsiotydethlsroTugahndtheMtodruifsfe(rNiHn(ethqa))t tererisNH(S0)=2.4+−10..78×1024cm−2(withcorrespondingComp- is pegged at the allowed upper model threshold of 1025cm−2 in tonscatteredandfluorescencecomponentsdenotedby‘MYT(S0)’ and‘MYT(L0)’;Ibid.).Thereismorethananorderofmagnitude model M. Similarly, θinc is just above (and very close to) the al- lowedlowermodelthresholdofθinc=60◦.Suchparameterpegging differencebetweenthetwocolumndensities.Inordertopreventthe strong normalisation departure mentioned in the preceding para- hasbeenseeninotherobjectsalso,andreflectstheconstraintofthe graph,welimitedAS0toamaximumvalueof1.20,andthefitdoes, av2sa0sl1uu4em;oeBdfaNldookHuo(gvnhiunc´cu)ettigsaeldo.im2re0ec1ttr4lyy;iLcnoatnuhspibsleumdryotodeetθlaianl.sc2a(0er1.eg5s.)u,.ltSGomafanwldlhehriiciehntctahlile-. Tinhdeeesdca,twtearnedt tforaecxticoenedisthhiigshl,imwiitt,hwfsicthattA=S00.1p2e+−gg00.e.00d46abtu1t.w20e+−stu0r.e0s7s. thatthereisnoadditionaladhocscreenassociatedwiththeafore- nationanglesarenotobscuredbythetorusinthismodel,whereas higher θinc values produce a Compton hump which is too peaky mentionedNH(scatt)componentinthisdecoupledmodel(orinany of the others discussed in this section). The overall fit statistic is relative to the data. Additional model components are also very much worse (Δχ2=+46 for a single extra dof) than the default similartomodelT.Thefittedparametersofthismodelarelistedin modelMsolutionshowninTable2. Table2andthesolutionisshowninAppendixfigureA1. Scenarioswithstrongclumpinesshavealsobeendiscussedfor Mrk3(Yaqoobetal.2015;Guainazzietal.2016).Butsuchasce- narioisnotobviouslyapplicabletoNGC7674.Mrk3isknownto 3.3.1 DecoupledMYTORUSmodel becontinuouslyvariableinfluxandline-of-sightcolumndensity, We next tried several versions of the more complex ‘decoupled’ whereasNGC7674hasbeenstablesincetheBeppoSAXobserva- mode in MYTORUS.Inthis mode, the direct l.o.s.absorption, the tions in 1996. Furthermore, it is clear from the discussion of the toroidalComptonscatteringemission,andthefluorescenceemis- peggedphotonindexandnormalisationvaluesabovethatthefitis sioncomponentsarenotnecessarilycoupledtoeachother.Byvary- attemptingtoconvergeonaharder,morereflection-dominatedcon- ing the NH, the inclination angles or the relative normalisations tinuumshape,suggestingthatitdoespreferahigherline-of-sight associated with these components, one can effectively simulate a columndensity. variety of scenarios including a clumpy obscurer or varying ele- UnlessthedirectPLAGNcomponentcanberobustlydetected, mentalabundances(forexample).Thismayalsopotentiallyallow suchsolutionsarehighlycomplexanddegenerate,anddonotyield ustoremovetheneedfortheadditional‘NH(scatt)’layerthatwas anyobviousphysicallyusefulinsightsonthenuclearmediumbe- introducedinSection3.2forabsorbingthescatteredpowerlawthat yondourthreecanonicalmodelsdiscussedinTable2.Thisispar- dilutesEW(FeKα). ticularlytrueforreflection-dominatedAGNwithnodirectdetec- (cid:2)c 0000RAS,MNRAS000,000–000 8 P.Gandhietal. tion of PLAGN (e.g., see detailed discussion in Yaqoob 2012 on Gandhi et al. 2009) predicts an intrinsic L2−10 range of (6– thispoint).Therefore,althoughwecannotruleoutmorecomplex 9)×1043ergs−1 at 68% confidence, which is marginally higher modelsatthisstage,wedonotinvestigatethedecoupledmodesin than the mean best fit luminosities from our spectral analysis, greaterdetailherein.Futurehighsignal-to-noisebroadbandspec- but entirely consistent with the full confidence regions for both tra,androbustdetectionsofreflectionfeaturessuchasthefluores- models shown in Fig.5. Assuming a 6μm luminosity lower by cenceComptonshoulderwithX-raycalorimeters,couldyieldmore a factor of 2 as compared to L12 (cf. Goulding et al. 2012) to- insightonsuchmodels. gether with the L6/L2−10 relation by Stern (2015) relevant for high luminosity AGN, the predicted L2−10 decreases by a fur- ther 0.1dex. The angular resolution of the mid-infrared observa- tionsused(seeing-limitedat≈0.4arcsec)correspondstoaphysi- 4 DISCUSSION calscaleof≈0.24kpcfortheunresolvednuclearemissionatthe 4.1 Intrinsicluminosity distance of NGC7674, and represents the best direct measure of theintrinsicAGNpower,withemissionfromsurroundingstarfor- OurthreemodelsreturnintrinsicL2−10valuesrangingover ≈(3– mationbeinglargelyresolvedout.Afurthercheckonanycontam- 5)×1043ergs−1forthebestfitparametersinTable2.Thenarrow inationbynon-AGNcomponentsmaybeobtainedfromthemid- rangeoftheseluminositiesisnoteworthy,despitethedifferingge- infrared colour of NGC7674 as tabulated in the WISE/AllWISE ometriesinherenttothesemodels.Placingthisrangeinthecontext catalogue (Wright et al. 2010; Cutri et al. 2013). The W1–W2 ofotherwell-knownCTAGN,theluminosityofNGC7674issim- colouris1.16±0.03mag,whichplacesthesourceabovethecolour ilar to NGC1068, and is factor of ≈2 lower than Mrk34 (Bauer thresholdofW1–W2>0.8identifiedbySternetal.(2012)where etal.2014;Gandhietal.2014).Theformerobjectistheprototypi- themid-infraredemissionislikelytobeAGN-dominated. calreflection-dominatedAGN,whilethelatteristhemostluminous Comparing next to the [OIII] emission line, Bassani et al. knownbonafideCTAGNwithin∼250Mpc.Fortheobserved(i.e. (1999) present the [OIII]λ5007 luminosity of the source as aLbo2s−bos1r0be=d1).s5p×ec1tr0a4,2wereghsa−v1e–Fa2o−bfas1c0t=or7o.7f×≈1200−–3130etirmgse−s1locwme−r2th,aonr cLo[OrreIIcIt]i=ng3.5fo(±r 0d.u2s)t×r1e0d4d2enerigngs−1b.asTedhisupvoanlueaisBadlemrievreddeacfrtee-r theinferredintrinsicpower. ment of 4.80. Using the L2−10/L[OIII] relationship presented Inordertoestimaterealisticuncertaintiesontheintrinsiclu- in Lamastra et al. (2009) with a scatter of 0.6dex, we expect misaintioosniti(eNs,)wfoersttehpepiendtroinvseircaP2L-dAiGmNen–siothnealtwgroidpoafraΓmaentedrsnowrmhiaclh- Lw2it−h1o0u=r5sp+−e74c×tra1ll0y43meordgesl−le1daitnt6r8in%sicclounmfiidneonscitey,roavnegrela.pping well determinetheabsorption-correctedflux(andhencedirectluminos- Insummary,thebestfitX-rayluminositymeasuredfromour ity).Carryingoutfitsoverthegridyieldsaχ2valueforeachcom- spectral analysis agrees well with the multiwavelength compar- binationofΓandN,andthuseffectivelyforeachvalueofL2−10. isonsabove,especiallywhenconsideringthefullrangeofrealistic Different combinations of the two starting parameters can return uncertaintiesonthespectralmodelling(Fig.5).Thisisencouraging identicalL2−10values,sothe1-dimensionalspaceofχ2asafunc- giventhatthissourceappearstobeheavilyCompton-thickandthat tion of L2−10 is not unique. But the overall uncertainties can be thetruetorusgeometryisunknown.Broadbandspectralmodelling gaugedfromtheenvelopeofχ2contoursforallcombinations.This of high signal-to-noise X-ray data is what enables us to get such envelopeisplottedinFig.5forbothmodelsMandT.Thefigure goodagreement. showsthatrealisticL2−10 uncertaintiesspantherangeof≈(1.3– 13)×1043ergs−1,oraboutanorderofmagnitude. Our estimate of the mass of the supermassive black hole 4.1.2 ThesoftX-raycomponent (SMBH)inNGC7674isMBH<107.43M(cid:4) (seeAppendix).Us- ainbgooloumrbeetrsitc-fictoLrr2e−ct1i0onralnikgeelyofra(3n–g5e)o×f1L0B4o3l/eLrg2−s−101≈tog1e0t–h2e0rw(Vitah- TLhA0.eP5−aEbC2so≈rp4t.i5on×-c1o0r4r2ecetregds−lu1m.iTnohsisityisinfotrheboXtIhSA0P.5E–C2ckoeVmpboannedntiss combined, but is dominated by a factor of 4 by the lower tem- sudevan&Fabian2007),weestimateanEddingtonratiorangeof perature component. Using the relation for star-forming galaxies LBol/LEdd>0.09–0.29.IncludingthefullrangeofX-rayluminos- byMineoetal.(2012)betweenthethermalcomponentluminosity ityuncertaintiesexpandsthisrangetoLBol/LEdd>0.04–0.74,im- and the star formation rate (SFR), we estimate an X-ray derived plyingthepresenceofanefficientlyaccretingAGN. SFRX−ray≈9×103M(cid:4)yr−1. This may be compared to the infrared derived SFR, based 4.1.1 Multiwavelengthcomparisons uponthefar-infraredcontinuumluminosityLIRanditsrelationto SFRIR (Kennicutt1998).ForNGC7674,LIR≈1011.56L(cid:4) (Koss Multiwavelength scaling relations are very useful for compari- etal.2013),whichyieldsSFRIR≈60M(cid:4)yr−1.Thisismorethan son of intrinsic luminosity estimates, especially in the heavily twoordersofmagnitudelowerthantheestimatedSFRX−ray,and Compton-thickregimewherethedirectX-rayemissionisnotde- impliesthatstarburst-poweredAPECcomponentsaloneareanun- tected.Twocommonlyusedmultiwavelengthindicatorsofintrinsic physical representation of the soft X-ray emission in NGC7674. AGNpowerarethemid-infraredcontinuumandtheopticalforbid- Photoionisationcouldinsteadpowersomeofthis,aswehaveal- denemissionlineluminosities,inparticularthe[OIII]λ5007A˚ line readyalludedtoonseveraloccasions.Wealsonotethatuncertain- doublet(e.g. Gandhietal.2009;Lamastraetal.2009, andrefer- tiesrelatedtoabsorptioncorrectionofsoftX-rayscannotaccount encestherein).WecompareNGC7674totheserelationshere. fortheextremelyhighSFRX−ray.Ignoringabsorptioncorrections NGC7674 has been observed at high angular resolution in andusingtheobserved(i.e.absorbed)LA0.P5−EC2 directlystillresults the mid-infrared using 8m class telescopes. It is found to have a inSFRX−ray≈950M(cid:4)yr−1,farhigherthanSFRIR. 12μminfraredluminosityofL12=1.8(±0.3)×1044ergs−1 (As- We note, however, that the estimated value of SFRIR is it- musetal.2014).UsingthisvalueofL12,therelationbetweenin- selflarge.Forexample,itisabout10timesabovetheSFRofthe fraredandX-rayluminositiesforlocalAGN(Asmusetal.2015; prototypicalstarburstgalaxyM82(e.g. Telesco&Harper1980). (cid:2)c 0000RAS,MNRAS000,000–000 NuSTARobservationsofNGC7674 9 Table2.ResultsofX-rayspectralfittingtoNGC7674 Component Parameter ModelP ModelT ModelM Units PrimaryAbsorber/Reflector NH(nuc) 3.4+−00..86 36+−u10 5.5+−u2.3 1024cm−2 NH(eq) (cid:2)(cid:2) (cid:2)(cid:2) 10.0+−u4.1 1024cm−2 θinc 85+−u8 87.1f 65+−94 deg θtor – 62+−1151 – deg R –1f – – AFe 0.51+−00..1101 –‡ –‡ EW(FeKα) ................0.38+−00..1009................† keV EW(FeXXVI) ................0.20+−00..1019................† keV PLAGN Γ 2.07+−00..1151 1.80+−00..1151 1.93+−00..2182 Additionalcomponents Hostabsorption NH(host) 4.0+−21..16 3.1+−11..71 3.4+−00..22 1021cm−2 APECa1 kTapec1 0.11+−00..0032 0.12+−00..0033 0.11+−00..0044 keV Aapec1 0.1+−u0.08 0.1+−00..609 0.1+−00..807 APECa2 kTapec2 0.56+−00..0077 0.59+−00..0077 0.59+−00..0098 keV Aapec2 0.3+−00..81 0.2+−00..51 0.3+−00..52 APECa3 kTapec3 0.17+−00..0054 0.15+−00..0064 0.14+−00..0064 keV Aapec3 0.01+−0u.07 0.01+−0u.11 0.01+−0u.16 PLsoft Γsoft – 2.0f 2.0f Norm – 2.5+−11..25 2.5+−11..45 10−5phkeV−1cm−2s−1 Scattering fscatt – 3.5±1.2 6.1+−33..61 10−2 NH(scatt) – 9.4±2.5 10.6+−32..33 1022cm−2 CXXIISSFBIIcross-calib CONST 1.00±0.07 1.01±0.07 1.00+−00..0077 CXFPISMFAI cross-calib CONST 1.06+−00..0087 1.11±0.08 1.12+−00..0098 CXFPISMFBIcross-calib CONST 1.04+−00..0097 1.10+−00..0058 1.11+−00..0099 CXXIRSTFIcross-calib CONST 0.98+−00..1133 1.01±0.14 1.00+−00..1154 χ2/dof 325/305 320/300 325/300 ModelP:PEXMONcomponentfit(Nandraetal.2007). ModelM:MYTORUScoupledcomponentfit(Murphy&Yaqoob2009). ModelT:TORUSmodelcomponentfit(Brightman&Nandra2011). uunconstrainedtowithinthemodellimits.NHupperlimitsare1025cm−2and1026cm−2forMYTORUSandTORUS,respectively.APECisdefinedbetween abundancesof0to5,relativetoSolar. ffixed. †EquivalentwidthmeasuredusingasimpleGaussianatopalocallyfittedpowerlawcontinuum. aAPEC1andAPEC2representthermalcomponentsinSuzakuXIS,andAPEC3isforSwiftXRT. ‡ThesemodelsaredefinedforabundancesfixedtoSolaronly. Such high star formation is likely to power extended ionised gas withfluxF14−195=9.9+−52..14×10−12ergs−1cm−2consistentwith emission,andwewillreturntopossibleimplicationsofthisinSec- NuSTAR.Forinstance,ourmodelT,whenextrapolatedtotheen- tion4.3.3. ergyrangeof14–195keV,impliesbestfitfluxesrangingover(8.4– 9.3)×10−12 ergs−1cm−2 between the mission cross-calibration uncertainties. 4.2 Thenatureofthelong-termfluxchanges Here,weexaminetheviabilityoftheinferredlong-termde- Fig.6showsthelong-termX-raylightcurveofNGC7674overa clineanditsimplications. period of about 37years. As first noted by Bianchi et al. (2005), the source showed a decline by a factor of ∼3 in the 2–10keV 4.2.1 Onthepossibilityofcontaminationbyanothersource band between the first detection by HEAO in the late 1970s and the Ginga measurement in 1989, followed by a further order of Couldthepre-BeppoSAXfluxdeclinebeassociatedwithacontam- magnitude flux decrease in 1996 when BeppoSAX identified the inatingsource,unrelatedtotheAGN?Theobservedluminositiesat sourceasaCTAGN(Malagutietal.1998).Thereafter,thesource theHEAOandGingaepochsareabove1042ergs−1 –alreadytoo fluxhasremainedconstantwithnosignificantspectralorfluxvari- hightobeeasilyassociatedwithX-raybinaries(XRBs)withinthe ation for the past ≈20 years. This now includes the most recent hostgalaxy.AnXRBwithinourGalaxywhichjusthappenstolie Suzaku and NuSTAR observations. The individual Swift observa- alongthesamel.o.s.asNGC7674cannotberuledout,thoughthe tionsspanningtheperiodof2011–2014detailedintheAppendix highGalacticlatitude(b=–48◦)makesthisunlikely. also show fluxes or detection limits broadly consistent with Bep- RegardingcontaminationbyotherAGN,thereisonlyonepos- poSAX, Suzaku and NuSTAR. Finally, the custom analysis of the siblebrightsourceintherecent70monthallskySwift/BAThard Swift/BAT maps by Koss et al. (2013) shows a weak detection X-ray survey that could potentially have contaminated both the (cid:2)c 0000RAS,MNRAS000,000–000 10 P.Gandhi etal. Fe K(cid:31) Fe XXVI eV−1 10−3 APEC TORUS k s −1 m −2 PLscatt c V 2 10−4 e k PL soft or err 2 el)/ d 0 o m − −2 a at d ( 1 10 Observed frame Energy (keV) Figure3.Suzaku,SwiftandNuSTARdatafitswiththereflectionmodelT.ColoursareasinFig.2. MYT(L0) Fe XXVI s keV)−1−1 10−3 APEC MYT(Z9M0)Y*PTL(SAG0N) m −2 c V (2 10−4 e k PL scatt 10−5 or err 2 el)/ d 0 o m − −2 a at d ( 1 10 Observed frame Energy (keV) Figure4.DecoupledMYTORUSmodelfitwiththedirectcomponentabsorber(MYTZ90)orientationbeing90deg,andthereflectionbeingdominatedbythe face-onscattererMYTS0anditscorrespondingfluorescenceemissionfromMYTL0. HEAOandGingafieldsofview.ThisisPKS2325+093whichlies 4.2.2 Backgrounduncertainties at a separation of 0.9deg from NGC7674 and shows a BAT flux of F14−195≈3×10−11ergs−1cm−2 (Baumgartner et al. 2013). Measurementswithnon-imagingdetectorssuchastheHEAOA– However, this source lies outside the HEAO positional error box 1 Large Area Sky Survey instrument (Wood et al. 1984) and the of NGC7674 (Bianchi et al. 2005). Moreover, PKS2325+093 Ginga Large Area Counter (Turner et al. 1989) are prone to un- shows a very hard spectrum, at least in the BAT band, with certainbackgroundestimates,especiallyatlowsourcefluxlevels. ΓBAT=1.29±0.28. This is much harder than the spectral shape However, as discussed by Bianchi et al. (2005), the background inferred for the Ginga observation below ≈10keV by Bianchi fortheobservationofNGC7674isbasedonascanningobserva- etal.(2005).Althoughadrasticchangeinspectralcurvaturearound tionobtainedcloseintimetothetarget(Awakietal.1991).These 10keVcannotberuledout,thecombinedweightofevidenceap- backgroundscansresultinnoiseestimateswhicharemorereliable pearstodisfavourcontamination. thanmodelestimatestypicallyadoptedfornon-imagingdetectors. Therefore,theGingaflux,atleast,isconsideredtobereliable andissignificantlyhigherthanthatseenbysubsequentmissions, by about a factor of 10. The HEAO flux, on the other hand, may (cid:2)c 0000RAS,MNRAS000,000–000
Description: