Astronomy&Astrophysicsmanuscriptno.5942 (cid:13)c ESO20108 February5,2008 ⋆ The VIMOS-VLT Deep Survey ∼ Color bimodality and the mix of galaxy populations up to z 2 7 0 0 P.Franzetti1,M.Scodeggio1,B.Garilli1,D.Vergani1,D.Maccagni1,L.Guzzo2,L.Tresse3,O.Ilbert4,F. 2 Lamareille5,T.Contini6,O.LeFe`vre3,G.Zamorani5,J.Brinchmann7,S.Charlot8,D.Bottini1,V.LeBrun3,J.P. n Picat6,R.Scaramella9,10,G.Vettolani9,A.Zanichelli9,C.Adami3,S.Arnouts3,S.Bardelli5,M.Bolzonella5,A. a Cappi5,P.Ciliegi5,S.Foucaud12,I.Gavignaud13,A.Iovino2,H.J.McCracken8,14,B.Marano15,C.Marinoni16,A. J Mazure3,B.Meneux1,2,R.Merighi5,S.Paltani17,18,R.Pello`6,A.Pollo3,L.Pozzetti6,M.Radovich11,E.Zucca5,O. 9 1 Cucciati2,19,andC.J.Walcher3 2 1 INAF-IASFMilano,viaBassini15,I-20133,Milano,Italy v 5 e-mail:[email protected] 7 2 INAF-OsservatorioAstronomicodiBrera,ViaBrera28,Milano,Italy 0 3 Laboratoired’AstrophysiquedeMarseille,UMR6110CNRS-Universite´deProvence,BP8,13376MarseilleCedex12,France 7 4 InstituteforAstronomy,2680WoodlawnDr.,UniversityofHawaii,Honolulu,Hawaii,96822 0 5 INAF-OsservatorioAstronomicodiBologna,ViaRanzani,1,I-40127,Bologna,Italy 6 6 Laboratoired’Astrophysiquedel’ObservatoireMidi-Pyre´ne´es(UMR5572),14,avenueE.Belin,F31400Toulouse,France 0 7 CentrodeAstrofisicadaUniversidadedoPorto,RuadasEstrelas,4150-762Porto,Portugal h/ 8 Institutd’AstrophysiquedeParis,UMR7095,98bisBvdArago,75014Paris,France p 9 INAF-IRA,ViaGobetti,101,I-40129,Bologna,Italy - 10 INAF-OsservatorioAstronomicodiRoma,ViadiFrascati33,I-00040,MontePorzioCatone,Italy o 11 INAF-OsservatorioAstronomicodiCapodimonte,ViaMoiariello16,I-80131,Napoli,Italy r t 12 SchoolofPhysics&Astronomy,UniversityofNottingham,UniversityPark,Nottingham,NG72RD,UK s 13 AstrophysicalInstitutePotsdam,AnderSternwarte16,D-14482Potsdam,Germany a : 14 ObservatoiredeParis,LERMA,61Avenuedel’Observatoire,75014Paris,France v 15 Universita`diBologna,DipartimentodiAstronomia,ViaRanzani,1,I-40127,Bologna,Italy i X 16 CentredePhysiqueThe´orique,UMR6207CNRS-Universite´deProvence,F-13288MarseilleFrance 17 IntegralScienceDataCentre,ch.d’E´cogia16,CH-1290Versoix r a 18 GenevaObservatory,ch.desMaillettes51,CH-1290Sauverny 19 Universita`diMilano-Bicocca,DipartimentodiFisica-PiazzadelleScienze,3,I-20126Milano,Italy Received30June2006/Accepted11January2007 ABSTRACT Aims. Inthispaperwediscussthemixofstar-formingandpassivegalaxiesuptoz∼2,basedonthefirstepochVIMOS-VLTDeepSurvey (VVDS)data. Methods. Wecomputerest-framemagnitudesandcolorsandanalysethecolor-magnituderelationandthecolor distributions.Wealsouse the multi-band VVDS photometric data and spectral templates fitting to derive multi-color galaxy types. Using our spectroscopic dataset weseparategalaxiesbasedon astar-formationactivityindicator derivedcombining theequivalent widthof the[OII]emission lineand the strengthoftheD (4000)continuumbreak. n Results. Inagreementwithpreviousworkswefindthattheglobalgalaxyrest-framecolordistributionfollowsabimodaldistributionatz≤1, andweestablishthat thisbimodalityholdsuptoat leastz=1.5.Thedetailsoftherest-framecolor distributiondepend however onredshift andongalaxyluminosity,withfaintgalaxiesbeingbluerthantheluminousonesoverthewholeredshiftrangecoveredbyourdata,andwith galaxiesbecomingbluerasredshiftincreases.Thislatterblueingtrenddoesnotdepend, toafirstapproximation, ongalaxyluminosity.The comparisonbetweenthespectralclassificationandtherest-framecolorsshowsthatabout35-40%oftheredobjectsareinfactstarforming galaxies.Henceweconcludethattheredsequencecannotbeusedtoeffectivelyisolateasampleofpurelypassivelyevolvingobjectswithin acosmologicalsurvey.Weshowhowmulti-colorgalaxytypeshaveaslightlyhigherefficiencythanrest-framecolorinisolatingthepassive, nonstar-forminggalaxieswithintheVVDSsample.Connectedtotheseresultsisalsothefindingthatthecolor-magnituderelationsderived forthecolorandforthespectroscopicallyselectedearly-typegalaxieshaveremarkablysimilarproperties,withthecontaminatingstar-forming galaxieswithintheredsequenceobjectsintroducingnosignificantoffsetintherestframecolors.Thereforetheaveragecoloroftheredobjects doesnotappeartobeaverysensitiveindicatorformeasuringtheevolutionoftheearly-typegalaxypopulation. 1. Introduction ity has been foundto be a characteristic in the distribution of manyotherobservableslikeH emission(Baloghetal.2004), α Early-typegalaxiesarethepreferredtargetforstudiesonhow 4000Åbreak(Kauffmannetal.2003b),starformationhistory and when galaxies were formed, because of the simpler task (Brinchmannetal. 2004), or clustering (Budava´rietal. 2003; ofmodelinganoldstellarpopulationundergoingpassiveevo- Meneuxetal.2006). lutioncomparedtomodelingayoungpopulationcontinuously Because of the age of their stellar population, early-type modified by an irregular star formation history. Over the last galaxies are expected to have very red optical colors over a few years, mostly in response to the accumulating evidence ratherlargeredshiftrange.Thisexpectationhasbeenconfirmed infavorofapredominantlyoldstellarpopulationwithinearly in clusters of galaxies, where the red-sequence for morpho- type galaxies (see for a complete review Renzini 2006), the logicallyselectedearly-typegalaxieshasbeenobservedupto discussionhasfocusedontotwomainareas:thehistoryofstel- z∼1.2 (Kodama&Arimoto 1997; Stanfordetal. 1998). As a larformationandhowandwhenstarsassembledintogalaxies. result the red color has often been used as a tracer to isolate Still, a fundamentalpre-requisiteforsuch studiesis to isolate samples of early-type galaxies. Most recently the widespread fromcosmologicalsurveysasampleofearly-typegalaxiesrep- acceptanceof color bimodalityhas resulted in the use of red- resentativeofthetruegalaxypopulationatallepochsprobed. sequencegalaxies(thosethatpopulatetheredpeakofthecolor Commonly used galaxy classification schemes are based bimodaldistribution)tostudytheevolutionofearly-typegalax- purely on the morphological appearance of galaxies. It is ies,implicitlyassumingthisredpopulationtobeentirelycom- well known however that galaxies follow a number of scal- posedofold,passivelyevolvingobjects. ingrelationsinvolvingtheirstellar populationsandtheirmor- However,whilemostoftheearly-typegalaxiesareindeed phological, structural and photometric parameters. Compared red,theyarepossiblynottheonlyredobjectsincludedinasur- to their late-type counterparts, early-type galaxies have veysample.Attemptsatquantifyingthecontaminationofnon been found to be redder (color-morphological type relation, early-type, passive objects within samples of red galaxies in- Roberts&Haynes1994),moreluminous(color-magnitudere- cludebothstudiesfocusedonExtremelyRedObjects(EROs), lation, Visvanathan&Sandage 1977; Tullyetal. 1982), to be and more general surveys which target the whole bulk of the located in denser environments(morphology-densityrelation, galaxy population. Among EROs, Cimattietal. (2002), using Dressler1980),andtohaveastarformationhistorythattakes spectroscopic data for 45 objects, find a roughly equal pro- place over shorter time-scales (Sandage 1986; Gavazzietal. portion of early-type, passive galaxies and of dusty starburst 2002). objects. Among less extreme objects, in the local Universe Cosmological survey studies, faced with the difficulty of Stratevaetal. (2001) reported a significant fraction (20%) of obtaining a morphological classification for all the galaxies galaxiesmorphologicallylater than Sa in the red galaxy pop- in their sample, have often tried to take advantage of those ulation.Thisresultisconfirmedusingthedata forgalaxiesin relations to define an alternate classification scheme. Galaxy the Virgo Cluster and in the Coma Supercluster provided by color, which is by far the easiest parameter to measure for the GOLDMine database (Gavazzietal. 2003). At intermedi- a full survey sample, has been most commonly used as a ate redshift(upto z ∼ 1) variousstudiesare confirmingthese substitute for morphologicalinformation. Lately this practice results(seeforexampleKodamaetal.1999;Belletal.2004a), has become even more commonplace, since the galaxy rest- whilethenatureofredgalaxiesathigherredshiftislessclear. frame color distributions have been found to be clearly bi- However,thereareindicationsthatthefractionofmorpholog- modal. This bimodality was well known to exist within clus- ically late-type galaxies with red colors could be even higher ters of galaxies, where the early- and late-type galaxies fol- atz & 1(Stratevaetal.2001),inagreementwiththefindings lowtworatherdistinctcolor-magnituderelations,asdiscussed basedonEROsstudies. byVisvanathan&Sandage(1977)andBoweretal.(1992)for InthisworkweuseVIMOS-VLTDeepSurveyphotomet- early-type galaxies and Tullyetal. (1982) and Gavazzietal. ricandspectroscopicdata(VVDS,seeLeFe`vreetal.2005)to (1996)forlate-typeones.Thatthesamebimodalitywaspresent compare the galaxy population that can be isolated by using in a general field sample was first noticed in the local uni- either a red color selection criterion or a spectro-photometric verse by Stratevaetal. (2001) using the SDSS galaxies sam- classification. Although neither of these selection criteria can ple,andafterwardsdiscussedbymanyotherauthors(see,asan be considered entirely equivalent to a morphologicalclassifi- example, Baldryetal. 2004a,b). Belletal. (2004b) (hereafter cationinisolatingasampleofearly-typegalaxies,ourcompar- B04)andWeineretal.(2005)detectedtherest-framecolorbi- isondoesprovideanestimatefortheuncertaintiesinvolvedin modalityalsoathigherredshiftsuptoz∼1,respectivelyinthe selectingthoseobjectswithinacosmologicalsurveysample. COMBO-17andDEEP2data. Thepaperisorganizedasfollows.Insection2wedescribe Color bimodality is interpreted as just one specific signa- the VVDS galaxy sample, the data we use in this work and ture introduced by the general processes controlling galaxy we discuss the effect that the VVDS selection function could formationandevolution(Mencietal.2005;Dekel&Birnboim haveonourwork.Insection3weanalysetherest-framecolor 2006). Other similar signatures are observed, since bimodal- distributions and we demonstrate that the color bimodality is presentuptoatleastz=1.5.Thenwestudythecolorbimodal- *BasedondataobtainedwiththeEuropeanSouthernObservatory Very Large Telescope, Paranal, Chile, program 070.A-9007(A), and ityasafunctionofredshiftandofgalaxyluminosity.Insection ondataobtainedattheCanada-France-HawaiiTelescope,operatedby 4 we focusonthe red-sequencegalaxiesstudyingtheir color- theCNRSofFrance,CNRCinCanadaandtheUniversityofHawaii. magnituderelation. Insection 5, we analyse in detailthe red- P.Franzettietal.:TheVVDS-Colorbimodalityandthemixofgalaxypopulationsuptoz∼2 3 sequenceobjectsshowinghowthispopulationiscontaminated qualityflags2,3,4,9inLeFe`vreetal.2005)intheF02spectro- byanonnegligiblefractionofstarformingobjects.Weusethe scopicsample,withtherestrictionofhavingz≤2.0,inorderto strongbimodalityobservedinthe EW([OII])-D (4000)distri- ensurethatthe observedopticalandnear-infraredmagnitudes n butiontoisolateasampleofearly-typegalaxieslesscontami- providea reasonablyclose bracketing for the rest-frame opti- nated by star-forminggalaxiesthan a simple color-magnitude calmagnitudeswe use in ouranalysis. A totalof6291galax- selection.Finallyinsection6wediscussthecolorevolutionof ies areincludedin thissample with a measuredB, V, RandI thissample. magnitude;hereafterwewillrefertothissampleas“complete AllmagnitudesaregivenintheJohnson-Kron-Cousinsys- sample”. tem; the adopted cosmologyis the standard Ω = 0.3, Ω = m Λ 0.7andH =70km s−1 Mpc−1. 0 2.1.2. Rest-frameabsolutemagnitudesandcolors 2. Sampledescription Rest-frame colors for all galaxies in the “complete sample” 2.1.Thedata are computed from the absolute magnitude estimates derived 2.1.1. Observations asdescribedinAppendixAofIlbertetal.(2005).Foragiven rest-frame photometric band and a given galaxy redshift, the OursampleisselectedfromthefirstepochVVDS-Deepspec- absolute magnitude is obtained from the apparent magnitude troscopic sample within the VVDS-0226-04field (hereafter measurementwithinthe observedphotometricbandthatmost F02) (see LeFe`vreetal. 2005). This is derivedfrom a purely closelymatchestherest-frameone.Ak-correctionisthenap- magnitude limited sample (hereafter “photometric sample”), plied to take into accountthe residual difference between the including all objects in the magnitude range 17.5 ≤ I ≤ AB two photometric bands. The amplitude of the k-correction is 24.0fromacomplete,deepphotometricsurvey(LeFe`vreetal. derivedbyselectingthebest-fittinggalaxyspectratemplateto 2004). the galaxy B, V, R, I magnitude measurements. In this work Thewhole1.2deg2 field hasbeenimagedin B,V,Rand I we focus on the rest-frame U-V color, mainly because it al- withthewide-field12KmosaiccameraattheCanada-France- lows us to sample the amplitude of the 4000 Å break in the HawaiiTelescope(CFHT),reachingthelimitingmagnitudesof SpectralEnergyDistribution,whichisagoodindicatorofthe B ∼26.5,V ∼26.2,R ∼25.9,I ∼25.0.Dataarecom- AB AB AB AB galaxystellar populationage(Bruzual1983;Kauffmannetal. plete and free from surface brightness selection effects down 2003a). U-V is also a color often used by previous works on to I ≤ 24.0(seefordetailsMcCrackenetal.2003).U-band AB thepropertiesofearly-typegalaxies,bothlocally(forexample data,takenwiththeWide-FieldImagerattheESO/MPE2.2m Visvanathan&Sandage 1977; Boweretal. 1992) and at red- telescope, are available for a largefraction of the field, to the shifts up to 1 (see B04). Another advantage provided by this limitingmagnitudeofU ∼25.4(Radovichetal.2004).Inall AB choiceofrest-framephotometricbandsisthattheyarebrack- bands, apparentmagnitudeshave been measured using Kron- etedbytheobservedbandsformostoftheredshiftrangecov- like elliptical apertures (the same in all bands), with a mini- eredbyoursample.AsdiscussedinIlbertetal.(2005),typical mumKronradiusof1.2arcsec,andcorrectedfortheGalactic k-correctionuncertaintiesareoftheorderof0.04magforthe extinctionusingtheSchlegeldustmaps(Schlegeletal.1998). U-band, and of 0.11 mag for the V-band. When these uncer- ThemedianextinctioncorrectionintheI bandis∼ 0.05mag- taintiesareaddedtotheapparentmagnitudemeasurementone nitudes. (approximately0.1magforthefaintestobject),theycontribute Spectroscopic observations for about 23% of the objects toatotalcolormeasurementuncertaintyofupto0.2mag. included in the photometric magnitude limited sample have being carried out with the VIsible Multi Object Spectrograph (VIMOS, see LeFevreetal. 2003), on the UT3 unit telescope 2.1.3. Spectralindexes oftheESOVeryLargeTelescope.Thespectroscopicsampleis closetobeaperfectlyrandomsubsetoftheparentphotometric sample, with only a small bias against large angular-size ob- Forallobjectsinthe“completesample”wehaveobtainedmea- jects which can be easily corrected for (see Ilbertetal. 2005; surementsoftheequivalentwidthandlinefluxforallemission Bottinietal.2005). linesandabsorptionfeaturesdetectedintheirspectra.Allthese Observations have been reduced with the VIMOS measurementshavebeencarriedoutusingthePLATEFITsoft- InteractivePipeline and GraphicalInterface software package ware package (Lamareille et al. 2007, in preparation), which (VIPGI, see Scodeggioetal. 2005; Zanichellietal. 2005). A implements the spectral features measurementtechniques de- redshiftmeasurementhasbeenderivedfor9036galaxieswith scribed by Tremontietal. (2004). In this work we use ex- a success rate which is mildly dependent on both the galaxy clusively measurements of the [OII]λ3727 doubletequivalent apparentmagnitudeandits redshift(see thediscussiononthe width and of the 4000 Å break (D4000), using the narrow SpectroscopicSamplingRateandFigures2and3inIlbertetal. breakdefinitionproposedbyBaloghetal. (1999). Because of 2005).Themedianredshiftforthewholespectroscopicsample theVVDSobservationalset-up,thesemeasurementsarepossi- isz=0.76(seeFigure25inLeFe`vreetal.2005). ble only for objects in the redshift range 0.45 < z < 1.2, i.e. The sample we use for this work is composed of all the 4433objects(seeLeFe`vreetal.2005):hereafterwewillrefer galaxieswithsecureidentificationandredshiftmeasurement(z tothissampleas“spectroscopicsub-sample”. 4 P.Franzettietal.:TheVVDS-Colorbimodalityandthemixofgalaxypopulationsuptoz∼2 2.2.TheVVDSselectionfunction The assumption of a uniform luminosity and redshift dis- tribution for the objects within each bin is not completely re- Todiscussinameaningfulwaygalaxycolors,theirevolution, alistic. However within the two high-redshift bins, where the and their relation to other physical propertiesof galaxies, we biascanbenon-negligible,thelargerfractionoffainterobjects must consider possible biases against the inclusion of galax- (moreheavilybiasedagainst,becausetheyarelesslikelytobe ies of a given(extreme)colorin our “completesample”.Any observableabovethesampleapparentmagnitudelimit)iscom- such bias could be introduced either by the definition of the pensatedquiteeffectivelybyalargerfractionofobjectsinthe magnitude limited “photometric sample” or by some bias in lowerhalfoftheredshiftbin(lessbiasedagainst,becausetheir the efficiencyofthe redshiftmeasurementsusedto defineour smallerdistancemakesthemmorelikelytobeobservable). “completesample”. Insection3we applythisestimateofthecolorbiasintro- ducedbytheVVDSselectionfunctiontoshowthatwithinthe adopted redshift bin limits (0.2,0.6,0.8,1.2,2.0) and V-band 2.2.1. Limitingmagnitude absolute magnitude bin limits (-22, -21, -20, -19) the bias is mostly neglibgible, and does not significantly affects the ob- Within the VVDS, as in all magnitude limited surveys, the servedcolordistributions. rangeofluminositiescoveredbythesamplechangeswithred- shift, with a globaltrend towardshigherluminositieswith in- creasingz.Thefixedmagnitudelimithoweverisalsointroduc- 2.2.2. Redshiftmeasurementefficiency ingsome colorbiasatthe faintluminosityendof the sample. As the apparentmagnitudefor a galaxy in a given photomet- Anotherpossiblesourceofbiasforourdatacouldbethesys- ricbanddependsonitsluminosity,redshiftandspectralenergy tematic lossof early-typegalaxieswithinour“completesam- distribution (and therefore on its color), it is a expected that, ple”. This loss could be due either to the arguablylower effi- for a given redshift and luminosity, galaxies with rest-frame ciencyinmeasuringspectroscopicredshiftsforearly-typewith colorabovea certainvalueshouldbesystematicallyexcluded respect to late-type galaxies or to a possible bias against ob- from the sample, simply because their apparent I-band mag- servations of early-type objects in multi-object spectroscopic nitude becomes too faint, while bluer galaxies with the same surveysliketheVVDS.Thisbiasoriginatesfromthestronger luminosity are still brighter than the limiting magnitude be- clusteringoftheseobjectswithrespecttolate-typeones,which causeoftheirflatterspectrum(seeIlbertetal.2004).Toquan- cannotbematchedbecauseofMOSmaskdesignlimitations. tify how this selection effect might bias our results we have Toquantifythispossiblebiaswehaveusedthe“photomet- divided our ”complete sample” in four redshift and absolute rictype”classificationschemeproposedinZuccaetal.(2006); magnitudebins andderivedin each bin a rest-framecolorvs. theavailableopticalphotometrydataforthewholephotomet- apparentI-bandmagnituderelationusingsyntheticspectralen- ricmagnitudelimitedsamplehavebeenfittedwithlocalspec- ergydistributions(SED). traltemplatestakenfromColemanetal.(1980),supplemented with two starburst templates, to derive a photometrictype for The SEDs were obtained using publicly available stel- each galaxyin our sample. Here we are consideringthe E/S0 lar population synthesis models from Bruzual & Charlot andtheearlyspiralphotometrictypeobjectstogetherasa“pho- (Bruzual&Charlot 2003), which provide the time evolution tometricearly-typepopulation”,andthelate-typespiral,irreg- of a galaxy stellar spectrum as a function of galaxy age, star ularandstarburstphotometrictypeobjectstogetherasa“pho- formation history and stellar initial mass function. For this tometriclate-typepopulation”. work we have always used a Salpeter initial mass function We have measured the percentage of photometric early- (Salpeter 1955). For the star formation history (SFH) we fol- type objects in the whole “photometric sample” and in our low Gavazzietal. (2002) in usinga slightlymorerealistic set spectroscopic “complete sample”. These values are listed in ofSFHswithrespecttothecommonlyusedexponentiallyde- table 1 for the whole redshift range and for two subsamples creasingone.Tocoveraswidearangeofgalaxypropertiesas at lowand highredshift.Inthis case we consistentlyused for possible, we generated a wide array of synthetic SEDs (ages both samples photometric redshifts, determined as described from0to15Gyrandstarformationtime-scalesfrom0.1to25 inIlbertetal.(2006).Bycomparingthefractionofearly-type Gyr). galaxiesinthetwosamplesweestimatethatthemissingearly- Becauseofthenonnegligiblerangesofredshiftandlumi- type objectsin our spectroscopic”complete sample” are very nosityspannedbyeachofourredshiftandabsolutemagnitude few(∼4%ofthetotalnumberofobjects). bins we simulate a uniformdistributionof galaxiesinside the bin,assigntoeachofthemoneSEDandusethemtoderivethe 3. Rest-framecolorbimodality jointdistributionofapparentI-bandmagnitudeandrest-frame U-Vcolor. Color bimodality has been observed for galaxy samples from By imposing to this distribution the same apparent mag- manydifferentsurveys,andthe VVDSisno exceptionin this nitudelimit used to select the VVDS sample we can measure respect. The distribution of the rest-frame U-V color against thelikelihoodforagalaxywithagivencolortobeincludedin theabsoluteVmagnitudeforour“completesample”isshown our “complete sample” which we term “color completeness”. in figure 1, with the total sample divided into four different Whenever this completenessis too low (say . 50%) we con- redshiftintervals.Thesmallinsetineachpanelshowsthecor- siderthecorrespondingcolorstronglybiasedagainstinthebin. responding color distribution, i.e. the projection of the color- P.Franzettietal.:TheVVDS-Colorbimodalityandthemixofgalaxypopulationsuptoz∼2 5 Fig.1.Therest-frameU-VcoloragainsttheabsoluteVmagnitudeforourspectroscopic“completesample”.Thefourpanelsshowgalaxies indifferentredshiftintervals,asindicatedinthepanelsthemselves.Thesolidlineineachpanelshowsthebestfittingcolor-magnituderelation fortheredsequenceobjectswithinthegivenredshiftinterval(seesection4).Theinsetineachpanelshowsthecolordistributionforallthe objectsinthatredshiftinterval,i.e.theprojectionofthecolor-magnituderelationonthecoloraxis;noticethatweplotherepercentagesand notabsolutenumbersofobjects. magnitude relation on the U-V axis. A bimodal color distri- COMBO-17(B04)findings.Moreoverthedepthofoursample bution is observedover all four redshift intervals. We remark isallowingustoextendthedetectionofsuchabimodalityupto thatwithinourdatathebimodalityisvisibleirrespectiveofthe atleastz = 1.5(themeanredshiftforthegalaxiesinthehigh- detailed choiceof filters that one coulduse to define the rest- estredshiftbin).Thisisingoodagreementwiththegalaxyfor- frame color: we observe a rather similar bimodal distribution mation model discussed recently by Mencietal. (2005), who usinganycombinationoftheU,B,V,R,andIfilters.Theob- predict a color bimodality to be clearly present starting from servedbimodalcolordistributionisinagreementwithprevious z≈ 1.5(seetheirfigure4),asaresultoftheinterplaybetween SDSS (Stratevaetal. 2001), DEEP (Weineretal. 2005) and 6 P.Franzettietal.:TheVVDS-Colorbimodalityandthemixofgalaxypopulationsuptoz∼2 Fig.2.TheU-Vrest-framecolordistributionsforourspectroscopic“completesample”dividedintofourVmagabsolutemagnitudeandfour redshiftbins;luminosityincreasesfromthebottomtothetop,redshiftincreasesfromlefttoright.Thehistogramsscaleisshownontheleft sideoftheplot.ThesolidlineplottedinsomepanelshighlightsthecolorregionswhicharebiasedagainstbytheVVDSselectioncriteria(see paragraph2.2.1fordetails);thescalefortheselines,i.e.thefractionalbiasagainstagivencolorvalueinthesample,isshownontherightside oftheplot. themerginghistoriesofforminggalaxiesandthefeedback/star differentfrom each other,has certainly an impacton how the formationprocess. red and blue components in the color distribution presented above are populated. Equally important in this respect is the The insightthatthe bimodalrest-framecolordistributions roleoftheenvironment,drivenbythedensity-morphologyre- provideintogalaxyformationandevolutionprocessesishow- lation,andtheworkofBaldryetal.(2004b)ontheSDSSsam- ever limited, mainlybecause this bimodalityis observedonly pleillustratesthegradualchangeintheproportionofblueand when objects of all luminosities are considered at once. The redgalaxiesasabivariatefunctionofgalaxyluminosityandlo- factthatbothearly-andlate-typegalaxiesfollowsomeformof color-magnituderelation, although the two relationsare quite P.Franzettietal.:TheVVDS-Colorbimodalityandthemixofgalaxypopulationsuptoz∼2 7 Table 1. The percentage of photometric early-type objects in thewhole“photometricsample”(“Photo”columns)andinour “completesample”(“Spec”columns).Valuesarelistedforthe wholeredshiftrangeandfortworedshiftbins. Type All 0.2<z<0.8 0.8<z<2.0 Photo Spec Photo Spec Photo Spec Early 29.1 26.6 30.3 28.5 29.0 24.5 Late 70.9 73.4 69.7 71.5 71.0 75.5 caldensity.Cucciatietal.(2006)haveobtainedsimilarresults ontheVVDSdata. Theinfluencethatluminosityhasontheproportionofred andbluegalaxiesisparticularlyimportantinourstudy,because of the large redshift interval covered by our sample, and the variation in the range of luminosities that are spanned at dif- ferentredshiftsbyamagnitude-limitedsampleliketheVVDS one.Infigure2thereforewefurthersubdividedour“complete sample”,bysplittingitwithineachredshiftbinshowedinfig- ure1intofourV-bandabsolutemagnitudebins.Inagreement Fig.3.Colorevolutionoftheredsequenceasmeasuredbythevalue with the results of Baldryetal. (2004b), the global bimodal oftheinterceptoftheCMRatM =−20.Smallopencirclesandthe V colordistributionisreplacedmostlybyunimodaldistributions, dottedlinearefromB04;largefilledcirclesandthesolidlinerepresent whosepropertiesdependbothonredshiftandongalaxylumi- ourVVDSdataandthebestlinearfittothem.Theopensquarepoint nosity. It is evident that a global color-magnitude relation is at z = 0 is the U −V CMR zero point at z = 0 computed by B04 presentoverthewhole0 < z < 2redshiftinterval,withgalax- fromSDSSdata.Thethicksolidcurveshowsthecolor evolutionof iesbecomingredderastheirluminosityincreases.Atthesame thetemplatewhich,inour grid,betterapproximates aSingleStellar timewealsonoticehow,withinafixedluminositybin,galaxies Population(asingleburst0.1Gylongatz=5,followedbypurepassive becomebluerwithincreasingredshift,andthiseffectispresent evolution), and it is not a fit to the observed evolution of the color of the red sequence. Error bars on our points account only for the atallluminositiescoveredbyoursample. statisticaluncertaintiesintheCMRzero-pointdetermination Asdiscussedinsection2.2.1,thistrendtowardsbluercol- ors could be, in principle, partly due to a sample selection Table2.Thered-sequenceCMRinterceptanddispersion bias, introduced by the fixed magnitude limit used to define the VVDS sample. To demonstrate that in practice this is not thecase,withineachredshift-absolutemagnitudepanelwein- Redshift Ngalaxies (U−V)MV=−20 σ dicate with a thick solid line our estimate of the color com- 0.2−0.4 82 1.31 0.31 pleteness.Wheneverthiscompletenessislow(.50%,seedis- 0.4−0.6 123 1.22 0.25 cussion in paragraph2.2.1) the correspondingcolor is clearly 0.6−0.8 259 1.20 0.29 biased againstin oursample,and thereforethe colordistribu- 0.8−1.0 229 1.18 0.21 tionplottedforthegivenredshiftandluminositybinmightnot 1.0−1.2 133 1.16 0.18 be representative of the whole galaxy population within the 1.2−1.4 44 1.05 0.25 bin boundaries. From the figure we can clearly see that the 1.4−2.0 17 1.00 0.08 color completeness is good, with the partial exception of the 1.2 < z < 2.0 and −21 < V < −20 bin, demonstrating abs how the visible trend towards bluer color at high redshift for allluminositiesisnotartificiallycreatedbytheVVDSsample our attention on the galaxies in the read peak of the bimodal definition. distribution,underthetemporaryassumptionthattheseredob- These results are in agreementwith the findings of previ- jects can be identified with the early-type galaxy population ous redshift surveyslike the CFRS (Lillyetal. 1995) and the withinoursample.Thepropertiesofthecolor-magnituderela- Hawaii Deep Fields Survey (Cowieetal. 1996), but it is the tion(CMR)ofearly-typegalaxies(scatter,slope,andevolution firsttimethatthesefindingsareextendedsignificantlyoverthe withredshift)haveoftenbeenusedtoconstrainformationand z≈1limit. evolutionscenariosforthisgalaxypopulation(seeforexample Boweretal. 1992; Kodama&Arimoto 1997; Bernardietal. 2003). These studies were mostly based on cluster samples 4. Thecolor-magnituderelationoftheredgalaxies ofmorphologicallydefinedearly-typegalaxies,anditwasnot Whileintheprevioussectionweanalyzedthecolordistribution entirely obvious how a similar kind of analysis could be per- forthewholespectroscopic“completesample”,herewefocus formed on a sample of color-selected objects in a large high 8 P.Franzettietal.:TheVVDS-Colorbimodalityandthemixofgalaxypopulationsuptoz∼2 Table3.TheD (4000)andrest-frameEW([OII])valuesforthe 5. Thenatureoftheredpopulation:separating n Virgotemplatesplottedinfigure4 star-formingfrompassivelyevolvinggalaxies 5.1.Spectralproperties Label Type D (4000) EW([OII])(Å) n 1 dE 1.42 >−0.5 Early-typegalaxiesaredominatedbyanoldstellarpopulation 2 E/S0 1.73 >−0.5 undergoing an almost purely passive evolution, and this last 3 Sa 1.52 >−5.0 propertyiswhatmakesthemanattractivetargetforgalaxyevo- 4 Sb 1.49 >−8.0 lutionstudies.Therefore,inselectingearly-typegalaxiesfrom 5 Sc 1.18 −12.7 a global survey sample we should consider how to efficiently 6 Sd 1.05 −30.3 select passively evolving objects, and not just red galaxies or 7 Irr 1.03 −15.7 galaxiesthataremorphologicallyclassifiedasellipticalofS0. 8 BCD 1.09 −24.8 As a first step towards this goal, we start by quantifying how the contamination from late-type, star forming galaxies isaffectingthepropertiesoftheredcolor-selectedpopulation, andhowthiseffectischangingwithredshift.WeusetheVVDS spectroscopicinformationto separate our“spectroscopicsub- sample”intotwoclassesofold,mostlikelypassivelyevolving redshiftsurvey lackingthe necessary high resolution imaging andofyoung,star–formingobjects.Weremindthatthissample to perform the appropriate morphological classification. B04 isrestrictedtotheredshiftrange0.45<z<1.2(seeparagraph have demonstrated that with a large sample and good photo- 2.1);alltheanalysisdoneinthefollowingsectionsistherefore metricredshiftestimateslikethoseprovidedbytheCOMBO- limited to this redshiftrange. A more detailed analysis of the 17 survey, such kind of analysis is indeed possible. Here we spectralpropertiesofthissamplewillbepresentedinVergani followtheirproceduretostudytheredshiftevolutionofthered etal.2007(inpreparation). CMRintheVVDSsample. In figure4 (top panel)the relationbetween the equivalent Following B04, we have used our data to estimate the widthofthe[OII]λ3727line(EW[OII])andthe4000Åbreak zero-point of the CMR, keeping its slope fixed to the value (D4000) is shown for the whole “spectroscopic sub-sample”. whichhasbeendeterminedforlocalgalaxyclusters(-0.08,see BluesymbolsareobjectswithU−V <1.0,whileredsymbols Boweretal.1992).Withineachredshiftbinwefirstcorrected areobjectswithU−V >1.0.Itisclearlyvisiblefromtheplot theindividualcolormeasurementstoeliminatethefixedCMR howobjectsfollowabimodalL-shapeddistribution,withmost slope, and then we used the bi-weight estimator (Beersetal. ofthestar-formingobjectsthathavealargeEW[OII]havinga 1990) to computethe meancolor for all red galaxies,defined negligibleD4000,andvice-versamostoftheobjectsthathave (asinB04)asobjectswithrest-framecolorU-V>1.0.Thesolid astrongD4000showingnosignificant[OII]emissionintheir lineplottedineachpaneloffigure1showsthecorresponding spectra. The bottom panels of figure 4, obtained dividing the fitfortheredsequenceinthatredshiftrange. “spectroscopicsub-sample”infourredshitbins,showthatthis ThechangeinthevalueofthefittedCMRinterceptatM = bimodalityisessentiallyindependentfromredshift.Thelarger V −20asafunctionofredshiftisshowninFigure3,andtheplot- dispersionintheD4000measurementsofstar-formingobjects tedvaluesarealsosummarizedinTable2.Theevolutionofthe inthehigherredshiftbinismostlyduetothehigheruncertain- red population is quite visible; from z ∼ 0.3 to z ∼ 1.7 red tiesinmeasuringthisfeaturefordistantandfaintobjects. galaxiesbecomeblueronaverageby∼0.3mag.Thesolidline These distributions suggest a natural sub-division of the isalinearfittotheevolution:U −V = 1.355−0.206×z.The galaxy population into two classes. We define spectral early- resultsofB04ontheCOMBO-17dataareplottedforcompari- type objects (ET) galaxies in the vertical arm of the two pa- son;alsotheU−VCMRzeropointatz=0determinedbyB04 rametersdistribution,i.e.thosethatdonotshowanydetectable fromSDSSdataisshown.Ourresultsqualitativelyconfirmthe signofstarformationactivity,andwhichcanbeexpectedtoun- evolutionclaimedbyB04andextendtheirmeasurementupto dergofurtherevolutiononlyviapassiveevolutionoftheirstel- z∼2.Howeverwefindthattheamountofthisevolution,quan- larpopulation.Conversely,wedefinespectrallate-typeobjects tifiedbytheslopeoftherelation,issomewhatmilderthanthat (LT)galaxiesinthehorizontalarm,stillundergoingavigorous reported by B04, and this result is bringing the whole evolu- star formationactivity.Moreelaboratedspectralclassification tionary trend in better agreementwith the z = 0 SDSS-based schemeshavebeenproposedinthepast,likethefour-foldsub- point.Thethicklineplottedinfigure3shows,purelyasarefer- division discussed by Mignolietal. (2005), but we prefer to ence,thecolorevolutionofthesyntheticSEDwithinthemod- use here a simpler two-fold subdivision, that mirrors the one elsgriddiscussedinsection2.2.1whichbetterapproximatesa obtainedusingtherest-framecolors. SingleStellarPopulation(asingleburst0.1Gylongatz=5,fol- To a first approximation the definition of the separat- lowedbypurepassiveevolution).AsalreadynoticedbyB04, ing boundary between LT and ET galaxies in the D4000 there is a general good agreementbetween the observed evo- vs. EW[OII] parameters space could be a vertical line at lutionoftheCMRandtheexpectationsfora purelypassively EW[OII]=10Å , the approximatedetection limit for the [OII] evolvingpopulation.Ourresultsshow thatthisagreementex- line in our data. This definition, however, would lead us to tendsatleastuptoz∼2. include many objects with very low D4000 and a real, albeit P.Franzettietal.:TheVVDS-Colorbimodalityandthemixofgalaxypopulationsuptoz∼2 9 Fig.4.TheD (4000)distributionasafunctionoftherestframeEW[OII]forthewhole“spectroscopicsub-sample”(toppanel)andforthe n samesamplesubdividedintothefourindicatedredshiftbins(bottompanels).BluesymbolsareobjectswithU−V <1.0,whileredsymbols areobjectswithU−V >1.0.Only2σorhigherconfidenceD (4000)measurementsareplotted.ForEW[OII]measurementswithaconfidence n levellowerthan2σupperlimitsareplottedTheerrorbarsintheupperleftcorneroftheplotshowthetypicalmeasurementuncertaintiesfor thehigherS/Nspectra(left)andthelowerS/Nspectra(right)sub-samples.Thesolidlinedividesthesampleinthepassivepopulation(ET) andstar-formingpopulation(LT).ForcomparisonthelargenumberedcirclesaretheD (4000)/EW[OII]valuesfortheVirgoclustertemplates n fromGavazzietal.(2002)aslistedinTable3 undetected, [OII] emission in the ET sample, which is obvi- checkedvariousdefinitionsoftheET-LTseparatingboundary ously contrary to the natural definition of early-type galaxies line that would keep constant the ratio of ET to LT galaxies. asobjectswithanevolvedstellarpopulation(largeD4000;see We havebuilt a compositespectrumof the ET populationfor Kauffmannetal.2003b)andnocurrentstarformationactivity each one of the definitions so that the higher signal-to-noise (no [OII] emission line). To alleviate this problem, we have ratio thus achieved would allow a robust measurementof the 10 P.Franzettietal.:TheVVDS-Colorbimodalityandthemixofgalaxypopulationsuptoz∼2 Fig.5. a) U-V rest-frame color distribution; the shaded histogram is for the LT population, while the heavy line histogram is for the ET population. Theinset shows thesamehistograms drawn only for thehigher S/N objects. b)U-V vsV color-magnitude relation; filleddots are ET objects, tinydots areLT ones. Both plots include only the objects withredshift within the interval 0.6-0.8 from the “spectroscopic sub-sample” [OII] emission at fainter intensities. Then we have selected tant physical properties like the age of the stellar population the subdivision that minimizes the equivalent width of the andtheamountofstarformationactivitytakingplaceineach [OII] line in the composite spectrum of the resulting ET galaxy;unlikecolors,itisminimallyaffectedbytheunknown population. This optimization procedure results in a slightly amountof reddeninginside each galaxy.One possible limita- tiltedboundarylinedescribedbytherelation: tionaffectingourspectralclassificationisthefactthatanum- berofobjectswithrelativelyyoungstellar population,aswit- D (4000)+EW([OII])/15.0=0.7 nessed by the small value of their D4000, is included within n theETpopulation.Howeverweprefernottoexcludetheseob- According to this definition, ET galaxies have jectsbysomemodificationoftheET-LTseparationboundary, D (4000) + EW([OII])/15.0 above 0.7, while LT galax- because any such a modification would make our classifica- n ies are below that value. Purely for comparison, in figure 4 tion scheme much more vulnerable to progenitor bias effects we have also plotted as large numbered circles the D (4000) (vanDokkum&Franx2001).Withthecurrentschemeassoon n and EW([OII]) values measured on Virgo cluster templates asagalaxyhascompletedthebulkofitsstarformationactivity from Gavazzietal. (2002). Table 3 recaps the legend for the and is starting the purely passive evolution phase it becomes circles. It should not be surprising that our ET-LT boundary anETobject,anditremainssuchatallsubsequenttimes,asits is including early spirals within the ET population, and only stellarpopulationagesandtheD4000amplitudeinitsspectrum Sc and later types within the LT population. This is a rather increases.Instead,anysignificantstarformationactivitywould general property of classification schemes based on galaxy moveanobjecttowardstheleftinthefigure4diagram,effec- color or spectral properties. For example, the earliest spiral tivelyremovingitfromtheET population.Thisminimization galaxySEDpresentedbyColemanetal.(1980)isthattypical of progenitor bias effects on our classification scheme is the of Sbc galaxies, and this same SED was used by Lillyetal. main reason we can use a redshift-independent classification (1995)toseparateredandbluegalaxiesintheirCFRSgalaxy schemeinouranalysis. sample. Similarly, the earliest spiral galaxy color-color track usedbyAdelbergeretal.(2004)indefiningthecolorselection 5.2.Thecontaminationeffect criteriaforisolatingstar-forminggalaxiesintheredshiftrange 1<z<3isthattypicalofanSbgalaxy. Havingobtainedanearly-vs.late-typegalaxyseparationbased We consider this spectral classification as a better sub- onspectralproperties,weanalysewhatisthecolordistribution stitute for a true morphological classification with respect to of these two categories, and compare this spectral classifica- color for a number of reasons: it is based on directly mea- tionwiththe“red-peak”colorone.Figure5ashowstheglobal surable quantitiesand avoids the uncertaintiesinvolvedin es- U-V rest-frame color distribution for our “spectroscopic sub- timating rest-frame colors; it is directly based on two impor- sample”intheredshiftintervalwherethepeakoftheN(z)dis-