1 The values of the high order Bernoulli polynomials at integers and the r-Stirling numbers Miloud Mihoubi1 and Meriem Tiachachat2 USTHB, Faculty of Mathematics, RECITS Laboratory, PB 32 El Alia 16111 Algiers, Algeria. [email protected] [email protected] [email protected] 4 1 0 Abstract. In this paper, we exploit the r-Stirling numbers of both kinds in order to give explicit 2 formulae for the values of the high order Bernoulli numbers and polynomials of both kinds at integers. n We give also some identities linked the r-Stirling numbers and binomial coefficients. a J Keywords. The r-Stirling numbers; the high order Bernoulli polynomials; binomial coefficients. 3 2 MSC 2010: 11B68; 11B73; 11B83. ] T N 1 Introduction . h t a Thestudyof thehigher order Bernoulli polynomials of the bothkindshave extensively used in various m branches of mathematics and have extended in various directions. For details on the higher order [ Bernoulli polynomials of the first kind B(α)(x) one can see [13, 14, 15, 17, 19], and, for the higher n 1 order Bernoulli polynomials of the second kind b(α)(x) one can see [1, 3, 11, 12]. These polynomials n v are defined by the generating function to be 8 5 tn t α 9 B(α)(x) = exp(xt), (1) 5 n n! exp(t)−1 1. nX≥0 tn (cid:18) t (cid:19)α 0 b(α)(x) = (1+t)x. (2) 4 n n! ln(1+t) 1 nX≥0 (cid:18) (cid:19) : v (α) (α) (1) ThenumbersB := B (0)arethehighorderBernoullinumbersofthefirstkindandB := B (0) i n n n n X (α) (α) are the Bernoulli numbers of the second kind. Also, the numbers b := b (0) are the high order n n r (1) a Bernoulli numbers of the second kind and bn := bn (0) are the Bernoulli numbers of the second kind. These numbers and polynomials are connected to the r-Stirling numbers of the first and second kind n n and introduced by Broder [2, 8, 9]. k r k r Recall that the number n counts the number of permutations of the set [n] := {1,...,n} into k (cid:2) (cid:3) (cid:8) (cid:9) k r cycles such that the elements of the set [r] are in different cycles, and, the number n counts the (cid:2) (cid:3) k r number of partitions of the set [n] into k non-empty subsets such that the elements of the set [r] are (cid:8) (cid:9) in different subsets. These numbers are determined by the generating function to be n+r tn 1 (−ln(1−t))k = , (3) k+r n! k! (1−t)r n≥k(cid:20) (cid:21)r X n+r tn 1 = (exp(t)−1)kexp(rt). (4) k+r n! k! n≥k(cid:26) (cid:27)r X 1This researchis supported by the PNR project 8/U160/3172.. 2 By combining (1) and (4) we obtain n+k −1 n+r+k B(−k)(r)= , r,k ∈ N, (5) n k k+r (cid:18) (cid:19) (cid:26) (cid:27)r and by combining (2) and (3) we get n+k −1 n+r+k b(−k)(−r)=(−1)n , r,k ∈ N. (6) n k k+r (cid:18) (cid:19) (cid:20) (cid:21)r In this paper, we give formulas for the values of the high order Bernoulli polynomials at integers in terms of the r-Stirlingnumbersof both kinds. In particular, we may prove that the Bernoulli numbers of the first kind admit the following representations 2n −1 n (−1)n+j 2n n+j b = (n+1) n n j +1 n+j j (cid:18) (cid:19) j=0 (cid:18) (cid:19)(cid:20) (cid:21) X n (−1)j 2n n+j +1 = n n+j n+j j+1 j=0 (cid:18) (cid:19)(cid:26) (cid:27) X and the Bernoulli numbers of the second kind admit the following representations n (−1)n+j 2n n+j +1 B = n n n+j n+j j +1 j=0 (cid:18) (cid:19)(cid:20) (cid:21) X 2n −1 n (−1)j 2n n+j = (n+1) . n j +1 n+j j (cid:18) (cid:19) j=0 (cid:18) (cid:19)(cid:26) (cid:27) X As consequences, we give in the third section some identities linked r-Stirling numbers and binomial coefficients. The mathematical tools used are the identities (5), (6) and the Melzak’s formula [6, 7] given by α+p p (−1)j p f (α+x)= α f (−j +x)., (7) n n p α+j j (cid:18) (cid:19)j=0 (cid:18) (cid:19) X where f is a polynomial of degree n ≤ p, x := x(x−1)···(x−k+1), k ≥ 1, and x := 1. k k! 0 We use also the notation (cid:0) (cid:1) (cid:0) (cid:1) xn = x(x−1)···(x−n+1), n ≥ 1, x0 = 1 and xn = x(x+1)···(x+n−1), n ≥ 1, x0 = 1. 2 The values of the high order Bernoulli polynomials at integers For such applications of (7), we consider the Bernoulli polynomials of both kinds. Indeed, the def- (α) (α) initions (1) and (2) show that B (0) and b (0) represent (potential) polynomials in α of degree n n (α) (α) ≤ n, see [4, Thm. B, p. 141]. So, the polynomials b (x) and B (x) are also polynomials in α of n n degree ≤ n. This help to give new formulas for the high order Bernoulli polynomials in terms of the r-Stirling numbers. The following proposition gives formulas for the values of the high order Bernoulli polynomials of both kinds at non-positive integers in terms of the r-Stirling numbers of the first kind. 3 Proposition 1 Let α be a real number and p, q, r, n be non-negative integers with p ≥ n. We have b(α)(−r) = (α+q) α+p+q p (−1)n+j p n+r+r+j+j+qq r, n p α+q+j j n+j+q (cid:2) (cid:3) (cid:18) (cid:19)j=0 (cid:18) (cid:19) n X B(α)(−r) = (n+1−α+q) n+1−α+p+q p (cid:0) (−(cid:1)1)n+j p n+r+r+j+j+q+q+11 r+1. n p n+1−α+q+j j (cid:2) n+j+q (cid:3) (cid:18) (cid:19)j=0 (cid:18) (cid:19) n X (cid:0) (cid:1) Proof. Setting x = −q and replace α by α+q in (7) to get p α+q+p p f(−j−q) f (α) = (α+q) (−1)j . (8) p j α+q+j (cid:18) (cid:19)j=0 (cid:18) (cid:19) X (x) By setting f (x) =b (−r) in (8) we obtain n p (−j−q) α+p+q p b (−r) b(α)(−r)= (α+q) (−1)j n . n p j α+q+j (cid:18) (cid:19)j=0 (cid:18) (cid:19) X On using (6), the last identity being the first identity of the proposition. (α) (n+1−α) Upon using the Carlitz’s identity B (x) = b (x−1), see [3, Eqs. (2.11), (2.12)], the second n n identity is equivalent to the first one. (cid:3) For p = n and q = 0 in Proposition 1, we get the following corollary. Corollary 2 Let α be a real number and r, n be non-negative integers. We have α+n 2n −1 n (−1)n+j 2n n+r+j b(α)(−r) = α , n n n α+j n+j r+j (cid:18) (cid:19)(cid:18) (cid:19) j=0 (cid:18) (cid:19)(cid:20) (cid:21)r X 2n−α+1 2n −1 n (−1)n+j 2n n+r+j +1 B(α)(−r) = (n+1−α) . n n n n+1−α+j n+j r+j+1 (cid:18) (cid:19)(cid:18) (cid:19) j=0 (cid:18) (cid:19)(cid:20) (cid:21)r+1 X In particular, for α= 1 the values of the classical Bernoulli polynomials at non-positive integers are 2n −1 n (−1)n+j 2n n+r+j b (−r) : = b(1)(−r)= (n+1) , n n n j +1 n+j r+j (cid:18) (cid:19) j=0 (cid:18) (cid:19)(cid:20) (cid:21)r X n (−1)n+j 2n n+r+j +1 B (−r) : = B(1)(−r)= n . n n n+j n+j r+j +1 j=0 (cid:18) (cid:19)(cid:20) (cid:21)r+1 X These representations show that the classical Bernoulli numbers admit the representations 2n −1 n (−1)n+j 2n n+j b = (n+1) , n n j +1 n+j j (cid:18) (cid:19) j=0 (cid:18) (cid:19)(cid:20) (cid:21) X n (−1)n+j 2n n+j +1 B = n . n n+j n+j j +1 j=0 (cid:18) (cid:19)(cid:20) (cid:21) X Similarly to Proposition 1, the following proposition gives formulas for the values of the high order Bernoulli polynomials of both kinds at non-negative integers in terms of the r-Stirling numbers of the second kind. 4 Proposition 3 Let α be a real number and p, q, r, n be non-negative integers with p ≥ n. We have B(α)(r) = (α+q) α+q+p p (−1)j p n+r+r+q+q+jj r, n p α+q+j j n+q+j (cid:8) (cid:9) (cid:18) (cid:19)j=0 (cid:18) (cid:19) n X b(α)(r) = (n+1−α+q) n+1−α+q+p p (cid:0) ((cid:1)−1)j p n+r+r+q+q+j+j+11 r+1. n p n+1−α+q+j j (cid:8) n+q+j (cid:9) (cid:18) (cid:19)j=0 (cid:18) (cid:19) n X (cid:0) (cid:1) (x) Proof. By setting f(x) = B (r) in (8) we obtain n p (−j−q) α+q+p p B (r) B(α)(r) = (α+q) (−1)j n . n p j α+q+j (cid:18) (cid:19)j=0 (cid:18) (cid:19) X On using (5), the last identity being the first identity of the proposition. (α) (n+1−α) Upon using the Carlitz’s identity b (x) = B (x+1), see [3, Eqs. (2.11), (2.12)], the second n n identity is equivalent to the first one. (cid:3) For p = n and q = 0 in Proposition 3, we get the following corollary. Corollary 4 Let α be a real number and r, n be non-negative integers. We have α+n 2n −1 n (−1)j 2n n+r+j B(α)(r) = α , n n n α+j n+j r+j (cid:18) (cid:19)(cid:18) (cid:19) j=0 (cid:18) (cid:19)(cid:26) (cid:27)r X 2n+1−α 2n −1 n (−1)j 2n n+r+j +1 b(α)(r) = (n+1−α) . n n n n+1−α+j n+j r+j +1 (cid:18) (cid:19)(cid:18) (cid:19) j=0 (cid:18) (cid:19)(cid:26) (cid:27)r+1 X In particular, for α= 1 the values of the classical Bernoulli polynomials at non-negative integers are 2n −1 n (−1)j 2n n+r+j B (r) : = B(1)(r) = (n+1) , n n n j +1 n+j r+j (cid:18) (cid:19) j=0 (cid:18) (cid:19)(cid:26) (cid:27)r X n (−1)j 2n n+r+j +1 b (r) : = b(1)(r)= n . n n n+j n+j r+j +1 j=0 (cid:18) (cid:19)(cid:26) (cid:27)r+1 X These representations show that the classical Bernoulli numbers admit the representations 2n −1 n (−1)j 2n n+j B = (n+1) , n n j +1 n+j j (cid:18) (cid:19) j=0 (cid:18) (cid:19)(cid:26) (cid:27) X n (−1)j 2n n+j +1 b = n . n n+j n+j j +1 j=0 (cid:18) (cid:19)(cid:26) (cid:27) X Note that the above formula of Bernoulli numbers B is exactly the formula given in [10, Thm. 3.1]. n 5 Remark 5 The Genocchi numbers (G ;n ≥ 0) given by G = 2 1−22n B , n ≥ 1, see [5, Propo- n n 2n sition 2.1], can be written via the above two expressions of B as n (cid:0) (cid:1) 2n (−1)j 4n 2n+j +1 G = 4n 1−22n , n 2n+j 2n+j j +1 j=0 (cid:18) (cid:19)(cid:20) (cid:21) (cid:0) (cid:1)X 4n −1 2n (−1)j 4n 2n+j G = 2(2n+1) 1−22n . n 2n j +1 2n+j j (cid:18) (cid:19) j=0 (cid:18) (cid:19)(cid:26) (cid:27) (cid:0) (cid:1) X Furthermore, the link between the Euler and Bernoulli polynomials via the identity E (2x) = n−1 2 (B (2x)−2nB (x)), see [16, p. 88], shows that the values of the Euler polynomials at even integers n n n can be written on using the above expressions of B (−r) and B (r) as n n 2 2 E (−2r) = (B (−2r)−2nB (−r)) and E (2r) = (B (2r)−2nB (r)). n−1 n n n−1 n n n n n Remark 6 It is known that B = (−1)j j! n . Similarly of the proof of this identity, we have n j+1 j j=0 P (cid:8) (cid:9) tn ln(1+exp(t)−1) j! 1 B (r) = exp(rt)= (−1)j (exp(t)−1)jexp(rt) n n! exp(t)−1 j +1 j! n≥0 j≥0 (cid:18) (cid:19) X X which gives n j! n+r B (r)= (−1)j . n j+1 j +r j=0 (cid:26) (cid:27)r X 3 Identities linked r-Stirling numbers and binomial coefficients The above Propositions can be used to deduce relations between the r-Stirling numbers and binomial coefficients as it is shown by the following two corollaries.. Corollary 7 Let r, n, p, q, k be non-negative integers with p ≥ n. We have p j +q n+k+q+j n+k+p+q+1 n+r+j +q j (−1) q k p−j r+j +q j=0 (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19)(cid:20) (cid:21)r X n n+k+q n+k j +k = (−1)n−j (r−1)n−j q j +k k (cid:18) (cid:19)j=0 (cid:18) (cid:19)(cid:26) (cid:27) X and p j+q n+k+q+j n+k+p+q+1 n+r+j +q j (−1) q k p−j r+j +q j=0 (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19)(cid:26) (cid:27)r X n n+k+q n+k j +k = (−1)j (r−1)n−j. q j +k k (cid:18) (cid:19)j=0 (cid:18) (cid:19)(cid:20) (cid:21) X 6 Proof. For α = n+k+1 in the first identities of Propositions 1 and 3, the left hand side of the first identity of this corollary is equal to n+k b(n+k+1)(−r) and the left hand side of the second identity k n is equal to n+k B(n+k+1)(r) and use the fact that: k n (cid:0) (cid:1) (cid:0)B(n+(cid:1)k+1)(x) = b(−k)(x−1) n n dn ln(1+t) k = (1+t)x−1 dtn t ! (cid:18) (cid:19) t=0 n! dn+k = (ln(1+t))k(1+t)x−1 (n+k)!dtn+k t=0 (cid:16) (cid:17)(cid:12) = n! n+k n+k dj (ln(1+t))k dn(cid:12)(cid:12)+k−j (1+t)x−1 (n+k)! j dtj dtn+k−j (cid:12) j=0(cid:18) (cid:19) (cid:12) X (cid:12)t=0 n (cid:12) = 1 (−1)j n+k j+k (x−1)n−j (cid:12)(cid:12) n+k j +k k k j=0 (cid:18) (cid:19)(cid:20) (cid:21) X and (cid:0) (cid:1) b(n+k+1)(x) = B(−k)(x+1) n n dn exp(t)−1 k = exp((x+1)t) dtn t ! (cid:18) (cid:19) t=0 n! n+k n+k dj dn+k−j = (exp(t)−1)k (exp((x+1)t)) (n+k)! j dtj dtn+k−j (cid:12) j=0(cid:18) (cid:19) (cid:12) X (cid:12)t=0 n (cid:12) = 1 n+k j +k (x+1)n−j. (cid:12)(cid:12) n+k j +k k k j=0(cid:18) (cid:19)(cid:26) (cid:27) X (cid:3) (cid:0) (cid:1) Below, we present some particular cases of Corollary 7. Example 1 For r = 1 in Corollary 7 we get p j +q n+k+q+j n+k+p+q+1 j +n+q+1 j (−1) q k p−j j+q+1 j=0 (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19)(cid:20) (cid:21) X n+k+q n+k = , q k (cid:18) (cid:19)(cid:26) (cid:27) p j +q n+k+q+j n+k+p+q+1 j+n+q+1 n−j (−1) q k p−j j +q+1 j=0 (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19)(cid:26) (cid:27) X n+k+q n+k = . q k (cid:18) (cid:19)(cid:20) (cid:21) Example 2 For k = 0 in Corollary 7 we get p j +q n+p+q+1 n+r+j +q n+q (−1)n−j = (r−1)n, q p−j r+j+q q j=0 (cid:18) (cid:19)(cid:18) (cid:19)(cid:20) (cid:21)r (cid:18) (cid:19) X p j +q n+p+q+1 n+r+j +q n+q (−1)j = (r−1)n. q p−j r+j +q q j=0 (cid:18) (cid:19)(cid:18) (cid:19)(cid:26) (cid:27)r (cid:18) (cid:19) X 7 Example 3 For n = 0 in Corollary 7 we get p j +q k+q+j k+q+p+1 k+q (−1)j = . q k p−j q j=0 (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) (cid:18) (cid:19) X Corollary 8 Let r, n, p, q, k be non-negative integers with p ≥ n. We have p n+p+q+k+1 q+j q+k+1+j n+r+q+k+1+j j (−1) p−j j k r+q+k+1+j j=0 (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19)(cid:20) (cid:21)r X n+p+q+k+1 n+k+r n = (−1) n+k k+r (cid:18) (cid:19)(cid:20) (cid:21)r and p n+p+q+k+1 q+j q+k+1+j n+r+q+k+1+j j (−1) p−j j k r+q+k+1+j j=0 (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19)(cid:26) (cid:27)r X n+p+q+k+1 n+k+r = . n+k k+r (cid:18) (cid:19)(cid:26) (cid:27)r Proof. Choice α = −k with k+1 ≤ q in the first identities of Propositions 1 and 3, the left hand side of the first identity of this corollary is equal to n+k n+p+q b(−k)(−r) and the left hand side of the k n+k n second identity is equal to n+k n+p+q B(−k)(r) and use the identities given by (5) and (6). After k n+k n (cid:0) (cid:1)(cid:0) (cid:1) that, replace q by q+k+1. (cid:3) (cid:0) (cid:1)(cid:0) (cid:1) Example 4 For k = 0 in Corollary 8 we get p n+p+q+1 q+j n+r+q+1+j n+p+q+1 (−1)j = rn, p−j j r+q+1+j n j=0 (cid:18) (cid:19)(cid:18) (cid:19)(cid:20) (cid:21)r (cid:18) (cid:19) X p n+p+q+1 q+j n+r+q+1+j n+p+q+1 (−1)j = rn. p−j j r+q+1+j n j=0 (cid:18) (cid:19)(cid:18) (cid:19)(cid:26) (cid:27)r (cid:18) (cid:19) X Example 5 For n = 0 in Corollary 8 we get p p+q+k+1 q+j q+k+1+j p+q+k+1 (−1)j = . p−j q k k j=0 (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) (cid:18) (cid:19) X References (x) [1] A. Adelberg, Arithemetic properties of the N¨orlund polynomial B . Discrete Math. 284 (1999) n 5-13. [2] A. Z. Broder, The r-Stirling numbers. Discrete Math., 49 (1984), 241-259. [3] L.Carlitz, AnoteonBernoulliandEulerpolynomials ofthesecond kind.Scripta Math. 25(1961) 323–330. [4] L. Comtet, Advanced Combinatorics. D. Reidel Publishing Company, Dordrecht-Holland / Boston-U.S.A, (1974). 8 [5] S.Herrmann,Genocchinumbersandf-vectors ofsimplicialballs.European J. Combin.29(2008), 1087–1091. [6] Z. A. Melzak, V. D. Gokhale, and W. V. Parker, Advanced Problems and Solutions: Solutions: 4458. Amer. Math. Monthly, 60 (1) 1953, 53–54. [7] Z. A. Melzak, D. J. Newman, P. Erd¨os, G. Grossman, and M. R. Spiegel, Advanced Problems and Solutions: Problems for Solution: 4458-4462. Amer. Math. Monthly, 58 (9): 636, 1951. [8] I. Mez˝o, On the maximum of r-Stirling numbers. Adv. Applied Math. 41 (2008), 293–306. [9] M. Mihoubi, H. Belbachir, Linear recurrences for r-Bell polynomials. Preprint. [10] R. K. Muthumalai, A note on Bernoulli numbers. Notes on Number Theory and Discrete Mathe- matics, 19 (1), 2013, 59–65. [11] T. R. Prabhakar, S. Gupta, Bernoulli polynomials of the second kind and general order. Indian J. pure appl. Math., 11 (10) 1980, 1361-1368. [12] S .Roman, The Umbral Calculus. Academic Press, INC, (1984). [13] H. M. Srivastava, A´. Pint´er, Remarks on some relationships between the Bernoulli and Euler polynomials. Appl. Math. Lett. 17 (4) (2004) 375–380. [14] H. M. Srivastava, An explicit formula for the generalized Bernoulli polynomials. J. Math. Anal. Appl. 130 (1988) 509–513. [15] H.M.Srivastava, J.Choi, Seriesassociated with thezeta andrelated functions.KluwerAcademic Publishers, Dordrecht, 2001. [16] H. M. Srivastava, J. Choi, Zeta and q-zeta functions and associated series and integrals, First edition 2012. [17] P. G. Todorov, On the theory of the Bernoulli polynomials and numbers. J. Math. Anal. Appl. 104 (1984) 309–350. [18] J. Worpitzky, Studien uber die Bernoullischen und Eulerschen Zahlen. J. Reine Angew. Math., 94, 1983, 203-232. [19] Z. Zhang, H. Yang, Several identities for the generalized Apostol Bernoulli polynomials. Comput. Math. Appl. 56 (2008) 2993 2999.