ebook img

The uncertainty principle for operators determined by Lie groups PDF

2 Pages·0.08 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The uncertainty principle for operators determined by Lie groups

THE UNCERTAINTY PRINCIPLE FOR OPERATORS DETERMINED BY LIE GROUPS 3 0 0 2 JENSGERLACHCHRISTENSEN n a Abstract. ForunboundedoperatorsA,BandCingeneral,thecommutation J relation [A,B] = C does not lead to the uncertainty relation kAukkBuk ≥ 5 12|hCu,ui|.IfA,BandCarepartofthegeneratorsofaunitaryrepresentation 2 ofaLiegroupthentheuncertaintyprincipleaboveholds. ] G If A and B are self-adjoint or skew-adjoint operators then D 1 . (1) kAukkBuk≥ |h[A,B]u,ui| for all u∈D([A,B]) h 2 t a Theoperator[A,B]neednotbe closed,andifC =[A,B],the extendedinequal- m ity [ 1 (2) kAxkkBxk≥ |hCx,xi| for all x∈D(A)∩D(B)∩D(C). 2 2 v 2 need not be valid. K. Kraus [4] showed that (2) holds when A,B and C are 0 infinitesimal generators of a unitary representation of a Lie group of dimension 0 ≤3. The resultof K.Krauswas slightlyextended by G.B.Follandand A.Sitaram 1 in[1,Theorem2.4],butthenecessityofthedimensionconstraintwasleftasanopen 0 problem. Inthepresentpaperthedimensionconstraintisshowntobeunnecessary, 3 0 by means of some results by I.E. Segal in [2]. / If (H,π) is a unitary representation of a Lie group G and R is a right-invariant h vector field, then by Stone’s theorem one can define the closed skew-adjoint (by t a Lemma3.1.13in[2])operatorπ(R)suchthatπ(exptR)=exp(π(tR))forallt∈R. m Then [π(X),π(Y)]⊆π([X,Y]). : v Theorem. Let G be a Lie group with Lie algebra g, and let (H,π) be a unitary i X representation of G. Suppose that X,Y ∈g. Then r 1 a kAxkkBxk≥ |hCx,xi| for all x∈D(A)∩D(B)∩D(C) 2 holds with A=π(X),B =π(Y) and C =π([X,Y]). Lemma. Let σ be the modular function on G. Given a right-invariant vector field R on G, let L be the corresponding left-invariant vector field, and let γ = ddtσ(exp(tR))|t=0. (a) If f ∈C∞(G) and f∗(g)=f(g−1)σ(g), then π(Rf∗)∗ =π(Lf)+γπ(f). c (b) There is a sequence {fn} in Cc∞(G) such that π(fn)u→u and π(Rfn)u+ π(Lfn)u+γπ(fn)u→0 for all u∈H. 2000 Mathematics Subject Classification. Primary22E45,47B15,47B25,81Q10. Theauthor wishestothankHenrikSchlichtkrullforhisproofreadingandkindsupervision. 1 2 JENSGERLACHCHRISTENSEN Proof. (a) is simply Lemma 3.1.7 in [2] using the fact that f∗∗ =f. (b) is Lemma 3.1.8 and Lemma 3.1.9 in [2], and π(fn)u→u has been proved in [3, p.56]. (cid:3) ToprovethetheoremIwillfirstshowthatforR∈githoldsthatπ(R)π(fn)u→ π(R)uforu∈D(π(R)). FixR∈gandletLbetheleft-invariantvectorfieldcorre- sponding to R. Note that for all f ∈C∞(G) it holds that π(f)π(R)⊆−π(Rf∗)∗, c since hπ(f)π(R)u,vi=hu,−π(Rf∗)vi for all u∈D(π(R)) and v ∈H. Hence π(f)π(R)⊆−π(Lf)−γπ(f) by (a) of the lemma. But then π(R)π(fn)u−π(fn)π(R)u=π(Rfn)u+π(Lfn)u+γπ(fn)u foranyu∈D(π(R)). By (b) inthe lemma this tends to0 andsinceπ(fn)π(R)u→ π(R)u it follows that π(R)π(fn)u→π(R)u. Now let A,B and C be as in the theorem. For any u ∈ D(A)∩D(B)∩D(C) it follows that π(fn)u → u, Aπ(fn)u → Au, Bπ(fn)u → Bu and Cπ(fn)u → Cu. Sincethe G˚ardingvectorπ(fn)uisinD([A,B])by[3,p.56]the inequality(1)gives (2) as desired. References [1] Gerald B. Folland and Alladi Sitaram, The Uncertainty Principle: A Mathematical Survey, TheJournalofFourierAnalysisandApplications,Vol.3,Number3,207–238,1997 [2] I.E.Segal,Aclassofoperatoralgebraswhicharedeterminedbygroups,DukeMath.Journal, Vol.18,221–265,1951 [3] Anthony W. Knapp, Representation Theory of Semisimple Groups, Princeton University Press,Princeton,NewJersey,1986 [4] K.Kraus, A Further Remark on Uncertainty Relations, Zeitschriftfu¨rPhysik,201, 134–141, 1967 MatematiskInstitut, KøbenhavnsUniversitet Current address: Universitetsparken5,2100KøbenhavnØ,Denmark E-mail address: [email protected] URL:http://www.math.ku.dk/~vepjan

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.