ebook img

The tri-pentagonal number theorem and related identities PDF

0.19 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The tri-pentagonal number theorem and related identities

THE TRI-PENTAGONAL NUMBER THEOREM AND RELATED IDENTITIES 8 0 ALEXANDERBERKOVICH 0 2 Abstract. IrevisitanautomatedproofofAndrews’pentagonalnumberthe- n orem found by Riese. I uncover a simple polynomial identity hidden behind a his proof. I explain how to use this identity to prove Andrews’ result along J withavarietyofnewformulasofsimilartype. Irevealaninterestingrelation 0 betweenthetri-pentagonaltheoremanditems(19),(20),(94),(98)onthecel- 2 ebrated Slater list. Finally,Iestablishanew infinitefamilyofmultipleseries identities. ] T N . 1. Introduction h t a The Gaussian or q-binomial coefficients are polynomials in q defined by m [ n+m := ((qq))nn(+q)mm, if n,m∈N, 1 (cid:20) n (cid:21)q (0, otherwise. v Here (q) = n (1 qj). We shall require the more general q-shifted factorials 8 n j=1 − defined by 0 Q 0 1, if n=0, 3 1. (a)n =(a;q)n := jn=−01(1−aqj) if n>0, 0 Q−j=n1 1−a1q−j if n<0. 8 0 We note that Q 1 : =0, if n<0, v (q) n i X and that L 1 r lim = . a L→∞(cid:20)j(cid:21)q (q)j Here and hereafter q <1. We shall also use the following notations | | k (a ,a ,...,a ) =(a ,a ,...,a ;q) := (a ) , 1 2 k n 1 2 k n i n i=1 Y (a) =(a;q) := lim (a) , ∞ ∞ n n→∞ q [z;q] :=(z, ) . ∞ ∞ z 2000 Mathematics Subject Classification. 33D15,11B65. Key words and phrases. multidimensional q-binomial identities, quintuple product identity, Baileylemmas,rationalfunctionidentities,recursionrelations. ResearchwassupportedinpartbyNSAgrantH98230-07-01-0011. 1 2 ALEXANDERBERKOVICH The literature on q-series abounds with numerous identities of the type ∞ 2L A(i,q) =B(L,q). (1.1) L i i=−∞ (cid:20) − (cid:21)q X For example, ∞ (−1)jq(2j) L2Lj =δL,0, (1.2) j=−∞ (cid:20) − (cid:21)q X ∞ ( 1)jq(j2) 2L =( 1)LqL2(q;q2)L, (1.3) − L j − j=−∞ (cid:20) − (cid:21)q2 X ∞ ( 1)jq2(2j) 2L =qL(q;q2)L. (1.4) − L j j=−∞ (cid:20) − (cid:21)q X Here δ is the Kronecker delta and i := i(i−1). i,j 2 2 The observant reader might have recognized (1.2) as a special case of (cid:0) (cid:1) ∞ (−1)jzjq(j+21) 2LL+ja =(1z)L+a(qz)L, (1.5) j=−∞ (cid:20) − (cid:21)q X where a N. The above formula is due to Cauchy. It is a finite form of the ∈ celebrated Jacobi triple product identity ∞ ( 1)jzjq(j+21) =(q)∞[qz;q]∞. (1.6) − j=−∞ X As for the formulas (1.3) and (1.4), they are, essentially, items G(4) and E(3), respectively, in Slater’s table [9]. Severalyearsago,Andrews[1]revisitedtheumbralmethodsusedbyL.J.Rogers. In [1], he discussed multidimensional identities of the form 2L A(L,q) =F(L,q), L+i i (cid:20) (cid:21)q X where L=(L ,L ,...,L ), i=(i ,i ,...,i ) and 1 2 d 1 2 d d 2L 2L k = . L+i L +i (cid:20) (cid:21)q k=1(cid:20) k k(cid:21)q Y In particular, he proved that ( 1)i+j+kq(i+j2+k) 2L 2M 2N − L i M j N k iX,j,k (cid:20) − (cid:21)q(cid:20) − (cid:21)q(cid:20) − (cid:21)q (1.7) (q) (q) (q) = 2L 2M 2N , (q) (q) (q) L+M−N L+N−M M+N−L and that ( 1)iq(i+2j) 2L 2M =( 1)L(q;q2)L(q2;q2)M(−1)M−L. (1.8) − L i M j − (q) i,j (cid:20) − (cid:21)q(cid:20) − (cid:21)q M−L X THE TRI-PENTAGONAL NUMBER THEOREM AND RELATED IDENTITIES 3 We note that (1.7) is a three-dimensional generalization of (1.2). Indeed, if we let N =0, we obtain that (−1)i+jq(i+2j) L2Li M2Mj =(q)2LδL,M. (1.9) i,j (cid:20) − (cid:21)q(cid:20) − (cid:21)q X If we now set M = 0 we end up with (1.2), as claimed. Also, (1.8) with M = 0 reduces to (1.2). On the other hand, (1.8) with L = 0 becomes (1.5) with z = 1, a=0. − In what follows, we will use a small variant of (1.9) (−1)i+jq(i+j2+1) 2LL+i1 2MM +j1 =−(q)2L+1δL,M. (1.10) i,j (cid:20) − (cid:21)q(cid:20) − (cid:21)q X To verify that (1.10) holds for M =0 (or L=0) we use (1.5) twice as follows ( 1)i+jq(i+j2+1) 2L+1 1 = − L i j i,j (cid:20) − (cid:21)q(cid:20)− (cid:21)q X ( 1)iq(i+21) 2L+1 ( 1)iq(2i) 2L+1 = − L i − − L i i (cid:20) − (cid:21)q i (cid:20) − (cid:21)q X X (1) (q) (q) (1) =0 (q) δ = (q) δ . L+1 L L+1 L 1 L,0 2L+1 L,0 − − − In [8], Riese used his qMultiSum package to provide a simple recurrence proof of (1.7). In the next section, I will rederive and generalize Riese’s recurrences. As a bonus, I will get a uniform proof of (1.7) – (1.10). Moreover, I will show that the same proof can be employed to establish four new identities: ( 1)iq(i+j)2 2L 2M − L i M j Xi,j (cid:20) − (cid:21)q2(cid:20) − (cid:21)q2 (1.11) (q;q2) =( 1)M L−M (q2;q4) (q2;q4) , − ( q;q2) L M L−M − ( 1)i+jq(i+2j) 2L 2M =( 1)L+Mq(L−M)2 (q)2M , (1.12) − L i M j − (q) i,j (cid:20) − (cid:21)q(cid:20) − (cid:21)q2 M−L X ( 1)i+jq2(i+2j) 2L 2M − L i M j i,j (cid:20) − (cid:21)q(cid:20) − (cid:21)q2 (1.13) X =qL−M(q;q2) ( q;q2) (q2(L+1−M);q2) , L 2M M − and ( 1)i+j+kq(i+j2+k) 2L 2M 2N − L i M j N k i,j,k (cid:20) − (cid:21)q2(cid:20) − (cid:21)q2(cid:20) − (cid:21)q2 (1.14) X =(q;q2) (q;q2) (q;q2) . L+M−N L+N−M M+N−L We remark that (1.14) is a perfect quadratic analogue of (1.7). Setting L = 0 in (1.11) yields (1.5) with q q2 and a = 0, z = 1. Setting M = 0 there yields → −q (1.5) with q q2, a=0, z = 1. Analogously, we can verify that (1.12) reduces to → q (1.2)and(1.3)andthat(1.13)reducesto(1.4)and(1.5)withq q2, a=0, z =1. → 4 ALEXANDERBERKOVICH Finally,(1.14)isathree-dimensionalgeneralizationof(1.3). Indeed,ifweletN =0 in (1.14) we get (−1)i+jq(i+2j) L2Li M2Mj =(q;q2)L+M(−1)M+Lq(L−M)2. (1.15) i,j (cid:20) − (cid:21)q2(cid:20) − (cid:21)q2 X Letting M =0 in (1.15) yields (1.3). The remainder of this manuscript is organized as follows. In the next section, I willshowhowtouseasimplepolynomialidentitytoprove(1.7)–(1.15). InSection 3,Iwillemploysomewell-knownq-binomialtransformationstoderivenewtwoand three-dimensional identities. In Section 4, I will prove, among other results, that for k 0 ≥ qN12+N22+···+Nk2+1 (q) (q) (q) (q2;q2) (q;q2) n1,...X,nk+1≥0 n1 n2··· nk nk+1 nk+nk+1 (1.16) (q4+6k;q4+6k) [q2+2k;q4+6k] ∞ ∞ = , (q) [q1+k;q4+6k] ∞ ∞ where N :=n +n + +n , 1 i k+1. i i i+1 k+1 ··· ≤ ≤ Finally, in Section 5, I will provide fresh insights into the Tri-Pentagonal Theorem 1. (Andrews) 1 ( 1)i+j+kq(i+j2+k)+i2+j2+k2 = qi2+j2+k2 . (1.17) (q)3 − (q) (q) (q) ∞ i,j,k i,j,k≥0 i+j−k i+k−j j+k−i X X Recently, this theorem was given a very interesting partition theoretical inter- pretation in [3]. 2. Simple polynomial identity and its implications It is a fair statement that one does not need a computer to check that (1 x )(1 x q)+(1 x )(1 x q) 1 1 2 2 − − − − (1 x x q)(1 x x q2) 1 2 1 2 − − − (2.1) (1 x )(1 x q)(1 x )(1 x q) 1 1 2 2 − − − − − +x x (1+q)(1 x q)(1 x q)=0 1 2 1 2 − − holds true for any x ,x ,q R. 1 2 ∈ Next, we divide (2.1) by (1 x x q)(1 x x q2) and let x = qL+a+i, x = qL−i 1 2 1 2 1 2 − − to get (1 qL+a+i)(1 qL+a+i+1) − − (1 q2L+a+1)(1 q2L+a+2) − − (1 qL−i)(1 qL−i+1) + − − (1 q2L+a+1)(1 q2L+a+2) − − (2.2) (1 qL+a+i)(1 qL+a+i+1)(1 qL−i)(1 qL−i+1) − − − − − (1 q2L+a+1)(1 q2L+a+2) − − (1 qL+a+i+1)(1 qL−i+1) +q2L+a(1+q) − − =1. (1 q2L+a+1)(1 q2L+a+2) − − THE TRI-PENTAGONAL NUMBER THEOREM AND RELATED IDENTITIES 5 2(L+1)+a If we multiply (2.2) by we deduce that (L+1) i (cid:20) − (cid:21)q 2L+a 2L+a 2L+a + +q2L+a(1+q) L (i 1) L (i+1) L i (cid:20) − − (cid:21)q (cid:20) − (cid:21)q (cid:20) − (cid:21)q (2.3) 2(L 1)+a 2(L+1)+a (1 q2L+a)(1 q2L+a−1) − = . − − − (L 1) i (L+1) i (cid:20) − − (cid:21)q (cid:20) − (cid:21)q We now define L,M L,M,q ,q 2L+a 2M +a f =f 1 2 := . a a i,j i,j L i M j (cid:18) (cid:19) (cid:18) (cid:19) (cid:20) − (cid:21)q1(cid:20) − (cid:21)q2 Obviously, (2.3) implies that L,M L,M L,M f +f +q2L+a(1+q )f a i 2,j a i,j 1 1 a i 1,j (cid:18) − (cid:19) (cid:18) (cid:19) (cid:18) − (cid:19) (2.4) L 1,M L+1,M (1 q2L+a)(1 q2L+a−1)f − =f − − 1 − 1 a i 1,j a i 1,j (cid:18) − (cid:19) (cid:18) − (cid:19) and that L,M L,M L,M f +f +q2M+a(1+q )f a i,j 2 a i,j 2 2 a i,j 1 (cid:18) − (cid:19) (cid:18) (cid:19) (cid:18) − (cid:19) (2.5) L,M 1 L,M +1 (1 q2M+a)(1 q2M+a−1)f − =f . − − 2 − 2 a i,j 1 a i,j 1 (cid:18) − (cid:19) (cid:18) − (cid:19) It is easy to combine (2.4) and (2.5) as follows L,M L,M f +q2L+a(1+q )f a i 2,j 1 1 a i 1,j (cid:18) − (cid:19) (cid:18) − (cid:19) L 1,M L+1,M (1 q2L+a)(1 q2L+a−1)f − f − − 1 − 1 a i 1,j − a i 1,j (cid:18) − (cid:19) (cid:18) − (cid:19) (2.6) L,M L,M =f +q2M+a(1+q )f a i,j 2 2 2 a i,j 1 (cid:18) − (cid:19) (cid:18) − (cid:19) L,M 1 L,M +1 (1 q2M+a)(1 q2M+a−1)f − f . − − 2 − 2 a i,j 1 − a i,j 1 (cid:18) − (cid:19) (cid:18) − (cid:19) To proceed, we require one more definition L,M,q ,q F (L,M)=F (L,M,x,y,q ,q ,q ):= xiyjqP(i+j)f 1 2 , (2.7) a a 0 1 2 0 a i,j i,j (cid:18) (cid:19) X where P(z) is some polynomial in z. Clearly, L,M L,M y2 xiyjqP(i+j−1)f =x2 xiyjqP(i+j−1)f . (2.8) 0 a i 2,j 0 a i,j 2 i,j (cid:18) − (cid:19) i,j (cid:18) − (cid:19) X X 6 ALEXANDERBERKOVICH Next, we multiply (2.6) by xiyjqP(i+j−1) and sum over i,j. Taking advantage of 0 (2.8) we derive that x q2L+a(1+q )F (L,M) (1 q2L+a)(1 q2L+a−1)F (L 1,M) 1 1 a − − 1 − 1 a − (cid:8) Fa(L+1,M) − (2.9) =y q22M+a(1+q2)Fa(L,M)−(1−q22M+(cid:9)a)(1−q22M+a−1)Fa(L,M −1) (cid:8) Fa(L,M +1) , − provided x = y . (cid:9) | | | | Observethatfora=0,1the recurrence(2.9)togetherwiththe boundaryvalues F (L,0), L 0 and F (0,M), M 0 specifies F (L,M) completely for L a a a ≥ ≥ ≥ 0, M 0. ≥ Itisplainthatthelefthandsidesin(1.8)–(1.13)and(1.15)areoftheform(2.7) with x = y = 1. It is also straightforward to check that the right hand sides | | | | there satisfy (2.9). This implies that (1.8)–(1.13) and (1.15) hold true if they hold when L 0, M = 0 and L = 0, M 0. But this is indeed the case as we saw in ≥ ≥ the Introduction. Fortunately, more is true. Define Ym(L,M,N):= ( 1)i+j+kq(i+j2+k) 2L 2M 2N . (2.10) − L+i M +j N +k i,j,k (cid:20) (cid:21)qm(cid:20) (cid:21)qm(cid:20) (cid:21)qm X Clearly,Y andY arethe lefthandsidesof(1.7)and(1.14),respectively. Multiply 1 2 (2.6) with q1 = q2 = qm by (−1)i+j+kq(i+j+2k−1) N2Nk and sum over i,j,k to (cid:20) − (cid:21)qm derive that q2Lm(1+qm)Y (L,M,N) (1 q2Lm)(1 q2Lm−m)Y (L 1,M,N) m m − − − − Y (L+1,M,N) m − =q2Mm(1+qm)Y (L,M,N) (1 q2Mm)(1 q2Mm−m)Y (L,M 1,N) m m − − − − Y (L,M +1,N). m − (2.11) We remark that (2.11) with m = 1 is, essentially, the recurrence derived by Riese in [8]. Once again, (2.11) together with the boundary values Y (0,M,N), M m ≥ 0, N 0 and Y (L,0,N), L 0, N 0 specify Y (L,M,N) completely for m m ≥ ≥ ≥ L,M,N 0. Next, we check that the right hand sides of (1.7) and (1.14) satisfy ≥ (2.11) with m = 1 and m = 2, respectively. Moreover, on the boundary these identities reduce to the two proven identities: (1.9) and (1.15). And so, (1.7) and (1.14) hold true, as claimed. The reader may wonder if the polynomial identity (2.1) can be extended to n variables : x ,x ,x ,...,x . This is indeed possible. The following generalization 1 2 3 n was suggested to me by Alain Lascoux: n n n n−1 (x ) + ( 1)t(qt−1x x x ) = (qx ) (qt ( 1)t)e , i 2 − i1 i2··· it 2 i 1 − − t+1 iY=1 Xt=1i1<iX2<···<it Yi=1 Xt=1 (2.12) where e ’s are the elementary symmetric functions in x ,x ,...,x . i 1 2 n THE TRI-PENTAGONAL NUMBER THEOREM AND RELATED IDENTITIES 7 3. q-binomial transformations We begin by recalling some well-known formulas qr2 (q)2L 2r =qj2 2L , (3.1) (q) (q) r j L j r≥0 L−r 2r(cid:20) − (cid:21)q (cid:20) − (cid:21)q X 1 L 2r 2L qL−2r( ;q2) = , (3.2) −q L−2r 2r r j L 2j r≥0 (cid:20) (cid:21)q2(cid:20) − (cid:21)q4 (cid:20) − (cid:21)q X L 2r+a 2L q2r(r+a)( q) =q2j(j+a) , (3.3) − L−2r−a 2r+a r j L 2j a r≥0 (cid:20) (cid:21)q2(cid:20) − (cid:21)q2 (cid:20) − − (cid:21)q X where a=0,1. Weremarkthat(3.1)wasusedbyBressoud[5]togiveasimpleproofoftheRogers– Ramanujan identities. It can be recognized as a special case of the Bailey Lemma initsversionduetoAndrews[2]andPaule[7]. Thetransformations(3.2)and(3.3) were introduced by Berkovichand Warnaar in [4]. In [1], Andrews applied (3.1) to (1.7) three times to obtain the tri-pentagonal theorem (1.17). It is interesting that a single application of (3.1) to (1.7) yields a new three-dimensional identity ( 1)i+j+kq(i+j2+k)+i2 2L 2M 2N − L i M j N k i,j,k (cid:20) − (cid:21)q(cid:20) − (cid:21)q(cid:20) − (cid:21)q X (3.4) =q(N−M)2(q) 2L . L+M+N L+N M (cid:20) − (cid:21)q Indeed, we have that ( 1)i+j+kq(i+j2+k)+i2 2L 2M 2N − L i M j N k i,j,k (cid:20) − (cid:21)q(cid:20) − (cid:21)q(cid:20) − (cid:21)q X (3.5) qr2 (q) (q) (q) = 2L 2M 2N . (q) (q) (q) (q) L−r r+M−N r+N−M M+N−r r≥0 X The right hand side of (3.5) can be written in the form qn2(q) (q) (q) (qn−L,qn−M−N) RHS(3.5)= 2L 2M 2N θ(L n) rqr(L+M+N+1), (q) (q) (q) ≥ (q,q2n+1) 2n L−n M+N−n r r≥0 X (3.6) where n:= N M and | − | 1, if L n, θ(L n)= ≥ (3.7) ≥ (0, otherwise. The sum in (3.6) can be evaluated by the q-Chu-Vandermonde formula [[6], (II.7)] as (q) M+N+L . (q2n+1) (q) M+N−n n+L 8 ALEXANDERBERKOVICH And so, qn2(q) (q) (q) (q) RHS(3.5)= 2L 2M 2N M+N+L (q) (q) (q) (q) M+N+n M+N−n L−n L+n =q(N−M)2 2L (q) , L+N M L+M+N (cid:20) − (cid:21)q as claimed. Obviously,(3.2)and(3.3)canalsobeemployedtoproducenewtwo-dimensional identities. For example, we can replace q by q4 in (1.9) and apply (3.2) to obtain (−1)i+jq4(i+2j) L2Li M2M2j =qM−2L(−1q;q2)M−2L 2ML (q4;q4)2L. i,j (cid:20) − (cid:21)q4(cid:20) − (cid:21)q (cid:20) (cid:21)q2 X (3.8) Or we can replace q by q2 in (1.9) and apply (3.3) with a=0 twice to get ( 1)i+jq(i+j)(i+j+1)+2i2+2j2 2L 2M − L 2i M 2j i,j (cid:20) − (cid:21)q(cid:20) − (cid:21)q X = qr2 (q2;q2)L(q2;q2)M . (3.9) (q2;q2) (q) (q) r L−r M−r r≡0 mod2, X r≥0 Analogously, replacing q by q2 in (1.10) and using (3.3) with a=1 we obtain that 2L 2M q ( 1)i+jq(i+j)(i+j+1)+2i(i+1)+2j(j+1) − − L (2i+1) M (2j+1) i,j (cid:20) − (cid:21)q(cid:20) − (cid:21)q X = qr2 (q2;q2)L(q2;q2)M . (q2;q2) (q) (q) r L−r M−r r≡1 mod2, X r>0 (3.10) 4. Two infinite families of multiple series identities If we let L in (3.9) and (3.10) we end up with the following result →∞ qr2 (q2;q2)M = (−q)a (q2;q2) (q) (q2;q2) r M−r ∞ r≡a mod2, X r≥0 (4.1) 2M ( 1)i+jq(i+j)(i+j+1)+2i(i+a)+2j(j+a) , − M 2j a i,j (cid:20) − − (cid:21)q X where a=0,1. Remarkably, the double sum on the righthand side of (4.1) can be reducedtoasinglesum. Tothis end,weperformacleverchangeofthe summation variables j 3j+r a with r =0, 1 and i i j. This yields → − ± → − 1 ∞ RHS(4.1)= 1 ( 1)r ( 1)iq3i2+i(1+2r) (q2;q2) − − ∞ r=−1 i=−∞ X X (4.2) ∞ q24j2+2j(8r+1−6δa,1)+3r2+r+δa,1(1−4r) 2M . M 6j 2r+a j=−∞ (cid:20) − − (cid:21)q X THE TRI-PENTAGONAL NUMBER THEOREM AND RELATED IDENTITIES 9 We now make use of a special case of (1.6) ∞ ( 1)iq3i2+i(1+2r) =(q2;q2) (1 δ ), r =0, 1 (4.3) ∞ r,1 − − ± i=−∞ X to simplify (4.2) further. This way we obtain qr2 (q2;q2)M = (q2;q2) (q) r M−r r≡a mod2, X r≥0 ∞ q24j2+2j(1−6δa,1)+δa,1 2M (4.4) M 6j+a − j=−∞ (cid:20) − (cid:21)q X ∞ q24j2−2j(7+6δa,1)+5δa,1 2M . M 6j+a+2 j=−∞ (cid:20) − (cid:21)q X Clearly, one could have arrived at (4.4) by taking a more direct route by applying (3.3) to the polynomial identity ∞ 2M +a 2M +a q(3j+1+a)2j =q2M(M+a), a=0,1, j=−∞ (cid:20)M −3j(cid:21)q2 −(cid:20)M −3j−1(cid:21)q2! X which is, essentially, A(5) and A(8) in [9]. However, I feel that the passage from (4.1) to (4.4) is a good warm-up exercise to prepare the reader for the development in the next section. We cannow follow a well trodden path [2] anditerate (3.1) to get for k 1 and ≥ a=0,1 qN12+···+Nk2+1(q)2M = (q) (q) (q) (q2;q2) (q;q2) n1,...,Xnk+1≥0, M−N1 n1··· nk nk+1 nk+nk+1 nk+1≡a mod2 ∞ q12(2+3k)j2+2j(1−δa,16(1+k))+(1+k)δa,1 2M (4.5) M 6j+a − j=−∞ (cid:20) − (cid:21)q X ∞ q12(2+3k)j2+2j(−7−12k−δa,16(1+k))+2+k(a+2)2+5δa,1 2M , M 6j+a+2 j=−∞ (cid:20) − (cid:21)q X whereN =n + +n , 1 i k+1. If wenowletM in(4.5)wearrive i i k+1 ··· ≤ ≤ →∞ at qN12+···+Nk2+1 = (q) (q) (q2;q2) (q;q2) n1,...,Xnk+1≥0, n1··· nk nk+1 nk+nk+1 nk+1≡a mod2 (4.6) q(1+k)δa,1 ∞ q4(2+3k)(3j−1)jz3j(1 z q8(2+3k)j), (q) a − a ∞ j=−∞ X 10 ALEXANDERBERKOVICH where a = 0,1 and za := q2+4a+4k(1+δa,1). At this stage we recall the quintuple product identity [[6], Ex. 5.6] ∞ (−1)nq3n2−1nz3n(1+zqn)=(q,−z,−zq)∞(qz2,zq2;q2)∞ n=X−∞ (4.7) [z2;q] ∞ =(q) . ∞ [z;q] ∞ This identity enables us to rewrite (4.5) as qN12+···+Nk2+1 = (q) (q) (q2;q2) (q;q2) nnk1+,1..≡.,Xank+m1≥od0,2 n1··· nk nk+1 nk+nk+1 (4.8) (q16+24k;q16+24k) q(1+k)δa,1 (q) ∞[za;q16+24k]∞[q16+24kza2;q32+48k]∞, ∞ where a=0,1. It remains to establish (1.16). To this end we add together (4.5) with a=0 and (4.5) with a = 1. This way we immediately obtain the correct left hand side of (1.16). Making use of (4.7) on the right we derive that ∞ 1 q4(2+3k)(3j−1)jz3j(1 z q8(2+3k)j)+ (q) 1 − 1 ∞ j=−∞ X q1+k ∞ q4(2+3k)(3j−1)jz3j(1 z q8(2+3k)j)= (q) 2 − 2 ∞ j=X−∞ (4.9) ∞ 1 ( 1)jq(2+3k)(3j−1)jq3(1+k)j(1+q1+kq(2+3k)2j)= (q) − ∞ j=−∞ X (q4+6k;q4+6k) [q2+2k;q4+6k] ∞ ∞ , (q) [q1+k;q4+6k] ∞ ∞ asdesired. Itisinstructivetocompare(1.16)withasomewhatsimilarformula[[2], (1.8)] qN˜12+···+N˜k2 = (q) (q) (q) (q) n1,.X..,nk≥0 n1 n2··· nk−1 2nk (4.10) (q4+6k;q4+6k) [q2+2k;q4+6k] ∞ ∞ , (q) [ q1+k;q4+6k] ∞ ∞ − where N˜ :=n + +n , 1 i k. i i k ··· ≤ ≤ 5. One-dimensional version of the tri-pentagonal theorem This paper arose from my attempt to ascertain if Andrews’ formula (1.17) was “genuinely” three-dimensional. In the course of this investigation I found that

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.