JournalofGeodynamics77(2014)186–205 ContentslistsavailableatScienceDirect Journal of Geodynamics journal homepage: http://www.elsevier.com/locate/jog The transition from Alboran to Algerian basins (Western Mediterranean Sea): Chronostratigraphy, deep crustal structure and tectonic evolution at the rear of a narrow slab rollback system MouradMedaouria,JacquesDéverchèreb,∗,DavidGraindorgeb,RabahBracenea, RabieBadjia,AziouzOuabadic,KarimYelles-Chaouched,FethiBendiabe aSONATRACHExploration,Boumerdes,Algeria bUniversitéde Brest(UBO) ,CNRSUMR 6538DomainesOcéaniques,InstitutUniversitaireEuropéendelaMer,29280Plouzané,France cDéparteme nt deGé ologie, FSTGA T,Lab.LGG IP,USTHB ,Algiers,Alge ria dC.R.A.A.G.(Ce ntr edeRech ercheen Astro nomie ,Astrop hysique etGéophysique),Bouzareah,Algiers,Algeria eEntreprise Nationa le deGéophy siq ue(ENAGEO) ,Avenuedu1e rN ovembre,BP6 8,Boumerde s,Alger ia a r t i c l e i n f o a b s t r a c t Articlehistory: TheeasternAlboranbasinanditstransitiontotheAlgerianbasinisakeyareaintheMediterranean Receiv ed19April2013 real mwher econtrov ersial kine ma ticandge od ynam icalmo delsa re pr opo sed. Mo dels implystriking R21ecDeeivceedm ibne r re2v0is1e 3d form differe nces re garding the n ature of th e cr ust, the preval ence of britt le faulting and du ctile sh ear, the originofmagmatism,thestyleofMiocenedeformationandthedrivingmechanismsoftheAlboranplate Accepted3January2014 kinematics.CombininganewchronostratigraphicchartoftheAlboranandAlgerianbasinsbasedonthe Availableonline27January2014 Habibas(HBB-1)coredrill,deepseismicsectionsstrikingWSW-ENEandSSE-NNW,andpotentialfield data,were-assessthetectonicevolutionthatcontrolledthesedimentationandbasementdeformation Keywords: ofthewesternmostlimitoftheAlgerianbasinanditstransitionwiththeAlborandomain.AWSW- Alboransea TMeicotcoennice s kinematics daliorencgte∼d1 0ex0tkemnsfioronmal Bteucrtdoingaicl iapnhatsoeT hoartso snhiaanpetdim ae sst,rwethcihcehdi scaosnstuinmeendtatlo crreussutl twfirtohm tytphiecaWl StiWlte-dd ibreloctcekds Crustalstructure migrationoftheAlboranblockdrivenbyanarrowslabrollback.IntheAlgerianbasin,thiseventwas Seismicreflection followedbytheemplacementofanoceanic-typecrust.Potentialfieldsignaturesofthedeepbasinas Potentia lfielddata wellasge om etri calcorrelation sw ith onlandoutcr opsof innerzone ssug gestamini mu mW SW- direct ed SSTlaEbP rfoalulbl tamckar gin displ ac ement of the Alboran terr ane o f ∼200 k m. At the so uther n foot of the Al ge rian basin , the continent- oceantransitionissharpandmayresultfromthewestwardpropagationofaslabtearatdepth,forming twosegmentsofSTEP(Subduction-TransformEdgePropagator)margins.Ourresultssupportmodelsof intensesheartractionsatthebaseofanoverridingplategovernedbyslabrollback-inducedmantleflow. Finally,Messiniansalttectonicsaffectedoverlyingdepositsuntiltoday.AlateTortoniantoQuaternary dominantlytranspressivetectonicepisodelinkedtotheAfrica-Iberiaconvergencepost-datesprevious events,deformingthewholemargin. ©2014ElsevierLtd.Allrightsreserved. 1. Introduction Jolivet and Faccenna, 2000; Faccenna et al., 2004; Bezada et al., 2013), a process which would have favored late (post-orogenic) The Alboran and Algerian basins are two domains of the lithosphericandcrustalthinning(PlattandVissers,1989;Comas westernmost Mediterranean Sea that formed within the zone of et al., 1992, 1999; García-Duen˜as et al., 1992; Maldonado et al., convergence between the African and Eurasian plates. The Alb- 1992;Wattsetal.,1993)coevalwithwidespreadmagmatismand oran domain locates at the center of the Gibraltar Arc System, volcanism(Duggenet al., 2004, andreferencestherein)and also an arcuate Alpine range comprising the Betic and Rif mountains with thrusting and shortening of the external zones of the Betic (Fig.1).BothbasinsareoftenassumedtohavedevelopeduntilEarly andRifbelts(e.g.,García-Duen˜asetal.,1992;Comasetal.,1992) Miocene time in response to a westward slab rollback (Réhault (Fig.1).SinceLateMiocene,extensionhasbeenfollowedbyNW-SE et al., 1985; Lonergan and White, 1997; Gueguen et al., 1998; shorteningresponsibleforbasininversion,foldingandreverseor strike-slipfaulting,mainlyexpressedintheAlborandomainand still active today (Comas et al., 1992, 1999; Watts et al., 1993; ∗ Chalouan et al., 1997; Fernandez-Ibanez et al., 2007; Martínez- Correspondingauthor.Tel.:+33298498720. E-mailaddress: jacdev@ univ -bre st.fr(J.Déverchère). García et al., 2011, 2013). Further eastwards, the Algerian basin 0264-3707/$–seefrontmatter©2014ElsevierLtd.Allrightsreserved. http://dx.doi.org/10.1016/j.jog.2014.01.003 M.Medaourietal./JournalofGeodynamics77(2014)186–205 187 Fig.1. GeologicalmapoftheAlboranSeaandmajortectonicfeaturesoftheGibraltararcformedbytheBeticRifandTellmountainbelts(modifiedfromComasetal., 1992).WAB=WestAlboranBasin;EAB=EastAlboranBasin;SAB=SouthAlboranBasin;AB=AlgerianBasin;YR=YusufRidge;YB=YusufBasin;HE=HabibasEscarpment; HB=HabibasBasin;CB=ChellifBasin.Somedrillingsitescorrespondtothe1995OceanDrillingProgramproposal(holes976,977,978and979);otheronesareHBB-1 (Habibas-1Sonatrachcommercialwell)andARZ-1(Arzew-1Sonatrachcoredrill).ESCI-Alb2b-2cistheSpanishAlboranexperimentmultichannelseismicreflectionline (Comasetal.,1995;Booth-Reaetal.,2007).Spi02isthewide-angleseismiclineofSPIRALproject(“SismiqueProfondeetInvestigationRégionaledelamargeALgériennne). S1,S2andS3areSonatrachseismicsections(2002Survey)showninthisstudy.Othersections(blacklines)wereusedforinterpretation. correspondstoanabyssalplaingenerallyassumedtobeflooredby (2) the Tertiary kinematics of the Alboran block (timing and anoceanic-typecrustformedduringtheMiddletoLateMiocene amount of westward displacement, see e.g. Gueguen et al., as the result of crustal backarc extension (Réhault et al., 1985; 1998;JolivetandFaccenna,2000;Mauffretetal.,2004,2007; Deweyetal.,1989;Mauffretetal.,2004;Booth-Reaetal.,2007; Duggenetal.,2004;Plattetal.,2006); Leprêtreetal.,2013).BothareasdepictPlio-Quaternarywitnesses (3) theamount,timingandnatureofthemagmaticandvolcanic ofshorteningorupliftofthebasinmarginsandalsocontrasting activitywhichhasconsiderably(andextensively)modifiedand imprintsinthepresent-dayseafloorphysiography(Woodsideand alteredthecrustalstructures(e.g.Duggenetal.,2004;Booth- Maldonado, 1992; Campos et al., 1992; Déverchère et al., 2005; Rea et al., 2007) and may mask the importance of tectonic Graciaetal.,2006;Ballesterosetal.,2008;Mauffretetal.,2007; featuresandthenatureofthebasement. Fernandez-Ibanez et al., 2007; Domzig et al., 2009; Yelles et al., 2009;Strzerzynskietal.,2010;Martínez-Garcíaetal.,2011).The floor o f the Albora n sea is mo rphologically co mp lex , with iso- Therefore,theAlboranSeaandtheAlgerianbasinconstitutea lated hi ghs or seamo unts o f volcanic origin a nd locally eme rged nice example of a backarc do main wh ere comp eting hypothese s ridge s mor e t han 100km lo ng (e.g. the Alb oran Ridge and the ond rivingpro ces se scanbe investig ated.Ho wever,ma nyhypothe- Habiba s Esca rpme nt), whe reas the Alge rian basi n is fla t, m uch ses arepoo rlysuppo rted by data,especia llyregard ingex tensional deeper ( ∼2800m) and surroun ded by relati vely s tee p m argins, stru ctu res, kin ematic ind ica tors and timing of deform ation. One except atthejun cti onw iththeAlbor and omain(Ca merlen ghietal., ofthemain interestso ftheAlbo ran-A lgerian of fshoretransiti onal 2009;M a rtín ez-Garcí aeta l.,2 011). do mai nisth atitoffe rs the opportunitytoide ntifyint ensecrustal Alt houghnumerous da tas etsareavailable(seee.g.Comasetal., thinning a ndsh e arings upp osedtohave oc curredin anarro wslab 1992,1995; Booth-Rea etal .,20 07; Martínez -Gar cía etal.,2 01 3), backarc( rollb ack)setti ngusings tra tigrap hiccontr ols ,o riginals eis- theco mplex ityofthee vo luti onoft heAlborandoma in res ultsin micdata andpote ntialfie lddat a. sev eraldebates foc usin gon: T he p oint s we addr ess i n this study aims at: (1) re-assessing thechr onostra tigr aphyoft he Albo rando main and dis cussthetim- ingofsedimentationandofdeformationphasesversustheones (1) thegeodynamicprocessesresponsiblefortheopeningofthe occ urr ingintheAlger ianb as in;(2)clarify ingthe issuesr ega rding Alge rian-Alboran deep ba sins: subduc tion ro llback, d eta ch- thenature of the crustand thesty lea ndamoun tof thinnin g,bybet- ment and/or STE P (Su bduction -Transform Edge Pro pagator) terd escrib ing the 3Da rchi tect ureo fthe basinan d deepcrus tat the tearin g slab and d elamination, convective remo val, mantle tran sitionofth eA lbo ranandAlge ria ndo main s;an d(3) exam in ing diapiris m, d ouble vergence sub duction zo nes, poloi dal and kinematic an d g eodynam ic i mplicatio ns (disme mb erin g and dis- toroidalm antleflo ws,etc.(se ee.g.summ ariesin Micharde tal., placement ofth eAlboranm icroplate;rol lbackeffectson thes tyle, 2002;Sp akman andW ort el,2 004 ;Goversan d Wortel,2 00 5; distribution a nda mounto fcrustalthin ningoft heover rid ing plate; Valera etal.,200 8;V ergèsan dFern andez, 2012 ;Duarte etal., timingofth edif ferentst ep softec tonicevo lu tion andcomp arison 2013;S ch ella rtand Moresi ,201 3;Meyera ndSch ellart,2 01 3); withm od els ofnarrow slabr ol lbackand STEPpro paga tion). 188 M.Medaourietal./JournalofGeodynamics77(2014)186–205 Inordertoachievethesegoals,webenefitfromoriginalindus- relatively shallow water with mainly shaly to marly sediments trial deep-reflection seismic sections striking WSW and NNW passing to evaporite sediments at the top of the Messinian. No (Fig.1)overalargeareauncoveredbypreviousstudiesandless MessiniansaltisfoundintheHabibasBasinandthetopofthisunit disturbedbyTertiarymagmatismthanfurthernorthorwest.We waspartiallyerodedbythePlioceneunconformity.ThePliocene alsocorrelatethesedimentarysequencesoftheAlboranSeabasin represents a period of renewed deepening of the basin with with coeval sequences in the Algerian Neogene basin by using sediments deposited initially in the bathyal regime, shallowing detailedchronostratigraphyfromanadditionalwellintheSouth upwardintoouterneritic.Thelithologiesaremainlyshaleswith Alboranbasin(HBB-1,Fig.1)whichispreciselytiedtoseismicsec- acoupleofsandstones(turbidites)withinthepackagerestingon tions,allowingforconstructionofaregionalagemodelbetween thePlioceneunconformity. sub-basins. Crustal types and kinematics are also discussed by examiningthegravity,magneticandseismicreflectiondatafrom differentpartsoftheAlboranandAlgeriantransitionzone.Finally, 2.1.2. AlgeriandomainandtransitiontoeasternAlboranbasin weattempttocomparetherelativeimportanceofpost-Messinian Miocene-Quaternary deposits overlay a Mesozoic basement transpressiondescribedintheAlboransea(Fernandez-Ibanezetal., formedbythrustsheetsinthewesternonshoreAlgerianmargin 2007;Martínez-Garcíaetal.,2013)andlessknownpre-Messinian (Thomas, 1985; Perrodon, 1957). However, the offshore distri- deformationsinordertobetterassesstheNeogenekinematicand bution of this Mesozoic deformed terrane is unknown. The base geodynamicalevolutionintheeasternandsouthernAlboransea. of the Cenozoic basin fill is represented by uppermost Burdi- galiantoSerravallianmarlsandsandstones.Overlyingthelatter, theTortonianstrataaremadeupoflimestones,marlsandsand- 2. Geologicalandgeodynamicalsettings stones.TheMessiniansequenceonlanddepictsmarlsalternating withdiatomitesandplatformlimestones(Thomas,1985;Neurdin- 2.1. DepositionalpatternintheAlboranandAlgeriandomains Trescartes, 1992). On top of the Messinian deposits, there are massivegypsumbedswithmarlandsandstoneintercalations. 2.1.1. Alborandomain The shelf setting of the Algerian-south Balearic margin was The center of the Alboran domain is a large Neogene basin explored by the Arzew well (ARZ-1, Fig. 1) drilled on a seismi- locatedintheinnerpartoftheRif-Betic-Maghrebianorogenicbelt. callydefinedMiocene-Pliocenenose(Burolletetal.,1978).Onthis Several sub-basins have developed and depict significant thick- shelf, in contrast to the Habibas well (Section 2.1.1 and Fig. 2), nessva riations:the Wes tAlboranB asin (WAB) ,theEastA lboran amas siv e,∼130m t hick Messinia ngy psumbed has been fou nd, Basin(EAB)andtheSouthAlboranBasin(SAB),separatedbyseveral overlain by 540m of Pliocene-Quaternary marls and limestones. ridges,seamounts,andtroughs(Fig.1).Themaximumthicknesses ThelowerMessinian(145mthick)iscomposedofgraymarlsand locateintheWAB,wherethesedimentarypileisupto8kmthick clayswithsomegypsumintercalations.TheupperTortonianunit anddisplaysacurveddepocentrethatmimicstheorogenicfront (204mthick)ismadeofgraymarlswithintercalationsofpyroclas- oftheGibraltarArcSystem(Comasetal.,1992;Sotoetal.,1996, ticmaterial. 2012;Chalouanetal.,1997).TowardtheEast,thethicknessofthe The offshore Yusuf basin (YB, Fig. 1), located at the junction sedimentaryfillingdecreasesto2–3kmintheEAB,atthetransition betweenSABandAB(Algerianbasin),containsupperMioceneto towardtheAlgerianbasin,whereasintheSAB,maximumsediment Plio-Quaternarysedimentsupto2000mthick,partofthemdrilled accumulationreaches4km(Comasetal.,1995;Booth-Reaetal., atODPsites977and978(Alvarez-Marrón,1999;Medaourietal., 2007;Mauffretetal.,2007;Medaourietal.,2012;Martínez-García 2012). etal.,2013). Finally, the deepest sedimentary sequence of the Algerian AttemptsofcorrelationsofsedimentarysequencesoftheBetic Basin (AB) depicts a succession of units typical of the western Neogene basins with deposits in the Alboran sea have been Mediterraneanbasins(Alvarez-Marrón,1999;Mauffretetal.,2007; performedsincealongtime,asbothareasincludemarinetocon- Booth-Reaetal.,2007;Estradaetal.,2011;Fig.3BandC),i.e.,from tinentalsedimentarysequencesfromEarlyMiocenetoHolocene top to bottom: Plio-Quaternary sequence, Upper Messinian Unit age,includingfrequentvolcanism(Hernandezetal.,1987;Comas (UU),MessiniansaltorMobileUnit(MU),LowerUnit(LU),Torto- etal.,1996,1999;Lustrinoetal.,2011).IntheWAB,thissequence nian(T)andSerravalian(S)Units.However,pre-saltandMessinian hasbeendrilledatSite976duringOceanDrillingProgramLeg161 unitsareoftenpoorlyidentifiedinage,thicknessandnature,since (Comasetal.,1996).Moreover,thesedimentaryunitsbeneaththe theyhaveneverbeendrilledintheabyssalplainandalsobecause AlboranSeabasinarewelldocumentedfromseismicdata(Campillo no continuous correlation is possible from the upper margins or etal.,1992;Maldonadoetal.,1992;Comasetal.,1992;Wattsetal., intermediatebasinstowardthedeepAlgerianbasin. 1993;Booth-Reaetal.,2007,andreferencestherein).Byextrap- olationofcommercialdrillingresultsfromthenorthernAlboran Sea and using volcanic deposits, Jurado and Comas (1992) have 2.2. UncertaintiesonthenatureofAlboran/Algeriandomainsand proposed to distinguish six seismic stratigraphic units (VI to I), onthekinematicevolution boundedbyunconformities,representingagesrangingfromEarly MiocenetoQuaternarytimes. Two main episodes of extension are generally proposed for In the deepest part of the SAB, the Habibas basin contains theAlborandomain:Burdigalian–Langhian(about17–15Ma)and 3.5km of sediments drilled in the Habibas (HBB-1) well (Fig. 2; Serravallian–earlyTortonian(about14–9Ma).Themiddletoearly- see also Medaouri et al., 2012, and references therein). The lateMiocenevolcanismandmuddiapirsinthebasinarethought metamorphic basement (4496m deep) is covered by 1263m of to be related to these extensional episodes (Comas et al., 1992, Langhian–Serravallian, 563m of Tortonian, 613m of Messinian 1996,1999;Wattsetal.,1993;Chalouanetal.,1997;Pérez-Belzuz marine deposits, including some gypsum and halite on the top, etal.,1997;Sotoetal.,2012).Seismicimagessuggestthatrifting and 1044m of Plio-Quaternary deposits. The Langhian and Ser- wascompletedinthelateTortoniantime;afterthat,acompres- ravalian sediments are all deposited in relative deep water, in sional/contractional regime has affected the whole basin and its lowerslopefantoabyssalplainsettings.AtthebottomoftheSer- surroundings (Mauffret et al., 1987, 1992; Bourgois et al., 1992; ravalliansequence,abasinfloorfan(BFF)isrecognized(Medaouri Maldonadoetal.,1992;Comasetal.,1992;Camposetal.,1992; etal.,2012).TheTortonianandMessinianunitsaredepositedin Watts et al., 1993; Morel and Meghraoui, 1996; Chalouan et al., M.Medaourietal./JournalofGeodynamics77(2014)186–205 189 Fig.2. ChronostratigraphicchartdeterminedintheHabibasBasin.(1)Habibaswellformationstage,lithologyanddepth;(2)Habibaswellbiostratigraphyagesissuedfrom planktonicandforaminiferaanalysis;(3)Sub-unitchartproposedinthisstudyforHabibasandSouthAlboranbasins;(4)ChronostratigraphyandfaciesunitsfortheSouth Alboranbasin;(5)AlboranBasinseismicunitfromJuradoandComas(1992);(6)Habibasbasinmainstratigraphicsequences. 1997). Here, we briefly report on the state of knowledge on the drilledsitesHBB-1,ODP976,ALG-1andDSDP121,Fig.1),whereas basementandonthestructuralevolutioninspaceandtime. itsnatureandoriginremainuncleartotheeast,wherenumerous basementhighsarevolcanic(Galindo-Zalvidaretal.,1998;Booth- 2.2.1. Basementofthebasins Reaetal.,2007,andreferencestherein).Thetransitionbetweenthe Th ebasemen t oft heAlboranBasinisgenerallyconsideredas Alge ria n basin and theeastA lboranba sin depictsa gentlewe st- similar tothosef oun din theRif -Betic an dTellCor dilleras,i.e. of warddec rease inc rust althi ckness( Sotoe tal.,200 8 ),inco ntrast metam orp hictyp e(Com as eta l.,1992,1 996, 1999 ;Plattetal., 199 8; witht hepronou nc edgrad ientsfoun donth en ort hernan ds outhern Fig.3. ChronostratigraphicandseismostratigraphiccorrelationsfromtheAlboranBasinandnorthernmargintotheAlgeriandeepbasin.(A)SouthAlboranBasin:main chronostratigraphicunits;(B)SouthernAlgerianbasin:seismicandchronostratigraphicunitsdefinedinthisstudy;(C)NorthAlgerian(SouthBalearic)basin:seismicand chronostratigraphicunitsdefinedbyBooth-Reaetal.(2007);(D)OnshoresouthernBeticmargin(Nijar-Verabasins):stratigraphyages,formationnameandlithology, modifiedafterBooth-Reaetal.(2007).MBS=MessinianBottomSalt. 190 M.Medaourietal./JournalofGeodynamics77(2014)186–205 Fig.4. (a)LinedrawingoftheESCI-Alb-2b-2cprofile(Booth-Reaetal.,2007)locatednorthofSectionS2(Fig.1)andshowingtheirandourinterpretationofcrustalsegments; (b)UninterpretedSonatrachWSW-ENEseismiclineS2,fromSouthAlboranBasin(SAB)totheAlgerianbasin;(c)InterpretedSonatrachWSW-ENEseismiclineS2,from SouthAlboranBasin(SAB)totheAlgerianbasin.LP+Q=LatePliocenetoQuaternaryUnit;EP=EarlyPlioceneUnit;UU2=MessinianUpperEvaporiteSub-Unit2;UU1=Upper EvaporiteSub-Unit1;MU=MessinianMobileUnit(SaltUnit);LU=MessinianLowerEvaporiteUnit;T=TortonianUnit;S=SerravallianUnit;L=LanghianUnit;LB=Late BurdigalianUnit;MCR=MiddleCrustReflectors;NF1toNF4=NormalFaults;Spi02=Wide-angleseismicrefraction(Spiralproject).CC=ContinentalCrust.Seetextfor details. marginsoftheAlboransea.Usingdeepseismicimagesinthenorth- thicknesses,theypropose3typesofcrust:(1)athinnedcontinen- ern part of the transition between both basins (Section ESCI-Alb tal crust intruded by arc magmatism below the SAB; (2) a new 2b2c, Fig. 1 and Fig. 4a), Booth-Rea et al. (2007) report a sim- magmaticarc-typecrustbelowtheEABastheresultofthewest- ilar cr ustal W -E t hinn ing from ∼15 t o ∼ 6k m, wit h no ap p arent wardmigr ationof subdu ction, coev alw ith sho rtenin ga nd thrust faulting,scarcetiltedblocksandwidespreadvolcanics.Fromseis- emplacementintheGibraltararcforelanddomain;and(3)anew micsignatures,geochemistryofvolcanicrockssampledandcrustal oceaniccrustbelowtheAB,asearlierproposed(Comasetal.,1995; M.Medaourietal./JournalofGeodynamics77(2014)186–205 191 Mauffretetal.,2004).However,theexactnatureandextentofcrust etal.,1996;Calvertetal.,2000;Valeraetal.,2008),implyingeither typesatthetransitionbetweentheeasternAlboranregionandthe aneastwardoranwestwardmigrationoftheeasternAlboranplate, Algerianbasinremainquestionable. dependingonthesenseofdelaminationinferred. Allthreetypesofmodelsarebasedonideasandassumptions 2.2.2. Structuralevolutionandtimingofextension about the mechanical behavior of the lithosphere, however they Comas et al. (1992) and Watts et al. (1993) propose 3 main areuntilnowdifficulttodiscriminatebecausetheypredictsome- stages of tectonic evolution in the Alboran Sea: (1) initial rifting times relatively similar structures at a broad spatial scale, and during Aquitanian–Burdigalian, (2) major rifting lasting through becauseourknowledgeofthedeepcrustalandmantlestructures Langhian-Tortonian,and(3)basinshorteningintheupperTorto- issparseandinaccurate.Acombinationofslabmigration,mantle nian/Messiniantorecent.However,thepreciseperiodwhenthe removalanddelaminationisalsooftenhypothesized(Plattetal., mainriftingeventintheAlboranSeabasintookplaceisdebated 2006; Booth-Rea et al., 2007; Roure et al., 2012). Recent quanti- (Wattsetal.,1993;Booth-Reaetal.,2007).Awesttoeastmigra- tative geodynamic modeling (Meyer and Schellart, 2013; Duarte tioninextensionisobservedatleastfortheEarlytoLateMiocene etal.,2013;SchellartandMoresi,2013)showsthatnarrowslabroll- evolutionoftheAlboranandAlgerianbasins(Comasetal.,1995, backinducesanintenseuppermantleflowandcanexplaincoeval 1999;Plattetal.,1998;Mauffretetal.,2004):thischronologyis extensioninbackarcdomainandshorteninginthefore-arcandarc opposite to the one expected in a westward-migrating orogenic region.WhethertheseresultsapplytotheAlborancaseisworth wedge,whichhasledsomeauthorstoproposeaneastwardmigra- to check, and major questions remain unresolved regarding the tion driven by mantle delamination (Docherty and Banda, 1995; dynamicevolution,thenatureoftheslab(s)imagedbeneathAlbo- Maldonadoetal.,1999).Thistimingofformationandevolutionof ran(Bezadaetal.,2013),thepositionandevolutionofslabwindows Alboranseasub-basinsalsodiffersfromthetimingatthetransi- andslabtears(Faccennaetal.,2004;Duggenetal.,2004;Govers tionfromtheAlborantotheAlgerianbasinsproposedbyBooth-Rea and Wortel, 2005; Bezada et al., 2013), and finally the origin of etal.(2007):usingageofsedimentonlapsonthecrust,theyargue theextensionhavingformedtheAlboranbasinintheAfrica-Iberia foranoceanicandmagmaticarccrustformationmigratingwest- collisionframework. ward,inagreementwithradiometricdatingofvolcanicrocksinthe region(e.g.,Duggenetal.,2005).Finally,LateMioceneconjugate 3. Dataandmethods shearandtectonicescape(DeLarouzièreetal.,1988;Maldonado et al., 1992; Comas et al., 1999) linked to the Africa-Iberia colli- 3.1. Wellandcorrelations sioncouldalsoexplain(atleastpartly)adiachronicityofextension throughoutthebasin. Synthetic seismograms were used to tie the well depths and Therefore,manyuncertaintiesremain:(1)thetimingandthe biostratigraphic data with the major seismic stratigraphic units degreeofdiachronicitybetweensub-basinsareinaccurateoreven andtheirlimitsusinglaboratoryphysicalpropertiesandwireline questionable,becauseofthelackofprecisestratigraphiccorrela- loggingsfromHabibas-1(HBB-1)well.Oncethisworkcomplete, tions,andbecausetiltedblocksidentifiedinthenortherntransition wewereabletocorrelatethesedimentaryunitsofAlgerianand (EAB)areveryscarce(Booth-Reaetal.,2007);(2)theamountof EastAlboranbasinsusingthesectionsstrikingWSW-ENE(Fig.1). westwardmigrationattherearoftheAlboranblockdiffersstrongly PreviousagesestimatedfromcommercialandODPboreholedata betweenauthors,rangingbetweenlessthan200and700km(e.g., (Andalucia-A1, Site 976, Leg 161) in the Alboran basin (Comas Lonergan and White, 1997; Michard et al., 2002; Duggen et al., etal.,1996)andfromcoevalsedimentsoutcroppingintheNeogene 2004;Mauffretetal.,2004,2007;Plattetal.,2003a,2006);(3)the Beticbasins(JuradoandComas,1992;Booth-Reaetal.,2007)were typeofmarginformedattheedgeofaretreatingnarrowslab(STEP calibratedandoccasionallymodifiedonthebasisofthebiostrati- type,GoversandWortel,2005)isyetpoorlydocumentedworld- graphicagesobtainedbyexaminationofcalcareousnannofossils wideandisnotclearlyassessedintheAlborandomain;and(4)no andplanktonicforaminifermarkersincuttingsamplesfromwell consensusisreachedonthedrivingmechanismstoexplaintime HBB-1(Fig.1).Thenannofossilandplanktonicforaminiferascales andspaceevolutionofextensionfromWestAlborantoAlgerian fromBollietal.(1985)wereusedforagedeterminationsofrocks basins. recoveredfromwellHabibas-1andcorrelatedwiththeglobalcycle chartfromHardenboletal.(1998). 2.3. ConflictingmodelsontheevolutionoftheAlboran/Algerian basins 3.2. Seismicdata A major feature of the Alboran Sea is the significant thinning of the lithosphere and the crust (see Soto et al., 2008, and ref- The 3 seismic lines presented in this paper are part of a erencestherein).Therearethreemainhypothesestoexplainthe SONATRACH seismic data set acquired offshore Algeria in 2002 AlboranseageodynamicevolutionduringMiocenetime:(1)exten- (Cope,2003).Thissurveywasdesignedtoimagewellbelowthe siondrivenbythewestwardrollbackofasubductionzonebeneath widespreadMessiniansaltandtoexplorethehydrocarbonpoten- theAlboranregion(e.g.,DeJong,1991;Zecketal.,1992;Royden, tial.OffshoreAlgeriamaybeverypromisingbutrequiresadeep 1993;Zeck,1996;LonerganandWhite,1997;Jolivetetal.,2008), understandingofthevariousbasins. implyingstrikinglyvariablewestwardmigrationattherearofthe The presented lines image the domain corresponding to the Alboran block (from ca. 200 to ca. 560km, see e.g. Maldonado westernlimitoftheAlgerianbasinandtheeasternlimitoftheAlb- et al., 1999; Michard et al., 2002; Duggen et al., 2004; Mauffret orandomain.Notethatthesouthernhalfofthistransition(Fig.1) et al., 2004, 2007; Platt et al., 2003a,b, 2006); (2) extension as a wasuntilnownotdescribedbelowtheMessiniansalt,contraryto consequence of the sinking of the thickened lithospheric mantle thenorthernhalf(Comasetal.,1995;Booth-Reaetal.,2007). andsubsequentextensionalcollapseoftheentiredomainbygrav- Themultichannelseismicreflectionprofileswereacquiredwith ityprocessesand/orconvectiveremoval(PlattandVissers,1989; aseismicsourcemadeofatunedfirstpeakfromasleeveairgun Zeck,1997;Plattetal.,2003b),implyingdiffuseanddiachronous array of 3000 CI shot at 2000 PSI and towed at 6m depth. The deformationovertheAlborandomain;and(3)extensionlinkedto shotintervalis25m.Thereceiverisamultichannel6000m-long delaminationofthelithosphericmantlebeneaththeAlborancrust streamercomposedof480groupsof12.5m-longtrackstowedat (e.g.García-Duen˜asetal.,1992;DochertyandBanda,1995;Seber 8mdepth.Thisgeometryleadstoamaximumtheoreticalfoldof 192 M.Medaourietal./JournalofGeodynamics77(2014)186–205 Table1 filewhichwasusedfortherawdatapolereduction.Filteringwas Multic hannel seismic data processing sequence. con ducted thro ughM AG MA Pm odule OAS ISMONTAJ software . Low cut filter at 3 Hz 4. Results Amplitude correction 4.1. Revisedchronostratigraphyandcorrelationbetweenbasins First multiple attenuation ofAlboranandAlgeria WehavecombinedthebiostratigraphicagesandNeogenefacies Deconvolution before stack providedbytheHBB-1well(Fig.2)withtheseismiccharacterofthe units(Table2aandb)inordertobuildanewchronostratigraphic First velocity analyses at 2 km intervals chartbasedonaseismicfaciescorrelationfromtheAlboranBasin tothedeepAlgerianBasin(Fig.3).Weidentify3mainseismicunits formedbymiddleMiocene(16.4Ma)toQuaternary(Figs.2and3) S eco nd multiples atten uati on u sing Radon multiple modelling sedimen ts ,taking intoacco untp revio us worksinth eAlb or ans ea (RyanandHsü,1973;JuradoandComas,1992;Maldonadoetal., Dip move-out 1992; Com aset al.,19 92,199 5;G autiere tal.,1 994;Alonso et al., 1999;Comasetal.,1999;Alvarez-Marrón,1999;Booth-Reaetal., Second velocity analyses at 1 km intervals 2007;Sotoetal.,2012;Martínez-Garcíaetal.,2013)andrelyingon theLofietal.(2011)’schartforMessiniandeposits.Table2aandb depictstheseismicunitsuccessionsidentifiedintheAlgerian(AB) Residual multiples attenuation andsouthAlboran(SAB)basins,respectively.Thethreemainseis- micunitsarebrieflydescribedasfollows: Stack mutes for far traces and near traces (1) pre-Messinianunits,madeoflateBurdigalian(LB),Langhian(L), Final CMP stack of the 120 fold CMP gathers Serravallian(S)andTortonian(T)sub-units,separatedeitherby unconformitiesorbymajorsequenceboundaries.LBsub-unit Migration with stack velocities limited to 3000 m/s isrecognizedbyanalogywiththeunitdrilledintheAlboran sea (Jurado and Comas, 1992) and appears as a fan-shaped depositionintheeastAB(Fig.4),whereasitisabsentinHB.L Tau-P and time variant filters sub-unitonlapsa21–16MyroldmetamorphicbasementinSAB (Bellon,1976)andrepresentsaca.1km-thickdeposit(Table2b, Final scaling: AGC gain Figs.2and5),whereasinAB,alargesyn-sedimentarydiapirism isobserved(km55–110,Fig.4),inawaysimilartotheouter WAB(Comasetal.,1992;Maldonadoetal.,1992;Sotoetal., 120. The dataset has been processed according to the sequence 2012).TheSerravallian“S”sub-unitdepositedinashortstrati- summarizedonTable1.Itallowstoclearlyimagethesedimentary graphictimeandcorrelateswithUnitIVofAB(Fig.3A–C).It unitsdowntothebasement.Inthebasinwherethecrustisthin,the onlaps L sub-unit and depicts syn-rift tilting in western AB seismiclinesalsoevidencethehighlyreflectivelowercrustdown (Fig.3BandC;km50–180,Fig.4).Finally,theTortonian“T”sub- totheMoho. unitisawidespreadsequenceequivalenttoUnitIIIofJurado andComas(1992)andBooth-Reaetal.(2007),depictingvari- 3.3. Gravityandmagneticdata ableseismicsignaturesandthicknessesinAB(Fig.4),witha highlyreflectivelowerboundaryandanerosionaltruncation Thestepsfollowedtoperformgravityandmagneticprocessing’s atitstop(Figs.2–6). are those described in Talwani et al. (1959) and Asfirane and (2) Messinianunits,madeof3sub-units(LU,MU,UU)alreadywell Galdeano (1995), respectively. The gravity data were acquired describedinthewesternMediterraneanrealm(Lofietal.,2011). usingaLaCoste&Romberg(s/nS-39)gravimeterequippedwith LUismadeofabunchofstrongreflectorslocatedabovethetop aSAGEupgradedacquisitionsystem.Dataprocessingwascarried of Tortonian reflector, MU is the plastic Messinian salt Unit, outbyARKGeophysicsLimited.Aunitconversionof1.01983was andUUiscomposedofmarlsandevaporitesoftenformedof2 usedtoconvertcounterunitstomilligals.Theoreticalgravitywas sub-unitsUU1andUU2; computedandsubtractedfromobservedgravityatallsurveypoints (3) post-Messinianunits,madeofPliocenetoQuaternarysediments usingthe1967InternationalGravityformula.Acorrectiondensity drilledincommercialwellsinthewesternmostMediterranean of 2.1mg/cc was selected to match that used during first phase basin,mainlycomposedoffine-graineddistalmarls,clays,and ofprocessing.Adataqualityassessmentwasmadebyanalyzing scarce interbedded sandstones (Alonso et al., 1999). The EP1 the standard deviations of data wavelengths shorter than 4km. andEP2sequences(unitsP4andP3ofMartínez-Garcíaetal., A depth dependent along-line filter was finally applied in order 2013)onlaptheMessinianerosionalunconformityanddepict to remove non-geological signal, short wavelength noise which strong lateral thickness variations and progressive internal cannot derive from actual features at the seafloor. The residual unconformitiesonthelimbsofgrowinganticlines.Sequences gravityanomaly(Fig.8)wasproducedfromahigh-passandcosine LP and Q, labeled “unit I” in Jurado and Comas (1992), Units taperedfilteroftheBouguergravitygridusinga100kmcutoff.The IaandIbbyAlvarez-Marrón(1999),Unit“Ia+b”inBooth-Rea magnetic data used in this study belong to acquisition recorded etal.(2007),orunitsP2-P1andQ3-Q2-Q1inMartínez-García in 1979. The data were in the form of 1:100,000 scale maps etal.(2013),is400–800mthickanddepicthighfrequency,high representingtherawmagneticanomalieswithaniso-lineinterval amplitude,highreflectivityreflectors.IntheAlborandomain, of10nT.Digitalizationofthesemapsallowedusobtainingadigital numerous local basins and intrabasinal highs inherited from Table2 Seismicunitsuccessionidentifiedinthe(a)Algerian(AB)and(b)SouthAlboran(SAB)Basins,respectively,withtheirmaincharacteristics. Seismic Biostrati Thickness Seismicfacies Reflectionpatterns LithologyfromALG-1&ARZ-1wells sub-units graphicage (Ma) TWT(s) m (a)AlgerianBasin(AB) Quaternary Q 0 0.4–0.6 400–700 Discontinuous,divergent,highfrequency, Shalewithinter-beddedsandylevelsatthe 1.9 highamplitude,highreflectivityreflectors. top M .M e d a o u rie ta l./Jo u rn a Pliocene early–late LP 13..91 aCmonptliintuudoeu,s h, pigahr arleleflle, chtiigvhit yfr ereqflueecntcoyr,s high LSiatnhdost haanmd nsaionnd yca mlcaarrlesu lmevels and lofGeo EP 3.1 0.4 500 Discontinuous,lowreflectivity,low Compactgraymarlsandgypsumatthe d UU UU2 55..3333 0.1 300 aCmonptliintuudoeu,s h,higigh h frferqe quuenencycy r,ehflieg chtors bUoUtt=oMmar lsand brittl ean hydrites ynam MLoewsseirn –ia Mnobile – Upper 0.3 amplitude (D own laps and on laps) ((CDMUea =er p Cg ioBnna fgsolioon mt))er ates an d gypsum ics77(201 4 )1 8 6 CU UU1 5.6 0.2 200–400 Continuousreflectors,variableamplitude, –2 0 0.4 lowfrequency.CU=Chaotic. 5 (UU=Downlapsandonlaps) MU 5.6 0.1 ≥600 Chaotictransparentfacies,lowamplitude Haliteanddirtysalt 5.96 ≥0.5 andlow frequency,o ccasio nally strong reflections LU 5.96 0.15 100–200 Setofcontinuouslowamplitudeandlow Plasticgraymarlsandgypsum 7.24 0.25 frequencyreflectors 1 9 3 1 9 4 Table2(Continued). Seismic Biostrati Thickness Seismicfacies Reflectionpatterns LithologyfromALG-1&ARZ-1wells sub-units graphicage (Ma) TWT(s) m M .M e d Tortonian T 7.24 0.2 150–350 Paralleltodivergentreflectorsofhigh Graymarls,Sandswithpyroclasticintervals a 9.26 0.4 damiscpolinttui dneu ,o puassrseinflge ct too crhsaotic a nd ourie ta l./Jo u Serravallian S 9.26 0.1 100–200 Discontinuoushigh-amplitudereflectors, Plasticgraymarlsandlimestonelevels rn a 11.7 0.2 tthraenbsoptatroemnt oinf stehqeu deenpcoecenters, oblique at lofG e o d y n Langhian L 11.7 0.2 ? Chaoticpattern Siltandsandyshalewithvolcaniclayers am 16.4 0.6? ics7 7 (2 0 1 4 Late Burdigalian LB ≥16.4 00..93 beDnaissecerogmnyet hinnitgubhol uoascm kdpsivlieturgdeen, to nrelaflpe cotno rtsil, theidgh gCeoonmgleotmrye rdaetpeos,s sitasn)ds and turbidities (fan )186–2 0 5 Basement B ? ? ? Chaoticpattern Unknown Table2(Continued). Thickness Seismic Biostratigraphic TWT(s) m Seismicfacies Reflectionpatterns LithologyfromHBB-1well Sub-Units age(Ma) (b)SouthAlboranBasin(SAB) Quaternary Q 0 0.3 470 Discontinuous,parallel,highfrequency, Shalewithinter-beddedsandylevelsatthe 1.9 0.5 highamplitude,highreflectivityreflectors top LP 1.9 0.3 374 Continuous,parallel,lowfrequency,high Sandsandsandymarlsandlimestone PlioceneEarly–Late 3.1 amplitude,lowreflectivityreflectors levels M EP 3.1 0.2 200 Shingledreflectorsoflowamplitudeand SandturbiditiesandMudMounded .M 5.42 low frequ ency onla p a cha otic facies Carbo nate Ramp on the M reflector edao u rie ta Messinian UU 5.42 0.3 370 Parallel and continuous of high frequency Marls and Gypsum beds intercalations l./Jo 5.73 andhighamplitudereflections u Lower–Mobile–Upper rn a MU Absent lofG e o d y LU 5.73 0.15 243 Parallel,continuous,highfrequency,high Marlsandshalewithoccasionallysand n 6.96 0.25 amplitud e beds am ics7 7 (2 0 Tortonian T 69..9266 00..25 563 aCmonptliintuudoeusa npdarfarleleqlu reenflceyctors of high pShyarolec laansdti cMleavrlesl with sand intervals and 14)1 8 6 – 2 0 5 Serravallian S 9.26 0.1 107 Discontinuous,highamplitudewith ClaysandSiltclayswithsandyandmarl 11.7 chaotictransparentzones intervals Langhian L 11.7 0.6 1156 Discontinuousreflectorsofhighamplitude, Undercompactedshale,inter-bedded 16.4 0.9 lowfrequency(foldedandfaulted) sandyandsandy–pebbleintervals LateBurdigalian LB ≥16.4 Absent Basement B 170 ? 90 Chaoticpattern Metamorphicrock(Schists) 220? 1 9 5
Description: