ebook img

The Train Wreck Cluster Abell 520 and the Bullet Cluster 1E0657-558 in a Generalized Theory of ... PDF

19 Pages·2017·1.12 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Train Wreck Cluster Abell 520 and the Bullet Cluster 1E0657-558 in a Generalized Theory of ...

Article The Train Wreck Cluster Abell 520 and the Bullet Cluster 1E0657-558 in a Generalized Theory of Gravitation NormanIsrael1,*andJohnMoffat2,3 1 DepartmentofPhysics,SchoolofNaturalandAppliedSciences,UniversityofTechnology,Jamaica, 237OldHopeRoad,Kingston6,Jamaica 2 PerimeterInstituteforTheoreticalPhysics,Waterloo,ONN2L2Y5,Canada;[email protected] 3 DepartmentofPhysicsandAstronomy,UniversityofWaterloo,Waterloo,ONN2L3G1,Canada * Correspondence:[email protected] Received:19January2018;Accepted:20March2018;Published:26March2018 Abstract: Amajorhurdleformodifiedgravitytheoriesistoexplainthedynamicsofgalaxyclusters. AcaseismadeforageneralizedgravitationaltheorycalledScalar-Tensor-Vector-Gravity(STVG) orMOG(ModifiedGravity)toexplainmergingclusterdynamics. Thepaperpresentstheresults ofare-analysisoftheBulletCluster,aswellasananalysisoftheTrainWreckClusterintheweak gravitationalfieldlimitwithoutdarkmatter. TheKing-βmodelisusedtofittheX-raydataofboth clusters,andtheκ-mapsarecomputedusingtheparametersofthisfit. Theamountofgalaxiesin theclustersisestimatedbysubtractingthepredictedκ-mapfromtheκ-mapdata. Theestimatefor theBulletClusteristhat14.1%oftheclusteriscomposedofgalaxies. FortheTrainWreckCluster, iftheJeeetal. dataareused,25.7%oftheclusteriscomposedofgalaxies. Thebaryonmatterinthe galaxiesandtheenhancedstrengthofgravitationinMOGshiftthelensingpeaks,makingthemoffset fromthegas. Theworkdemonstratesthatthisgeneralizedgravitationaltheorycanexplainmerging clusterdynamicswithoutdarkmatter. Keywords: scalartensorvectorgravity;BulletCluster;TrainWreckCluster 1. Introduction In the past few decades, observations of galactic rotation speeds [1,2], cluster mergers via gravitational lensing [3] and the cosmic microwave background [4] have revealed gravitational anomaliesthatareinterpretedbymanyastronomersasevidencethat26%ofthemassintheuniverse isunseen. Manyexpectthattheexistenceofthismissingmass(darkmatter)willbeconfirmedby thediscoveryofnewparticles, whichmaybeinteractingornon-interacting[5]. Therearevarious candidatesforthis. However,atthistime,experimentshaveturnedupempty[6–8]. Theinterpretation of the anomalies as a problem of missing mass is based on the assumption that general relativity isapplicabletolarge-scalestructuressuchasgalaxiesandclusters. Whilegeneralrelativityisvery wellcheckedatthesolarsystemscale,thereisnoreasontobelievethatitshouldsurvivelarge-scale structure tests unscathed. With this in mind, with no dark matter particle candidate yet detected andtheeffectsonlyobservedtobegravitational,theauthorsseeitjustifiedtoinvestigateapossible modification of general relativity that does not involve the addition of any extra mass. In either approach,atleastoneextradegreeoffreedomisadded. Thevariousapproachescanbebrokendown toadoptthefollowingstrategies: 1. Addextramassintheregionswheregravityisstrongest. Themasscouldbe: (a) Non-interacting(thisisthecaseforcolddarkmatter), Galaxies2018,6,41;doi:10.3390/galaxies6020041 www.mdpi.com/journal/galaxies Galaxies2018,6,41 2of19 (b) Interacting(thiscreatesamuchbroaderclasscalledthedarksector), 2. Addextrafieldsthatimplementvariousmechanisms. Somehavechosentocalltheextradegreesoffreedomdarkmatter,regardlessofwhetherthey taketheformof(1)or(2). However,relativisticmodificationsofgravityfallintothesecondcategory andimplementverydifferentstrategiesfromthosethatfallintothefirstcategory. Asaresult,inthis paper,theauthorshaveonlydecidedtocallCategory(1),darkmatter(i.e.,anytheorythatimplements thestrategyof(1)is,totheauthors,atheorythatcontainsdarkmatter,whereasthosethatdonotfall intoCategory(2)andaresaidtopossessnodarkmatter). Afewideashavebeendevelopedtotakethe secondapproach[9,10]. Someoftheseideasfallunderwhatarecalledmimeticgravitytheories[11–19]. Amajorobstacleformanymodifiedgravitytheoriesisexplainingclusterdynamics. Thisbegsthe question,doesthereexistamodificationofgeneralrelativitythatcanaddressclusterdynamicswithout theadditionofextramass(darkmatter)? Inthispaper,wewilldemonstratethattheModifiedGravity (MOG)theorycalledScalar-Tensor-Vector-Gravity(STVG)[20]hasthepotentialtoexplainmerging galaxyclusterdynamics,thusansweringthequestionintheaffirmative. Thetheoryisconsistentwith theLIGOGW170817results[21]thatgravitationalwavesandelectromagneticwavestravelatthesame speed[22]. Recallthattherearethreekeyareaswheretheanomaliesshowup: • Galacticrotationcurves • Thedynamicsofgalaxyclusters • Thecosmicmicrowavebackground Anymodificationofgeneralrelativitythatisintendedtosolvethe‘missingmass’anomalywithout darkmattermustaddressthesethreekeyareaswheretheanomaliesshowup. Anearliermodified gravitationaltheoryhasalreadybeenshowntoresolveanomaliesofgalaxyrotationspeed[23–25], andSTVGhassucceededinthisrealm,aswell. TwokeyaspectsofSTVGarethefollowing: 1. GravityisstrongerthanisdepictedinGR. 2. Arepulsivegravitationalforcemediatedbyaspin-onevectorfield(φ)screensgravity,makingit appearweakatsmalldistancescalessuchasthesolarsystemandbinarypulsars. In addition to its success in explaining galaxy rotation curves, STVG has shown success in cosmology. InSTVGcosmology,thereisanerawhereφbecomesdominant. Thiseraisthenfollowed bythelaterdominanceofmatterandthelaterenhancementof G,whichinturnisfollowedbyan acceleratederadrivenbythecosmologicalconstantΛ. Thisreproducestheacousticpowerspectrum, aswellasthematterpowerspectrum. STVGcosmologyisexplainedfurtherin[26–29]. Thispaperisfocusedonclusterdynamics. ThestudyusestheBulletClusterandTrainWreck Clusterastestcasesforthis. InSTVG,(1)isnoticeableatgalacticandgalaxyclusterdistancescales, while(2)guaranteesagreementwiththesolarsystemandbinarypulsarsystemsandisbuiltintothe Newtonianaccelerationlaw. Recallthatdarkmattermodelsassumegeneralrelativityisfineasitis andaddsextramasstoproducetheextragravityneededtoexplainthegalaxyrotationcurvesand galaxyclusterdynamics. AsthegravityinSTVGissourcedonlybyordinarymatter,itisconsidered analternativetodarkmattermodels. Thekeymodificationtothegeneralrelativitytheorythatleads toSTVGisaspin-onemassiveparticlecalleda“phion”. Thephionfieldinteractswithordinarymatter withgravitationalstrength,andthefitsofthetheorytorotationcurvesandclusterdynamicsyielda massforthephionofm =2.6×10−28eV. φ In2006,apaperbyCloweetal.[30]claimedthattheyhaddiscovereddirectevidencefordark matterthroughaclustermergerknownastheBulletCluster(BC).TheBulletClusterisamergeroftwo clusterswherethegasesinbothclustersinteractasthemergeroccurs. Thegasslowsdownandheats upwhileemittingX-rays. Thegalaxiesdonotinteractmuch,movingtothesidesofthegas. Asaresult, oneendsupwithasystemthathasthegasinthemiddleandthegalaxiesofftothesides. Figure1[30] showsthelensingmap(blue)superimposedonthegas(red). Noticetheoffsetofthelensingmap Galaxies2018,6,41 3of19 from the X-ray gas. It is this offset that resulted in the authors claiming a direct detection of dark matter,asoneexpectsthelensingmaptobeonthegasandnotoffsetfromit. Thecommonexplanation forthisinthecontextofdarkmatteristhatthereisnon-interacting(cold)darkmatterpresentinthe sub-cluster(pinkshockwavefrontontherightofFigure1)andthemaincluster(pinkregiononthe leftofFigure1). Whenthemergeroccurred,thedarkmatterfromthemainandsub-clusterspassed through each other moving off to the sides (blue regions of Figure 1) and centred on the galaxies. Whiletheresultsarenotbeingquestionedbytheauthors,thedarkmatterexplanationis. Theauthors willshowinthispaperthatthereisanexplanationinthecontextofSTVGwithoutpostulatingthat extraexoticmassissourcingthegravity. Rather,theapparentextragravityisduetothesignificant decreaseintheshieldingeffectoftherepulsivevectorfieldrelativetotheincreaseofthestrengthof gravityforthesizesofclusters. Inaddition, theoffsetsofthelensingpeaksareduetothebaryon matterinthegalaxiesshiftingthemawayfromthegas. Figure1. κ-map(blue)superimposedonthegas(pink)fortheBulletCluster. Theblueregionsare theregionswiththelargestamountofgravityandarewheredarkmatterissaidtobeconcentrated whenviewedintheEinsteinianparadigm; theredregionisthevisiblemassobtainedfromX-ray observations.ThisimageisaChandraX-rayObservatoryimage. Inalaterdevelopment,Mahdavietal.[31]analysedtheclustermergerknownasAbell520(Train WreckCluster), claimingalensingdistribution, whichchallengesthenotionthatcolddarkmatter isallthatisneededtoexplainclusters. WegiveinFigure2someplotsfroma2014studydoneby Jeeetal. [32]. Figure2bshowsthecontoursfortheκ-mapsuperimposedoverthephotonmap(red). Figure2ashowsthelensingmapfromJeeetal. Thereisatotalofsixlensingpeaks, oneofwhich (P3(cid:48))coincideswiththegas. Thisisnotexpectedinamergingsystemifonethinksofthesystemas dominatedbycolddarkmatter,ascolddarkmatter(beingnon-interacting)isexpectedtoproduce a lensing peak offset from the gas in all cases. In the present study, we will explain all six peaks. ThepresenceofapeakcoincidingwiththegaswasreaffirmedbyastudyperformedbyJeeetal.[33]. Cloweetal.[3]disputedtheexistenceofthispeak,butamorerecentdetailedstudybyJeeetal.[32] comparing the observational data used by Clowe et al. with theirs reaffirmed the existence of the significantlensingpeakatthegaslocation. SuchacentralpeakisnaturallyincorporatedinSTVG. Thepeaksthatareoffsetfromthegasareagainduetothegalaxiescontainingbaryonsshiftingthem awayfromthegas. Galaxies2018,6,41 4of19 Finally,apaperbyHarveyetal.[34],whichplacedfurtherconstraintsonadarkmatterinteracting cross-section,includedinitsstudytheAbell520cluster. Thispaperdidnotcontainacentraldark peak. Thisseemstoleavetheissueregardingtheexistenceofthispeakunresolved. Thetaskofthis paperisnottoresolvethecontroversyofwhetherornotthecentralpeakexists,buttorathermakea preliminaryattemptatdemonstratingthatitispossibleforScalarTensorVectorGravity(STVG)to explainthissystemifthepeakispresent. (a)κmapdata (b)κmapcontoursongas Figure2.Abell520(TrainWreckCluster)κ-map.Onepeak(P3(cid:48))coincideswiththegas(red). WestartwiththeweakfieldapproximationoftheSTVGfieldequationsandusetheKing-βmodel tofittheX-raydata. Wethenusetheparametersofthefittocomputetheκ-mapforbothsystems. BrownsteinandMoffathavealreadydoneananalysis[35]ofthebulletclusterusingapreviousversion ofamodifiedgravitationaltheory[23],showingthatthetheorycanexplaintheBulletClusterdata withoutexoticdarkmatter. However,thisstudyappearstohavelackedaclearexplanationofthe offsetofthelensingpeaksfromthegas. WeperformedareanalysisoftheCloweetal. datausing themorerecentSTVGtheory[20,36]andattemptedtosuggestaclearexplanationoftheoffsetofthe lensingpeaks. TheresultsareconsistentwiththeresultsoftheBrownstein–Moffatstudy, andthe suggestedoffsetofthepeaksisthatthebaryonsinthegalaxiesshiftedthepeaksfromthegasasthey movedtothesides. WebelievethatthisstudythereforeshowsthatSTVGprovidesaviablealternative tothecolddarkmatterexplanation. InadditiontoreaffirmingtheBulletClusterresults,theauthorsinvestigatedtheclustermerger Abell520inthecontextofSTVG.TheAbell520studyuseslensingdatafromtheJeeetal. studies[32]. We show that the lensing peak centred on the gas that has defied a cold dark matter explanation iseasilyincorporatedinSTVG.AswiththeBulletCluster,thepeaksthatareoffsetfromthegasare duetothegalaxiesthatmovedtothesides. 2. Scalar-Tensor-Vector-Gravity STVG (usually termed Modified Gravity (MOG)) is a modification of general relativity with amassivevectorfieldφ ,correspondingtoarepulsivegravitationalforcewithchargeQ .Theaddition µ g ofthisvectorfieldleadstoamodificationofthelawofgravitationbeyondsolarsystemscales.Acentral featureofthetheoryisthedynamicalgravitationalcouplingG. Thiscouplingvariesbothspatially andtemporally. Inaddition,thetheoryintroducesthescalarfieldµ,whichisthemassofthevector field. Thetheoryhastwo(2)degreesoffreedom: αandµ. Galaxies2018,6,41 5of19 2.1. STVGFieldEquations TheMOGactionisgivenby: S = S +S +S +S , (1) G φ S M whereS isthematteractionand: M S = 1 (cid:90) d4x(cid:112)−g(cid:20)1(R+2Λ)(cid:21), (2) G 16π G S = (cid:90) d4x(cid:112)−g(cid:20)−1BµνB + 1µ2φµφ (cid:21), (3) φ µν µ 4 2 S = (cid:90) d4x(cid:112)−g(cid:20) 1 (cid:18)1gµν∂ G∂ G−V (cid:19)+ 1 (cid:18)1gµν∂ µ∂ µ−V (cid:19)(cid:21), (4) S G3 2 µ ν G µ2G 2 µ ν µ where B = ∂ φ −∂ φ andV andV arepotentials. Notethatwechooseunitssuchthatc = 1, µν µ ν ν µ G µ usingthemetricsignature[+,−,−,−]. TheRiccitensoris: R = ∂ Γλ −∂ Γλ +Γλ Γσ −Γσ Γλ . (5) µν λ µν ν µλ µν λσ µλ νσ The matter stress-energy tensor is obtained by varying the matter action S with respect to M themetric: Tµν = −2(−g)−1/2δS /δg . (6) M M µν VaryingS +S withrespecttothemetricyields: φ S Tµν = −2(−g)−1/2[δS /δg +δS /δg ]. (7) MOG φ µν S µν Combiningthesegivesthetotalstress-energytensor: Tµν = Tµν+Tµν . (8) M MOG TheMOGfieldequationsaregivenby: G −Λg +Q =8πGT , (9) µν µν µν µν (cid:18) (cid:19) √1 ∂ (cid:112)−gBµν +µ2φν = −Jν, (10) −g µ ∂ B +∂ B +∂ B =0. (11) σ µν µ νσ ν σµ Here,G = R − 1g RistheEinsteintensorand: µν µν 2 µν 2 1 Q = (∂αG∂ Gg −∂ G∂ G)− ((cid:50)Gg −∇ ∂ G) (12) µν G2 α µν µ ν G µν µ ν isatermresultingfromthethepresenceofsecondderivativesof g in RinS . Wealsohavethe µν G fieldequations: (cid:50)G = K, (cid:50)µ = L, (13) where(cid:50)= ∇µ∇ ,K = K(G,µ,φ )andL = L(G,µ,φ ). µ µ µ Galaxies2018,6,41 6of19 Combining the Bianchi identities, ∇ Gµν = 0, with the field Equation (9) yields the ν conservationlaw: 1 1 ∇ Tµν+ ∂ GTµν− ∇ Qµν =0. (14) ν ν ν G 8πG It is a key premise of MOG that all baryonic matter possesses, in proportion to its mass M, positive gravitational charge: Q = κ M. This charge serves as the source of the vector field √ g √g φµ. Moreover, κ = G−G = αG , where G is Newton’s gravitational constant and g N N N α = (G−G )/G ≥0. Variation of S with respect to the vector field φµ then yields the MOG N N M four-current J = −(−g)−1/2δS /δφµ. µ M Forthecaseofaperfectfluid: Tµν = (ρ+p)uµuν−pgµν, (15) M where ρ and p are the matter density and pressure, respectively, and uµ is the four-velocity of an elementofthefluid. Weobtainfrom(15)anduµu =1thefour-current: µ J =κ T uν =κ ρu . (16) µ g Mµν g µ Itisshownin[37]that,withtheassumption∇ Jµ =0,(14)reducesto: µ ∇ Tµν = BµJν. (17) ν M ν 2.2. STVGWeakFieldApproximation Intheweakfieldapproximation,weperturbg abouttheMinkowskimetricη : µν µν g = η +(cid:101)h . (18) µν µν µν Theconditiong gµρ = δρ demandsthatgµρ = ηµρ−(cid:101)hµρ. µν ν Thefieldequationforthevectorfieldφµ isgivenby: ∂ Bµν+µ2φµ = −Jµ. (19) ν Assuming that the current Jµ is conserved, ∂ Jµ = 0, then in the weak field approximation, µ wecanapplythecondition∂ φµ = 0. Inthestaticlimit,oneobtainsforthesource-freespherically µ symmetricequation: ∇2φ0−µ2φ0 =0, (20) whichhasthepointparticlesolution: exp(−µr) φ (r) = −Q , (21) 0 g r √ wherethechargeQ = αG M =κ M. Thissolutioncanbewrittenforadistributionofmatteras: g N g (cid:90) e−µ|(cid:126)x−(cid:126)x(cid:48)| φ = − J ((cid:126)x(cid:48))d3x(cid:48), (22) 0 |(cid:126)x−(cid:126)x(cid:48)| 0 where: (cid:90) Q = J d3x. (23) g 0 Galaxies2018,6,41 7of19 Weassumethatintheslowmotionandweakfieldapproximationdr/ds ∼ dr/dtand2GM/r (cid:28)1, thenfortheradialaccelerationofatestparticle,weget: d2r GM qgQgexp(−µr) + = (1+µr), (24) dt2 r2 m r2 whereq =κ m. Forthestaticsolution(21)q Q /m = αG M,andG = G (1+α),whichyieldsthe g g g g N N accelerationlaw: (cid:26) (cid:20) (cid:18) (cid:19)(cid:21)(cid:27) G M r a(r) = − N 1+α 1−exp(−r/r ) 1+ , (25) r2 0 r 0 wherer =1/µ. Weobservethattheaccelerationofaparticleisindependentofitsmaterialcontent 0 (weakequivalenceprinciple). Theaccelerationlawcanbeextendedtoadistributionofmatter: a((cid:126)x) = −G (cid:90) d3(cid:126)x(cid:48)ρ((cid:126)x(cid:48))((cid:126)x−(cid:126)x(cid:48))[1+α−αe−µ|(cid:126)x−(cid:126)x(cid:48)|(1+µ|(cid:126)x−(cid:126)x(cid:48)|)]. (26) N |(cid:126)x−(cid:126)x(cid:48)|3 Wecanwrite(26)as: (cid:90) ρ((cid:126)x(cid:48))((cid:126)x−(cid:126)x(cid:48)) a((cid:126)x) = − G((cid:126)x−(cid:126)x(cid:48)) d3x(cid:48), (27) |(cid:126)x−(cid:126)x(cid:48)|3 wheretheeffectivegravitationalcouplingstrengthisgivenby: G((cid:126)x−(cid:126)x(cid:48)) = G [1+α−αe−µ|(cid:126)x−(cid:126)x(cid:48)|(1+µ|(cid:126)x−(cid:126)x(cid:48)|)]. (28) N From Equation (28), we see that G is not, in general, constant. However, for sufficiently large systems, such as galaxy clusters, it turns out that G behaves as if it is constant. The STVG fits to galaxy rotation curves, and galaxy cluster dynamics have yielded the best fit valuesα =8.89±0.34 and µ =0.042±0.004kpc−1[36]. The value for µ corresponds to the vector field mass m =2.6×10−28eV. The Tully–Fisher law relating the galaxy luminosities to the flat φ rotationcurvesisdeducedfromtheSTVGdynamicsinexcellentagreementwiththedata[36]. Inthe fitstothedynamicsofgalaxyclusters[36],theYukawarepulsiveexponentialtermproducedbythe vector field φ does not have a significant effect when one uses µ−1 = 24 kpc. As a result, one is µ onlyleftwithG = G (1+α),whichisusedtocomputetheκ-convergencelensingmapfortheBullet N ClusterandTrainWreckCluster. 2.3. GravitationalLensinginSTVG From[38],thePoissonequationwiththelensingpotentialgives: D D 8πG Σ ∇2ψ = L LS NΣ =2 , (29) θ D c2 Σ S c where: Σ(x,y) =κ(x,y), (30) Σ c and: Σ(x,y) = (cid:90) zout ρ(x,y,z)dz, (31) −zout (cid:113) withz = r2 −x2−y2,with: out out (cid:34)(cid:18) ρ (cid:19)2/(3β) (cid:35)1/2 r =r 0 −1 , (32) out c 10−28g/cm3 Galaxies2018,6,41 8of19 where10−28g/cm3isthetotaldensityoftheclusteratr . Onehas: out Σ(x,y) = ∑n (cid:90) zout,i ρ (0)(cid:34)1+ xi2+y2i +z2i (cid:35)−3βi/2dz, (33) i=1 −zout,i i rc2i whereiistheindexrepresentingthei-thcluster,Σc ≈3.1×109M(cid:12)kpc−2fortheBulletClusterand Σc ≈ 3.8×109 M(cid:12)kpc−2 fortheTrainWreckCluster. κ isameasureofthecurvatureofspace-time. InSTVG,wehavethesurfacedensitydefinedas[35]: (cid:90) Σ¯(x,y) = (1+α) ρ(x,y,z)dz, (34) sothatforSTVG: Σ¯(x,y) φ(x,y) = . (35) Σ c Inthispaper,Equation(35)isfirstcomputed. Thisisnottheentireκmap,asthisonlyconsiders thecontributionofthegas. Inordertogettheentireκmap,onemustalsoconsiderthecontributionof thegalaxies: Σ¯(x,y)+Σ¯ (x,y) gal κ(x,y) = . (36) Σ c Whenwesolve(36)forthegalaxies,weget: κ(x,y)Σ −Σ¯(x,y) Σ (x,y) ≈ c . (37) gal (1+α) WethencomputethemassofthegalaxiesbyintegratingoverΣ (x,y): gal (cid:90) (cid:90) M = Σ (x,y)dxdy. (38) gal gal Inthenextfewsections,theresultsoftheBulletClusterandTrainWreckClusterstudieswill bediscussed. ThesestudiesweredonebystartingwiththeKing-βmodel. Wewilldiscussthisfirst. Theκ-mapcomputedinbothcasesusingSTVGisshowntobeconsistentwiththeBulletClusterand TrainWreckClusterdata. 3. TheKing-βModel Inthefollowingsections,therecentworkdonetochecktheresultsof[35]willbediscussed,as wellasworkdoneby[31]. Thisstudywasdonefirstbyassuminganalmostisothermalgasspherefor theBulletClusterandTrainWreckCluster. Withthisassumption,weresorttotheKing-βmodel[39]. Wethushave: ρ(r) = ∑n ρ (0)(cid:34)1+(cid:18)ri (cid:19)2(cid:35)−3βi/2, (39) i r i=1 ci where ρ(0) is the central density for a given X-ray peak and r is the radial distance for that peak. i Usingthefactthatgalaxyclustershaveafinitespatialextent,onecanconnecttheKing-βmodelwith databyintegratingEquation(39)alongtheline-of-sight,givingthetotalsurfacedensity(31): Σ(x,y) = ∑n Σ (0)(cid:34)1+ xi2+y2i (cid:35)−(3βi−1)/2, (40) i r2 i=1 ci Galaxies2018,6,41 9of19 whereΣ (0)isthecentralsurfacemassdensityforaparticularpeak. Weassume: i   x X = y. (41)   z (cid:113) Thecentreofthei-thclusterisX andX = X−X ,andr = X2.AderivationofEquation(40) 0,i i 0,i i i isgiveninAppendixA. WefitEquation(40)totheΣ-mapfortheBulletClusterdata. Theparametersarethenusedto computetheκ-map. IncaseswherethegeometryiscomplicatedsuchaswiththeTrainWreckCluster, wefittheX-raypeakswithsurfacebrightnessprofilesgivenby: I(r) = ∑n I(0)(cid:34)1+(cid:18)ri (cid:19)2(cid:35)−3βi+1/2, (42) i r i=1 ci where I(0) is the central brightness for a given X-ray peak. The parameters of this fit are used to i computetheκ-mapofthesystem. 4. ResultsandAnalysis Inthissection,wewilldiscussindetailthestudiesdoneonboththeTrainWreckClusterand BulletClusterinthecontextofSTVG.Wefirststartbydiscussingtheresultsofthebulletcluster,fitting thelensingpeaksonlyusingthegasfromthemainclusterandsub-cluster,aswellasthegalaxiesto thesides. Finally,wediscussworkdoneontheTrain-WreckCluster. Wefocusonthecentrallensingpeak (centredonthegas)givenby[32]. Recallthattheresultsfrom[32]showthatthereisalargerthan expectedlensingpeakatthecentralgas,whereasotherstudies,suchas[34],donotshowthispeak. Ourintentisnottoresolvethiscontroversy,butrathertodemonstratethatthecentralpeakisnaturally incorporatedintoSTVG. RecallthattheYukawarepulsiveexponentialtermproducedbythevectorfieldφ doesnothavea µ significanteffectwhenoneusesµ−1 =24kpc. Asaresult,oneisonlyleftwithG = G (1+α),which N isusedtocomputetheκ-convergencelensingmapfortheBulletClusterandtheTrainWreckCluster. 4.1. AnalysisofBulletClusterUsingSTVG TheBulletClusterisamergingsystemlocatedatz = 0.296intheconstellationCarina. Itwas firststudiedin2006byCloweetal.[30]. Thesystemisadramaticdemonstrationofagravitational anomalywherealensingpeakisclearlyseparatefromthevisiblegas. Thisdistinctseparationofthe visiblematterfromthelensingpeaksisconsideredbymanyasevidencethatthelensingpeaksneedto besourcedwithextramasseveninthecaseofamodifiedgravitytheory. Inthissection,wewillshow thatthissystemisnaturallyexplainedbyamodifiedgravitytheorywithouttheneedfortheaddition ofextramass. Inthefollowing: 1. Wefitthemainandsubcluster(simultaneously)oftheΣ-mapwith(40),usingaleastsquares fittingroutine. Thisdescribesadouble-βmodel. Fromthefitting,weobtaintheparameters β, Σ andr . 0 c 2. Wethenusetheparametersfromthedouble-βmodeltocomputethegalaxyamountusing(34) and(35)toobtainareasonableα. 3. Usingthisα,wecomputetheκ-map. WecomparetheresultwiththatofBrownstein–Moffat[35]. Wefindthattheamountofgalaxies accountforamassofabout14.1%usingthedouble-βmodel. Thiswasobtainedusinganα = 2.32. Galaxies2018,6,41 10of19 Theresultisonly3%differentfromtheestimateobtainedin[35],whichgavea17%estimate(usingan α =2.82). Relyingontheβ-modelassumessphericalsymmetry. Webelievethereisnoissuewiththis forthisstudybecausein[35],itwasdemonstratedthatthisassumptionleadstoaverygoodprediction ofthetemperatureofthemainclusteroftheBC.Theyobtainedaresultof15.5±3.9keV,whichisvery goodwhencomparedwiththevalueof14.8+2.0keVobtainedempirically. Theircalculatedvaluewas −1.7 thensuccessfullyusedtoreproducethemassprofileofthemainclusterICM. 4.1.1. Assumptions Inthisstudy,wemadethefollowingassumptions: 1. ThegashasanisothermaldistributionandcanbemodelledviatheKing-βmodel(fromSection3). 2. AllthevisiblematterinthesystemconsistsonlyoftheX-ray-emittinggasandthegalaxies. ThefirstassumptionallowsameansoffittingtheX-raydata(Σ-map)withtheKing-βmodel, whilethesecondassumptionallowsustocomputetheκ-mapfromtheX-raydataonly. Thegalaxies arethentakentobesufficienttoexplaintheremaininggravity,aswellastheoffsetofthelensingpeaks fromthegas. Weemphasisethatthefirstassumptionshouldbevalidforthemaingasplasma,forthe assumptionofgasequilibrium(withtheexceptionoftheshockwavepart)allowsfortheabovestated verygoodpredictionofthetemperatureofthemainclusterinagreementwiththeobservationaldata. 4.1.2. TheΣ-MapfortheBulletCluster ThesurfacedensitymapdatafortheBulletClusterisshowninFigure3a. Itisa185×185px2 imagewithamassresolutionof1015M(cid:12)/px2. Thefarthestregionontherightisthesub-cluster,while theregionontheleftisthemain-cluster. A2DprojectionofFigure3awiththefittingaccordingtothe King-βmodelisshowninFigure3b. Itspans185pixelsor1572.5kpc(usingthefactthatfortheΣ-map, thedistanceresolutionisabout8.5kpc/px). Thedataarerepresentedbythebluepoints. Thereare twopeaks,thewidestbeingthemain-cluster,andthesmallestisthesub-cluster. Theblackcurveis thefitusingtheBrownstein–Moffatparameters,whicharegivenforasingle-βmodelforthemain clusterinTable1. Thegreencurveisthefitusingthedouble-βmodelparametersobtainedinthis study. ThisisshowninTable1forthedouble-βmodel(IM,main+sub-cluster). 1e 1 1.0 Israel-Moffat (IM) parameters Brownstein-Moffat (BM) parameters Data 0.8 0.6 c / 0.4 0.2 0.0 0 200 400 600 800 1000 1200 1400 x (kpc) (a)Σmapdata (b)STVGprediction Figure3.SurfacedensitymapoftheBulletCluster(BC)(left)and2Dprojectionofthesurfacedensity plot(right).Thesubclusteristheshockwavefrontontheright(intopplot),whilethemainclusteris ontheleft(topplot).Thecolourscalecorrespondstothemassinunitsof1015M(cid:12)andhasaresolution of8.5kpcpixel−1.ThisisbasedonaredshiftmeasurementoftheBCof260kpcarcmin−1.Inthe2D projection(bottom),thegreendottedcurveisthefittothemainandsub-clusterdata(bluepoints) asadouble-βmodel. Theblackdottedcurveisthesingle-βmodelfitusingtheBrownstein–Moffat parameters.STVG,Scalar-Tensor-Vector-Gravity.

Description:
The full definition of this function in terms of. Gamma functions is: F. ([. 1. 2. ,. 3. 2 βi. ] ,. [3. 2. ] , −. ( zout uirci. )2). = (. 1 − zout uirci. )− 1. 2. ×. √ πr (3βi −1. 2. ) 2r. (3βi. 2. ) +. (. 1 − zout uirci. )− 3βi. 2 r (1−3βi. 2. ) 2r. (3(1−βi ). 2. ). (A5).
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.