Article The Train Wreck Cluster Abell 520 and the Bullet Cluster 1E0657-558 in a Generalized Theory of Gravitation NormanIsrael1,*andJohnMoffat2,3 1 DepartmentofPhysics,SchoolofNaturalandAppliedSciences,UniversityofTechnology,Jamaica, 237OldHopeRoad,Kingston6,Jamaica 2 PerimeterInstituteforTheoreticalPhysics,Waterloo,ONN2L2Y5,Canada;[email protected] 3 DepartmentofPhysicsandAstronomy,UniversityofWaterloo,Waterloo,ONN2L3G1,Canada * Correspondence:[email protected] Received:19January2018;Accepted:20March2018;Published:26March2018 Abstract: Amajorhurdleformodifiedgravitytheoriesistoexplainthedynamicsofgalaxyclusters. AcaseismadeforageneralizedgravitationaltheorycalledScalar-Tensor-Vector-Gravity(STVG) orMOG(ModifiedGravity)toexplainmergingclusterdynamics. Thepaperpresentstheresults ofare-analysisoftheBulletCluster,aswellasananalysisoftheTrainWreckClusterintheweak gravitationalfieldlimitwithoutdarkmatter. TheKing-βmodelisusedtofittheX-raydataofboth clusters,andtheκ-mapsarecomputedusingtheparametersofthisfit. Theamountofgalaxiesin theclustersisestimatedbysubtractingthepredictedκ-mapfromtheκ-mapdata. Theestimatefor theBulletClusteristhat14.1%oftheclusteriscomposedofgalaxies. FortheTrainWreckCluster, iftheJeeetal. dataareused,25.7%oftheclusteriscomposedofgalaxies. Thebaryonmatterinthe galaxiesandtheenhancedstrengthofgravitationinMOGshiftthelensingpeaks,makingthemoffset fromthegas. Theworkdemonstratesthatthisgeneralizedgravitationaltheorycanexplainmerging clusterdynamicswithoutdarkmatter. Keywords: scalartensorvectorgravity;BulletCluster;TrainWreckCluster 1. Introduction In the past few decades, observations of galactic rotation speeds [1,2], cluster mergers via gravitational lensing [3] and the cosmic microwave background [4] have revealed gravitational anomaliesthatareinterpretedbymanyastronomersasevidencethat26%ofthemassintheuniverse isunseen. Manyexpectthattheexistenceofthismissingmass(darkmatter)willbeconfirmedby thediscoveryofnewparticles, whichmaybeinteractingornon-interacting[5]. Therearevarious candidatesforthis. However,atthistime,experimentshaveturnedupempty[6–8]. Theinterpretation of the anomalies as a problem of missing mass is based on the assumption that general relativity isapplicabletolarge-scalestructuressuchasgalaxiesandclusters. Whilegeneralrelativityisvery wellcheckedatthesolarsystemscale,thereisnoreasontobelievethatitshouldsurvivelarge-scale structure tests unscathed. With this in mind, with no dark matter particle candidate yet detected andtheeffectsonlyobservedtobegravitational,theauthorsseeitjustifiedtoinvestigateapossible modification of general relativity that does not involve the addition of any extra mass. In either approach,atleastoneextradegreeoffreedomisadded. Thevariousapproachescanbebrokendown toadoptthefollowingstrategies: 1. Addextramassintheregionswheregravityisstrongest. Themasscouldbe: (a) Non-interacting(thisisthecaseforcolddarkmatter), Galaxies2018,6,41;doi:10.3390/galaxies6020041 www.mdpi.com/journal/galaxies Galaxies2018,6,41 2of19 (b) Interacting(thiscreatesamuchbroaderclasscalledthedarksector), 2. Addextrafieldsthatimplementvariousmechanisms. Somehavechosentocalltheextradegreesoffreedomdarkmatter,regardlessofwhetherthey taketheformof(1)or(2). However,relativisticmodificationsofgravityfallintothesecondcategory andimplementverydifferentstrategiesfromthosethatfallintothefirstcategory. Asaresult,inthis paper,theauthorshaveonlydecidedtocallCategory(1),darkmatter(i.e.,anytheorythatimplements thestrategyof(1)is,totheauthors,atheorythatcontainsdarkmatter,whereasthosethatdonotfall intoCategory(2)andaresaidtopossessnodarkmatter). Afewideashavebeendevelopedtotakethe secondapproach[9,10]. Someoftheseideasfallunderwhatarecalledmimeticgravitytheories[11–19]. Amajorobstacleformanymodifiedgravitytheoriesisexplainingclusterdynamics. Thisbegsthe question,doesthereexistamodificationofgeneralrelativitythatcanaddressclusterdynamicswithout theadditionofextramass(darkmatter)? Inthispaper,wewilldemonstratethattheModifiedGravity (MOG)theorycalledScalar-Tensor-Vector-Gravity(STVG)[20]hasthepotentialtoexplainmerging galaxyclusterdynamics,thusansweringthequestionintheaffirmative. Thetheoryisconsistentwith theLIGOGW170817results[21]thatgravitationalwavesandelectromagneticwavestravelatthesame speed[22]. Recallthattherearethreekeyareaswheretheanomaliesshowup: • Galacticrotationcurves • Thedynamicsofgalaxyclusters • Thecosmicmicrowavebackground Anymodificationofgeneralrelativitythatisintendedtosolvethe‘missingmass’anomalywithout darkmattermustaddressthesethreekeyareaswheretheanomaliesshowup. Anearliermodified gravitationaltheoryhasalreadybeenshowntoresolveanomaliesofgalaxyrotationspeed[23–25], andSTVGhassucceededinthisrealm,aswell. TwokeyaspectsofSTVGarethefollowing: 1. GravityisstrongerthanisdepictedinGR. 2. Arepulsivegravitationalforcemediatedbyaspin-onevectorfield(φ)screensgravity,makingit appearweakatsmalldistancescalessuchasthesolarsystemandbinarypulsars. In addition to its success in explaining galaxy rotation curves, STVG has shown success in cosmology. InSTVGcosmology,thereisanerawhereφbecomesdominant. Thiseraisthenfollowed bythelaterdominanceofmatterandthelaterenhancementof G,whichinturnisfollowedbyan acceleratederadrivenbythecosmologicalconstantΛ. Thisreproducestheacousticpowerspectrum, aswellasthematterpowerspectrum. STVGcosmologyisexplainedfurtherin[26–29]. Thispaperisfocusedonclusterdynamics. ThestudyusestheBulletClusterandTrainWreck Clusterastestcasesforthis. InSTVG,(1)isnoticeableatgalacticandgalaxyclusterdistancescales, while(2)guaranteesagreementwiththesolarsystemandbinarypulsarsystemsandisbuiltintothe Newtonianaccelerationlaw. Recallthatdarkmattermodelsassumegeneralrelativityisfineasitis andaddsextramasstoproducetheextragravityneededtoexplainthegalaxyrotationcurvesand galaxyclusterdynamics. AsthegravityinSTVGissourcedonlybyordinarymatter,itisconsidered analternativetodarkmattermodels. Thekeymodificationtothegeneralrelativitytheorythatleads toSTVGisaspin-onemassiveparticlecalleda“phion”. Thephionfieldinteractswithordinarymatter withgravitationalstrength,andthefitsofthetheorytorotationcurvesandclusterdynamicsyielda massforthephionofm =2.6×10−28eV. φ In2006,apaperbyCloweetal.[30]claimedthattheyhaddiscovereddirectevidencefordark matterthroughaclustermergerknownastheBulletCluster(BC).TheBulletClusterisamergeroftwo clusterswherethegasesinbothclustersinteractasthemergeroccurs. Thegasslowsdownandheats upwhileemittingX-rays. Thegalaxiesdonotinteractmuch,movingtothesidesofthegas. Asaresult, oneendsupwithasystemthathasthegasinthemiddleandthegalaxiesofftothesides. Figure1[30] showsthelensingmap(blue)superimposedonthegas(red). Noticetheoffsetofthelensingmap Galaxies2018,6,41 3of19 from the X-ray gas. It is this offset that resulted in the authors claiming a direct detection of dark matter,asoneexpectsthelensingmaptobeonthegasandnotoffsetfromit. Thecommonexplanation forthisinthecontextofdarkmatteristhatthereisnon-interacting(cold)darkmatterpresentinthe sub-cluster(pinkshockwavefrontontherightofFigure1)andthemaincluster(pinkregiononthe leftofFigure1). Whenthemergeroccurred,thedarkmatterfromthemainandsub-clusterspassed through each other moving off to the sides (blue regions of Figure 1) and centred on the galaxies. Whiletheresultsarenotbeingquestionedbytheauthors,thedarkmatterexplanationis. Theauthors willshowinthispaperthatthereisanexplanationinthecontextofSTVGwithoutpostulatingthat extraexoticmassissourcingthegravity. Rather,theapparentextragravityisduetothesignificant decreaseintheshieldingeffectoftherepulsivevectorfieldrelativetotheincreaseofthestrengthof gravityforthesizesofclusters. Inaddition, theoffsetsofthelensingpeaksareduetothebaryon matterinthegalaxiesshiftingthemawayfromthegas. Figure1. κ-map(blue)superimposedonthegas(pink)fortheBulletCluster. Theblueregionsare theregionswiththelargestamountofgravityandarewheredarkmatterissaidtobeconcentrated whenviewedintheEinsteinianparadigm; theredregionisthevisiblemassobtainedfromX-ray observations.ThisimageisaChandraX-rayObservatoryimage. Inalaterdevelopment,Mahdavietal.[31]analysedtheclustermergerknownasAbell520(Train WreckCluster), claimingalensingdistribution, whichchallengesthenotionthatcolddarkmatter isallthatisneededtoexplainclusters. WegiveinFigure2someplotsfroma2014studydoneby Jeeetal. [32]. Figure2bshowsthecontoursfortheκ-mapsuperimposedoverthephotonmap(red). Figure2ashowsthelensingmapfromJeeetal. Thereisatotalofsixlensingpeaks, oneofwhich (P3(cid:48))coincideswiththegas. Thisisnotexpectedinamergingsystemifonethinksofthesystemas dominatedbycolddarkmatter,ascolddarkmatter(beingnon-interacting)isexpectedtoproduce a lensing peak offset from the gas in all cases. In the present study, we will explain all six peaks. ThepresenceofapeakcoincidingwiththegaswasreaffirmedbyastudyperformedbyJeeetal.[33]. Cloweetal.[3]disputedtheexistenceofthispeak,butamorerecentdetailedstudybyJeeetal.[32] comparing the observational data used by Clowe et al. with theirs reaffirmed the existence of the significantlensingpeakatthegaslocation. SuchacentralpeakisnaturallyincorporatedinSTVG. Thepeaksthatareoffsetfromthegasareagainduetothegalaxiescontainingbaryonsshiftingthem awayfromthegas. Galaxies2018,6,41 4of19 Finally,apaperbyHarveyetal.[34],whichplacedfurtherconstraintsonadarkmatterinteracting cross-section,includedinitsstudytheAbell520cluster. Thispaperdidnotcontainacentraldark peak. Thisseemstoleavetheissueregardingtheexistenceofthispeakunresolved. Thetaskofthis paperisnottoresolvethecontroversyofwhetherornotthecentralpeakexists,buttorathermakea preliminaryattemptatdemonstratingthatitispossibleforScalarTensorVectorGravity(STVG)to explainthissystemifthepeakispresent. (a)κmapdata (b)κmapcontoursongas Figure2.Abell520(TrainWreckCluster)κ-map.Onepeak(P3(cid:48))coincideswiththegas(red). WestartwiththeweakfieldapproximationoftheSTVGfieldequationsandusetheKing-βmodel tofittheX-raydata. Wethenusetheparametersofthefittocomputetheκ-mapforbothsystems. BrownsteinandMoffathavealreadydoneananalysis[35]ofthebulletclusterusingapreviousversion ofamodifiedgravitationaltheory[23],showingthatthetheorycanexplaintheBulletClusterdata withoutexoticdarkmatter. However,thisstudyappearstohavelackedaclearexplanationofthe offsetofthelensingpeaksfromthegas. WeperformedareanalysisoftheCloweetal. datausing themorerecentSTVGtheory[20,36]andattemptedtosuggestaclearexplanationoftheoffsetofthe lensingpeaks. TheresultsareconsistentwiththeresultsoftheBrownstein–Moffatstudy, andthe suggestedoffsetofthepeaksisthatthebaryonsinthegalaxiesshiftedthepeaksfromthegasasthey movedtothesides. WebelievethatthisstudythereforeshowsthatSTVGprovidesaviablealternative tothecolddarkmatterexplanation. InadditiontoreaffirmingtheBulletClusterresults,theauthorsinvestigatedtheclustermerger Abell520inthecontextofSTVG.TheAbell520studyuseslensingdatafromtheJeeetal. studies[32]. We show that the lensing peak centred on the gas that has defied a cold dark matter explanation iseasilyincorporatedinSTVG.AswiththeBulletCluster,thepeaksthatareoffsetfromthegasare duetothegalaxiesthatmovedtothesides. 2. Scalar-Tensor-Vector-Gravity STVG (usually termed Modified Gravity (MOG)) is a modification of general relativity with amassivevectorfieldφ ,correspondingtoarepulsivegravitationalforcewithchargeQ .Theaddition µ g ofthisvectorfieldleadstoamodificationofthelawofgravitationbeyondsolarsystemscales.Acentral featureofthetheoryisthedynamicalgravitationalcouplingG. Thiscouplingvariesbothspatially andtemporally. Inaddition,thetheoryintroducesthescalarfieldµ,whichisthemassofthevector field. Thetheoryhastwo(2)degreesoffreedom: αandµ. Galaxies2018,6,41 5of19 2.1. STVGFieldEquations TheMOGactionisgivenby: S = S +S +S +S , (1) G φ S M whereS isthematteractionand: M S = 1 (cid:90) d4x(cid:112)−g(cid:20)1(R+2Λ)(cid:21), (2) G 16π G S = (cid:90) d4x(cid:112)−g(cid:20)−1BµνB + 1µ2φµφ (cid:21), (3) φ µν µ 4 2 S = (cid:90) d4x(cid:112)−g(cid:20) 1 (cid:18)1gµν∂ G∂ G−V (cid:19)+ 1 (cid:18)1gµν∂ µ∂ µ−V (cid:19)(cid:21), (4) S G3 2 µ ν G µ2G 2 µ ν µ where B = ∂ φ −∂ φ andV andV arepotentials. Notethatwechooseunitssuchthatc = 1, µν µ ν ν µ G µ usingthemetricsignature[+,−,−,−]. TheRiccitensoris: R = ∂ Γλ −∂ Γλ +Γλ Γσ −Γσ Γλ . (5) µν λ µν ν µλ µν λσ µλ νσ The matter stress-energy tensor is obtained by varying the matter action S with respect to M themetric: Tµν = −2(−g)−1/2δS /δg . (6) M M µν VaryingS +S withrespecttothemetricyields: φ S Tµν = −2(−g)−1/2[δS /δg +δS /δg ]. (7) MOG φ µν S µν Combiningthesegivesthetotalstress-energytensor: Tµν = Tµν+Tµν . (8) M MOG TheMOGfieldequationsaregivenby: G −Λg +Q =8πGT , (9) µν µν µν µν (cid:18) (cid:19) √1 ∂ (cid:112)−gBµν +µ2φν = −Jν, (10) −g µ ∂ B +∂ B +∂ B =0. (11) σ µν µ νσ ν σµ Here,G = R − 1g RistheEinsteintensorand: µν µν 2 µν 2 1 Q = (∂αG∂ Gg −∂ G∂ G)− ((cid:50)Gg −∇ ∂ G) (12) µν G2 α µν µ ν G µν µ ν isatermresultingfromthethepresenceofsecondderivativesof g in RinS . Wealsohavethe µν G fieldequations: (cid:50)G = K, (cid:50)µ = L, (13) where(cid:50)= ∇µ∇ ,K = K(G,µ,φ )andL = L(G,µ,φ ). µ µ µ Galaxies2018,6,41 6of19 Combining the Bianchi identities, ∇ Gµν = 0, with the field Equation (9) yields the ν conservationlaw: 1 1 ∇ Tµν+ ∂ GTµν− ∇ Qµν =0. (14) ν ν ν G 8πG It is a key premise of MOG that all baryonic matter possesses, in proportion to its mass M, positive gravitational charge: Q = κ M. This charge serves as the source of the vector field √ g √g φµ. Moreover, κ = G−G = αG , where G is Newton’s gravitational constant and g N N N α = (G−G )/G ≥0. Variation of S with respect to the vector field φµ then yields the MOG N N M four-current J = −(−g)−1/2δS /δφµ. µ M Forthecaseofaperfectfluid: Tµν = (ρ+p)uµuν−pgµν, (15) M where ρ and p are the matter density and pressure, respectively, and uµ is the four-velocity of an elementofthefluid. Weobtainfrom(15)anduµu =1thefour-current: µ J =κ T uν =κ ρu . (16) µ g Mµν g µ Itisshownin[37]that,withtheassumption∇ Jµ =0,(14)reducesto: µ ∇ Tµν = BµJν. (17) ν M ν 2.2. STVGWeakFieldApproximation Intheweakfieldapproximation,weperturbg abouttheMinkowskimetricη : µν µν g = η +(cid:101)h . (18) µν µν µν Theconditiong gµρ = δρ demandsthatgµρ = ηµρ−(cid:101)hµρ. µν ν Thefieldequationforthevectorfieldφµ isgivenby: ∂ Bµν+µ2φµ = −Jµ. (19) ν Assuming that the current Jµ is conserved, ∂ Jµ = 0, then in the weak field approximation, µ wecanapplythecondition∂ φµ = 0. Inthestaticlimit,oneobtainsforthesource-freespherically µ symmetricequation: ∇2φ0−µ2φ0 =0, (20) whichhasthepointparticlesolution: exp(−µr) φ (r) = −Q , (21) 0 g r √ wherethechargeQ = αG M =κ M. Thissolutioncanbewrittenforadistributionofmatteras: g N g (cid:90) e−µ|(cid:126)x−(cid:126)x(cid:48)| φ = − J ((cid:126)x(cid:48))d3x(cid:48), (22) 0 |(cid:126)x−(cid:126)x(cid:48)| 0 where: (cid:90) Q = J d3x. (23) g 0 Galaxies2018,6,41 7of19 Weassumethatintheslowmotionandweakfieldapproximationdr/ds ∼ dr/dtand2GM/r (cid:28)1, thenfortheradialaccelerationofatestparticle,weget: d2r GM qgQgexp(−µr) + = (1+µr), (24) dt2 r2 m r2 whereq =κ m. Forthestaticsolution(21)q Q /m = αG M,andG = G (1+α),whichyieldsthe g g g g N N accelerationlaw: (cid:26) (cid:20) (cid:18) (cid:19)(cid:21)(cid:27) G M r a(r) = − N 1+α 1−exp(−r/r ) 1+ , (25) r2 0 r 0 wherer =1/µ. Weobservethattheaccelerationofaparticleisindependentofitsmaterialcontent 0 (weakequivalenceprinciple). Theaccelerationlawcanbeextendedtoadistributionofmatter: a((cid:126)x) = −G (cid:90) d3(cid:126)x(cid:48)ρ((cid:126)x(cid:48))((cid:126)x−(cid:126)x(cid:48))[1+α−αe−µ|(cid:126)x−(cid:126)x(cid:48)|(1+µ|(cid:126)x−(cid:126)x(cid:48)|)]. (26) N |(cid:126)x−(cid:126)x(cid:48)|3 Wecanwrite(26)as: (cid:90) ρ((cid:126)x(cid:48))((cid:126)x−(cid:126)x(cid:48)) a((cid:126)x) = − G((cid:126)x−(cid:126)x(cid:48)) d3x(cid:48), (27) |(cid:126)x−(cid:126)x(cid:48)|3 wheretheeffectivegravitationalcouplingstrengthisgivenby: G((cid:126)x−(cid:126)x(cid:48)) = G [1+α−αe−µ|(cid:126)x−(cid:126)x(cid:48)|(1+µ|(cid:126)x−(cid:126)x(cid:48)|)]. (28) N From Equation (28), we see that G is not, in general, constant. However, for sufficiently large systems, such as galaxy clusters, it turns out that G behaves as if it is constant. The STVG fits to galaxy rotation curves, and galaxy cluster dynamics have yielded the best fit valuesα =8.89±0.34 and µ =0.042±0.004kpc−1[36]. The value for µ corresponds to the vector field mass m =2.6×10−28eV. The Tully–Fisher law relating the galaxy luminosities to the flat φ rotationcurvesisdeducedfromtheSTVGdynamicsinexcellentagreementwiththedata[36]. Inthe fitstothedynamicsofgalaxyclusters[36],theYukawarepulsiveexponentialtermproducedbythe vector field φ does not have a significant effect when one uses µ−1 = 24 kpc. As a result, one is µ onlyleftwithG = G (1+α),whichisusedtocomputetheκ-convergencelensingmapfortheBullet N ClusterandTrainWreckCluster. 2.3. GravitationalLensinginSTVG From[38],thePoissonequationwiththelensingpotentialgives: D D 8πG Σ ∇2ψ = L LS NΣ =2 , (29) θ D c2 Σ S c where: Σ(x,y) =κ(x,y), (30) Σ c and: Σ(x,y) = (cid:90) zout ρ(x,y,z)dz, (31) −zout (cid:113) withz = r2 −x2−y2,with: out out (cid:34)(cid:18) ρ (cid:19)2/(3β) (cid:35)1/2 r =r 0 −1 , (32) out c 10−28g/cm3 Galaxies2018,6,41 8of19 where10−28g/cm3isthetotaldensityoftheclusteratr . Onehas: out Σ(x,y) = ∑n (cid:90) zout,i ρ (0)(cid:34)1+ xi2+y2i +z2i (cid:35)−3βi/2dz, (33) i=1 −zout,i i rc2i whereiistheindexrepresentingthei-thcluster,Σc ≈3.1×109M(cid:12)kpc−2fortheBulletClusterand Σc ≈ 3.8×109 M(cid:12)kpc−2 fortheTrainWreckCluster. κ isameasureofthecurvatureofspace-time. InSTVG,wehavethesurfacedensitydefinedas[35]: (cid:90) Σ¯(x,y) = (1+α) ρ(x,y,z)dz, (34) sothatforSTVG: Σ¯(x,y) φ(x,y) = . (35) Σ c Inthispaper,Equation(35)isfirstcomputed. Thisisnottheentireκmap,asthisonlyconsiders thecontributionofthegas. Inordertogettheentireκmap,onemustalsoconsiderthecontributionof thegalaxies: Σ¯(x,y)+Σ¯ (x,y) gal κ(x,y) = . (36) Σ c Whenwesolve(36)forthegalaxies,weget: κ(x,y)Σ −Σ¯(x,y) Σ (x,y) ≈ c . (37) gal (1+α) WethencomputethemassofthegalaxiesbyintegratingoverΣ (x,y): gal (cid:90) (cid:90) M = Σ (x,y)dxdy. (38) gal gal Inthenextfewsections,theresultsoftheBulletClusterandTrainWreckClusterstudieswill bediscussed. ThesestudiesweredonebystartingwiththeKing-βmodel. Wewilldiscussthisfirst. Theκ-mapcomputedinbothcasesusingSTVGisshowntobeconsistentwiththeBulletClusterand TrainWreckClusterdata. 3. TheKing-βModel Inthefollowingsections,therecentworkdonetochecktheresultsof[35]willbediscussed,as wellasworkdoneby[31]. Thisstudywasdonefirstbyassuminganalmostisothermalgasspherefor theBulletClusterandTrainWreckCluster. Withthisassumption,weresorttotheKing-βmodel[39]. Wethushave: ρ(r) = ∑n ρ (0)(cid:34)1+(cid:18)ri (cid:19)2(cid:35)−3βi/2, (39) i r i=1 ci where ρ(0) is the central density for a given X-ray peak and r is the radial distance for that peak. i Usingthefactthatgalaxyclustershaveafinitespatialextent,onecanconnecttheKing-βmodelwith databyintegratingEquation(39)alongtheline-of-sight,givingthetotalsurfacedensity(31): Σ(x,y) = ∑n Σ (0)(cid:34)1+ xi2+y2i (cid:35)−(3βi−1)/2, (40) i r2 i=1 ci Galaxies2018,6,41 9of19 whereΣ (0)isthecentralsurfacemassdensityforaparticularpeak. Weassume: i x X = y. (41) z (cid:113) Thecentreofthei-thclusterisX andX = X−X ,andr = X2.AderivationofEquation(40) 0,i i 0,i i i isgiveninAppendixA. WefitEquation(40)totheΣ-mapfortheBulletClusterdata. Theparametersarethenusedto computetheκ-map. IncaseswherethegeometryiscomplicatedsuchaswiththeTrainWreckCluster, wefittheX-raypeakswithsurfacebrightnessprofilesgivenby: I(r) = ∑n I(0)(cid:34)1+(cid:18)ri (cid:19)2(cid:35)−3βi+1/2, (42) i r i=1 ci where I(0) is the central brightness for a given X-ray peak. The parameters of this fit are used to i computetheκ-mapofthesystem. 4. ResultsandAnalysis Inthissection,wewilldiscussindetailthestudiesdoneonboththeTrainWreckClusterand BulletClusterinthecontextofSTVG.Wefirststartbydiscussingtheresultsofthebulletcluster,fitting thelensingpeaksonlyusingthegasfromthemainclusterandsub-cluster,aswellasthegalaxiesto thesides. Finally,wediscussworkdoneontheTrain-WreckCluster. Wefocusonthecentrallensingpeak (centredonthegas)givenby[32]. Recallthattheresultsfrom[32]showthatthereisalargerthan expectedlensingpeakatthecentralgas,whereasotherstudies,suchas[34],donotshowthispeak. Ourintentisnottoresolvethiscontroversy,butrathertodemonstratethatthecentralpeakisnaturally incorporatedintoSTVG. RecallthattheYukawarepulsiveexponentialtermproducedbythevectorfieldφ doesnothavea µ significanteffectwhenoneusesµ−1 =24kpc. Asaresult,oneisonlyleftwithG = G (1+α),which N isusedtocomputetheκ-convergencelensingmapfortheBulletClusterandtheTrainWreckCluster. 4.1. AnalysisofBulletClusterUsingSTVG TheBulletClusterisamergingsystemlocatedatz = 0.296intheconstellationCarina. Itwas firststudiedin2006byCloweetal.[30]. Thesystemisadramaticdemonstrationofagravitational anomalywherealensingpeakisclearlyseparatefromthevisiblegas. Thisdistinctseparationofthe visiblematterfromthelensingpeaksisconsideredbymanyasevidencethatthelensingpeaksneedto besourcedwithextramasseveninthecaseofamodifiedgravitytheory. Inthissection,wewillshow thatthissystemisnaturallyexplainedbyamodifiedgravitytheorywithouttheneedfortheaddition ofextramass. Inthefollowing: 1. Wefitthemainandsubcluster(simultaneously)oftheΣ-mapwith(40),usingaleastsquares fittingroutine. Thisdescribesadouble-βmodel. Fromthefitting,weobtaintheparameters β, Σ andr . 0 c 2. Wethenusetheparametersfromthedouble-βmodeltocomputethegalaxyamountusing(34) and(35)toobtainareasonableα. 3. Usingthisα,wecomputetheκ-map. WecomparetheresultwiththatofBrownstein–Moffat[35]. Wefindthattheamountofgalaxies accountforamassofabout14.1%usingthedouble-βmodel. Thiswasobtainedusinganα = 2.32. Galaxies2018,6,41 10of19 Theresultisonly3%differentfromtheestimateobtainedin[35],whichgavea17%estimate(usingan α =2.82). Relyingontheβ-modelassumessphericalsymmetry. Webelievethereisnoissuewiththis forthisstudybecausein[35],itwasdemonstratedthatthisassumptionleadstoaverygoodprediction ofthetemperatureofthemainclusteroftheBC.Theyobtainedaresultof15.5±3.9keV,whichisvery goodwhencomparedwiththevalueof14.8+2.0keVobtainedempirically. Theircalculatedvaluewas −1.7 thensuccessfullyusedtoreproducethemassprofileofthemainclusterICM. 4.1.1. Assumptions Inthisstudy,wemadethefollowingassumptions: 1. ThegashasanisothermaldistributionandcanbemodelledviatheKing-βmodel(fromSection3). 2. AllthevisiblematterinthesystemconsistsonlyoftheX-ray-emittinggasandthegalaxies. ThefirstassumptionallowsameansoffittingtheX-raydata(Σ-map)withtheKing-βmodel, whilethesecondassumptionallowsustocomputetheκ-mapfromtheX-raydataonly. Thegalaxies arethentakentobesufficienttoexplaintheremaininggravity,aswellastheoffsetofthelensingpeaks fromthegas. Weemphasisethatthefirstassumptionshouldbevalidforthemaingasplasma,forthe assumptionofgasequilibrium(withtheexceptionoftheshockwavepart)allowsfortheabovestated verygoodpredictionofthetemperatureofthemainclusterinagreementwiththeobservationaldata. 4.1.2. TheΣ-MapfortheBulletCluster ThesurfacedensitymapdatafortheBulletClusterisshowninFigure3a. Itisa185×185px2 imagewithamassresolutionof1015M(cid:12)/px2. Thefarthestregionontherightisthesub-cluster,while theregionontheleftisthemain-cluster. A2DprojectionofFigure3awiththefittingaccordingtothe King-βmodelisshowninFigure3b. Itspans185pixelsor1572.5kpc(usingthefactthatfortheΣ-map, thedistanceresolutionisabout8.5kpc/px). Thedataarerepresentedbythebluepoints. Thereare twopeaks,thewidestbeingthemain-cluster,andthesmallestisthesub-cluster. Theblackcurveis thefitusingtheBrownstein–Moffatparameters,whicharegivenforasingle-βmodelforthemain clusterinTable1. Thegreencurveisthefitusingthedouble-βmodelparametersobtainedinthis study. ThisisshowninTable1forthedouble-βmodel(IM,main+sub-cluster). 1e 1 1.0 Israel-Moffat (IM) parameters Brownstein-Moffat (BM) parameters Data 0.8 0.6 c / 0.4 0.2 0.0 0 200 400 600 800 1000 1200 1400 x (kpc) (a)Σmapdata (b)STVGprediction Figure3.SurfacedensitymapoftheBulletCluster(BC)(left)and2Dprojectionofthesurfacedensity plot(right).Thesubclusteristheshockwavefrontontheright(intopplot),whilethemainclusteris ontheleft(topplot).Thecolourscalecorrespondstothemassinunitsof1015M(cid:12)andhasaresolution of8.5kpcpixel−1.ThisisbasedonaredshiftmeasurementoftheBCof260kpcarcmin−1.Inthe2D projection(bottom),thegreendottedcurveisthefittothemainandsub-clusterdata(bluepoints) asadouble-βmodel. Theblackdottedcurveisthesingle-βmodelfitusingtheBrownstein–Moffat parameters.STVG,Scalar-Tensor-Vector-Gravity.
Description: