ebook img

The Time Series Convergence of Dispersion in Financial Analysts' Forecasts PDF

164 Pages·2014·1.73 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Time Series Convergence of Dispersion in Financial Analysts' Forecasts

Fredrik Le Bell The Time Series Convergence of Dispersion in Financial Analysts’ F r e Forecasts d r ik L e Financial analysts play an important role in capital markets as informa- B tion intermediaries. In filtrating information, resulting in earnings fore- e casts, analysts generally tend to disagree. This thesis focuses on the disa- ll | T Fredrik Le Bell greement between financial analysts. h e Previous research and data indicate that when a company reports losses, Tim analysts start disagreeing more about the future earnings of that compa- The Time Series Convergence of e ny. Intuition would suggest that this is due to more uncertainty. Anecdotal S e evidence from analysts earnings reports corroborates this intuition, find- r ie Dispersion in Financial Analysts’ ing analysts more uncertain around negative earnings, precisely where s C disagreement tends to increase. o n Forecasts However, the theoretical models for belief formation that lay the math- v e ematical foundations for this thesis, incorporate a somewhat strange rg e implication - If analysts start disagreeing more, it can only mean they n c become more certain. In the theoretical setup, one that is used exten- e sively in the literature, it is only asymmetric information that can give rise o f to increased disagreement. D is p In order to resolve the certainty/uncertainty contradiction, this thesis e r shows that a model taking into account the public information flow in s io earnings announcements over time, can produce only small levels of disa- n greement between analysts, levels of disagreement that are too small to in encompass observed levels of disagreement. F in a As a result, this thesis concludes that the theoretical models used in the n c literature for explaining analyst disagreement, as such seem insufficient, ia and increases in disagreement could instead be interpreted as increased l A uncertainty, in accordance with evidence from analysts’ reports. n a ly The evidence in this thesis contributes to the Accounting literature, since s t many studies employ these models the other way around, in that when s’ F an increase in disagreement in empirical data is observed, the observed o r e disagreement is thought to signify an increase in asymmetric informa- c a tion. Extensive reliance on the underlying models obscures our under- s t smtaenndtsin. gEa ornf itnhges uanncneorutanincetym deynntsa mariec sp aarroaumnodu en.tg .f oera rpnriinceg sd aisncnoovuernyc ein- s | 2 0 practice, and are also extensively studied in the Accounting literature. 1 4 The results in this thesis indicate that conclusions in other studies regar- ding increases in disagreement resulting from information asymmetry might be premature. 9 789517 657624 Åbo Akademi University Press | ISBN 978-951-765-762-4 Fredrik Le Bell (born 1980) - M.Sc. (Econ. & Bus. Adm.), 2008, Åbo Akademi University - B.Sc. , 2008, Åbo Akademi University (Natural Sciences) - B.Sc. (Econ. & Bus. Adm.), 2007, Åbo Akademi University Åbo Akademi University Press Tavastgatan 13, FI-20500 Åbo, Finland Tel. +358 (0)2 215 3478 E-mail: [email protected] Sales and distribution: Åbo Akademi University Library Domkyrkogatan 2–4, FI-20500 Åbo, Finland Tel. +358 (0)2 -215 4190 E-mail: [email protected] THE TIME SERIES CONVERGENCE OF DISPERSION IN FINANCIAL ANALYSTS’ FORECASTS The Time Series Convergence of Dispersion in Financial Analysts’ Forecasts Fredrik Le Bell Åbo Akademis förlag | Åbo Akademi University Press Åbo, Finland, 2014 CIP Cataloguing in Publication Le Bell, Fredrik. The time series convergence of dispersion in financial analysts’ forecasts / Fredrik Le Bell. - Åbo : Åbo Akademi University Press, 2014. Diss.: Åbo Akademi University. ISBN 978-951-765-762-4 ISBN 978-951-765-762-4 ISBN 978-951-765-763-1 (digital) Painosalama Oy Åbo 2014 Abstract The standard Bayesian learning model under asymmetric information due to Barry and Jennings (1992) and Barron, Kim, Lim and Stevens (1998), shows how dis- persion in the forecasts made by financial analysts emerges as a function of the uncertainties that the analysts are facing. A key implication arising from these modelsisthatdispersioninforecastscanonlyincreaseduetoincreasedinformation asymmetry. This study expands the models of Barry and Jennings (1992) and Barron et al. (1998) by explicitly considering the role that releases of common information, in- terpreted as annual earnings releases, have on belief convergence. The study shows thatlearningfromcommoninformationinafixedlearningregime,causesrapidcon- vergenceofsubjectivebeliefs. Theconvergenceofbeliefsoncommoninformationin turn dictates the magnitude of maximum dispersion that asymmetric information can cause, resulting in a monotonically decreasing maximum amount of dispersion. Empirical estimations using data on all US listed companies between 1995-2010 confirmthatobservedlevelsofforecastdispersionexceedtheoreticallyimpliedmax- imumswhentakingintoaccounttheamountofcommonlyobservedinformationthat hasbecomeavailablethroughearningsannouncements. Exceedanceoftheoretically impliedmaximumsforforecastdispersionisprominentwhenacompanyexperiences negative earnings. Thejointevidenceofthestudysuggestthatlevelsofdispersioninanalysts’forecasts aretoohightofindtheoreticalsupport. Consequentlyasymmetricinformationalone cannot yield observed levels of forecast dispersion. Theresultshaveintuitiveappeal,sincedispersionincreasingfromasymmetricinfor- mation as in Barry and Jennings (1992) and Barron et al. (1998), implies increased certainty. Theevidenceinthisstudyinsteadsuggeststhatdispersionresultingfrom asymmetric information alone is not possible, and thus opens up possibilities for interpreting increased dispersion as increased uncertainty. The study finally dis- cusses potential pathways for such interpretations, involving agents restarting their learningprocedures,oragentsactingasiftheconditioningdistributionisnon-fixed. i Svensk sammanfattning Spridning i prognoser gjorda av finansanalytiker anses vanligen kunna fo¨rklaras med en Bayesiansk modell, utvecklad av Barry och Jennings (1992) samt Barron, Kim, Lim och Stevens (1998). Modellen visar hur spridningen i prognoser uppst˚ar som ett resultat av den os¨akerhet som analytikerna st˚ar inf¨or. Den huvudsakliga fo¨ruts¨attningen fo¨r att spridning mellan analytikers prognoser skall kunna ¨oka, a¨r att informationsasymmetri ¨okar. Denna avhandling utvidgar modellerna av Barry och Jennings (1992) samt Barron et al. (1998) genom att explicit beakta hur publikt tillg¨anglig information, infor- mation som tolkas uppkomma i form av fo¨retags resultatrapporter, m˚aste p˚averka konvergensen i analytikernas o¨vertygelser (beliefs). Avhandlingen visar att inla¨ran- det som sker p.g.a. publik information i en fixerad Bayesiansk miljo¨ leder till en snabb konvergens i subjektiva o¨vertygelser. Konvergensen i ¨overtygelser som sker p.g.a. publik information visar sig i sin tur diktera den maximala ma¨ngd sprid- ning som den asymmetriska informationen kan orsaka, och detta leder till att den maximala spridningsma¨ngden m˚aste sjunka monotont o¨ver tiden. De empiriska estimationerna i avhandlingen visar att den ma¨ngd spridning i prog- noser som observeras i data ¨overstiger den teoretiska maximim¨angden fo¨r spridning i prognoser, d˚a man beaktar den ma¨ngd publik information som blivit tillg¨anglig genomfo¨retagensresultatrapporter. Detvisarsiga¨venatto¨vertra¨delserif¨orh˚allande tilldeteoretiskamaximiniv˚aernaf¨orspridningiprognoserfo¨rekommerspecielltisit- uationer da¨r ett fo¨retag rapporterar fo¨rluster. Data som anva¨nds a¨r Amerikanska listade bolag under tidsperioden 1995 -2010. Densammanlagdabevisma¨ngdeniavhandlingentyderp˚aattdeempirisktobserver- adeniv˚aernafo¨rspridningianalytikerprognoser¨arfo¨rh¨ogafo¨rattkunnafinnast¨od i de modeller som utvecklats fo¨r att fo¨rklara dem. Da¨rmed kan inte den asym- metriska informationen som vanligtvis anva¨nds som en fo¨rklaring fo¨r en ¨okning i spridningen av prognoserna, ensam˚astadkomma de niv˚aer i prognosspridning som de facto observeras i data. Resultatena¨rintuitivttilltalanded˚aeno¨kningiprognosspridningtillf¨oljdavasym- ii metrisk information, s˚a som i Barry och Jennings (1992) samt Barron et al. (1998), samtidigt ¨aven innefattar att analytiker blir sa¨krare i sina o¨vertygelser d˚a sprid- ningen i prognoser o¨kar. Resultaten ur denna avhandling ha¨vdar ista¨llet att prog- nosspridningen inte enbart kan bero p˚a asymmetrisk information, och detta ¨oppnar samtidigt mo¨jligheten till att i sj¨alva verket tolka en o¨kning i prognosspridning som o¨kad osa¨kerhet. Slutligen diskuterar avhandlingen m¨ojliga banor f¨or tolkningar av o¨kadprognosspridningsominvolveraro¨kados¨akerhet. Dettakanskegenomattana- lytikertvingasstartaomsininla¨rningsprocessellergenomattanalytikernaanva¨nder icke-fixerade sannolikhetsfo¨rdelningar i sin informationsma¨ngd. iii

Description:
Åbo Akademis förlag | Åbo Akademi University Press . Working on a quantitative topic with a theoretical emphasis is in retrospect reward- ing, but at
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.