Fredrik Le Bell The Time Series Convergence of Dispersion in Financial Analysts’ F r e Forecasts d r ik L e Financial analysts play an important role in capital markets as informa- B tion intermediaries. In filtrating information, resulting in earnings fore- e casts, analysts generally tend to disagree. This thesis focuses on the disa- ll | T Fredrik Le Bell greement between financial analysts. h e Previous research and data indicate that when a company reports losses, Tim analysts start disagreeing more about the future earnings of that compa- The Time Series Convergence of e ny. Intuition would suggest that this is due to more uncertainty. Anecdotal S e evidence from analysts earnings reports corroborates this intuition, find- r ie Dispersion in Financial Analysts’ ing analysts more uncertain around negative earnings, precisely where s C disagreement tends to increase. o n Forecasts However, the theoretical models for belief formation that lay the math- v e ematical foundations for this thesis, incorporate a somewhat strange rg e implication - If analysts start disagreeing more, it can only mean they n c become more certain. In the theoretical setup, one that is used exten- e sively in the literature, it is only asymmetric information that can give rise o f to increased disagreement. D is p In order to resolve the certainty/uncertainty contradiction, this thesis e r shows that a model taking into account the public information flow in s io earnings announcements over time, can produce only small levels of disa- n greement between analysts, levels of disagreement that are too small to in encompass observed levels of disagreement. F in a As a result, this thesis concludes that the theoretical models used in the n c literature for explaining analyst disagreement, as such seem insufficient, ia and increases in disagreement could instead be interpreted as increased l A uncertainty, in accordance with evidence from analysts’ reports. n a ly The evidence in this thesis contributes to the Accounting literature, since s t many studies employ these models the other way around, in that when s’ F an increase in disagreement in empirical data is observed, the observed o r e disagreement is thought to signify an increase in asymmetric informa- c a tion. Extensive reliance on the underlying models obscures our under- s t smtaenndtsin. gEa ornf itnhges uanncneorutanincetym deynntsa mariec sp aarroaumnodu en.tg .f oera rpnriinceg sd aisncnoovuernyc ein- s | 2 0 practice, and are also extensively studied in the Accounting literature. 1 4 The results in this thesis indicate that conclusions in other studies regar- ding increases in disagreement resulting from information asymmetry might be premature. 9 789517 657624 Åbo Akademi University Press | ISBN 978-951-765-762-4 Fredrik Le Bell (born 1980) - M.Sc. (Econ. & Bus. Adm.), 2008, Åbo Akademi University - B.Sc. , 2008, Åbo Akademi University (Natural Sciences) - B.Sc. (Econ. & Bus. Adm.), 2007, Åbo Akademi University Åbo Akademi University Press Tavastgatan 13, FI-20500 Åbo, Finland Tel. +358 (0)2 215 3478 E-mail: [email protected] Sales and distribution: Åbo Akademi University Library Domkyrkogatan 2–4, FI-20500 Åbo, Finland Tel. +358 (0)2 -215 4190 E-mail: [email protected] THE TIME SERIES CONVERGENCE OF DISPERSION IN FINANCIAL ANALYSTS’ FORECASTS The Time Series Convergence of Dispersion in Financial Analysts’ Forecasts Fredrik Le Bell Åbo Akademis förlag | Åbo Akademi University Press Åbo, Finland, 2014 CIP Cataloguing in Publication Le Bell, Fredrik. The time series convergence of dispersion in financial analysts’ forecasts / Fredrik Le Bell. - Åbo : Åbo Akademi University Press, 2014. Diss.: Åbo Akademi University. ISBN 978-951-765-762-4 ISBN 978-951-765-762-4 ISBN 978-951-765-763-1 (digital) Painosalama Oy Åbo 2014 Abstract The standard Bayesian learning model under asymmetric information due to Barry and Jennings (1992) and Barron, Kim, Lim and Stevens (1998), shows how dis- persion in the forecasts made by financial analysts emerges as a function of the uncertainties that the analysts are facing. A key implication arising from these modelsisthatdispersioninforecastscanonlyincreaseduetoincreasedinformation asymmetry. This study expands the models of Barry and Jennings (1992) and Barron et al. (1998) by explicitly considering the role that releases of common information, in- terpreted as annual earnings releases, have on belief convergence. The study shows thatlearningfromcommoninformationinafixedlearningregime,causesrapidcon- vergenceofsubjectivebeliefs. Theconvergenceofbeliefsoncommoninformationin turn dictates the magnitude of maximum dispersion that asymmetric information can cause, resulting in a monotonically decreasing maximum amount of dispersion. Empirical estimations using data on all US listed companies between 1995-2010 confirmthatobservedlevelsofforecastdispersionexceedtheoreticallyimpliedmax- imumswhentakingintoaccounttheamountofcommonlyobservedinformationthat hasbecomeavailablethroughearningsannouncements. Exceedanceoftheoretically impliedmaximumsforforecastdispersionisprominentwhenacompanyexperiences negative earnings. Thejointevidenceofthestudysuggestthatlevelsofdispersioninanalysts’forecasts aretoohightofindtheoreticalsupport. Consequentlyasymmetricinformationalone cannot yield observed levels of forecast dispersion. Theresultshaveintuitiveappeal,sincedispersionincreasingfromasymmetricinfor- mation as in Barry and Jennings (1992) and Barron et al. (1998), implies increased certainty. Theevidenceinthisstudyinsteadsuggeststhatdispersionresultingfrom asymmetric information alone is not possible, and thus opens up possibilities for interpreting increased dispersion as increased uncertainty. The study finally dis- cusses potential pathways for such interpretations, involving agents restarting their learningprocedures,oragentsactingasiftheconditioningdistributionisnon-fixed. i Svensk sammanfattning Spridning i prognoser gjorda av finansanalytiker anses vanligen kunna fo¨rklaras med en Bayesiansk modell, utvecklad av Barry och Jennings (1992) samt Barron, Kim, Lim och Stevens (1998). Modellen visar hur spridningen i prognoser uppst˚ar som ett resultat av den os¨akerhet som analytikerna st˚ar inf¨or. Den huvudsakliga fo¨ruts¨attningen fo¨r att spridning mellan analytikers prognoser skall kunna ¨oka, a¨r att informationsasymmetri ¨okar. Denna avhandling utvidgar modellerna av Barry och Jennings (1992) samt Barron et al. (1998) genom att explicit beakta hur publikt tillg¨anglig information, infor- mation som tolkas uppkomma i form av fo¨retags resultatrapporter, m˚aste p˚averka konvergensen i analytikernas o¨vertygelser (beliefs). Avhandlingen visar att inla¨ran- det som sker p.g.a. publik information i en fixerad Bayesiansk miljo¨ leder till en snabb konvergens i subjektiva o¨vertygelser. Konvergensen i ¨overtygelser som sker p.g.a. publik information visar sig i sin tur diktera den maximala ma¨ngd sprid- ning som den asymmetriska informationen kan orsaka, och detta leder till att den maximala spridningsma¨ngden m˚aste sjunka monotont o¨ver tiden. De empiriska estimationerna i avhandlingen visar att den ma¨ngd spridning i prog- noser som observeras i data ¨overstiger den teoretiska maximim¨angden fo¨r spridning i prognoser, d˚a man beaktar den ma¨ngd publik information som blivit tillg¨anglig genomfo¨retagensresultatrapporter. Detvisarsiga¨venatto¨vertra¨delserif¨orh˚allande tilldeteoretiskamaximiniv˚aernaf¨orspridningiprognoserfo¨rekommerspecielltisit- uationer da¨r ett fo¨retag rapporterar fo¨rluster. Data som anva¨nds a¨r Amerikanska listade bolag under tidsperioden 1995 -2010. Densammanlagdabevisma¨ngdeniavhandlingentyderp˚aattdeempirisktobserver- adeniv˚aernafo¨rspridningianalytikerprognoser¨arfo¨rh¨ogafo¨rattkunnafinnast¨od i de modeller som utvecklats fo¨r att fo¨rklara dem. Da¨rmed kan inte den asym- metriska informationen som vanligtvis anva¨nds som en fo¨rklaring fo¨r en ¨okning i spridningen av prognoserna, ensam˚astadkomma de niv˚aer i prognosspridning som de facto observeras i data. Resultatena¨rintuitivttilltalanded˚aeno¨kningiprognosspridningtillf¨oljdavasym- ii metrisk information, s˚a som i Barry och Jennings (1992) samt Barron et al. (1998), samtidigt ¨aven innefattar att analytiker blir sa¨krare i sina o¨vertygelser d˚a sprid- ningen i prognoser o¨kar. Resultaten ur denna avhandling ha¨vdar ista¨llet att prog- nosspridningen inte enbart kan bero p˚a asymmetrisk information, och detta ¨oppnar samtidigt mo¨jligheten till att i sj¨alva verket tolka en o¨kning i prognosspridning som o¨kad osa¨kerhet. Slutligen diskuterar avhandlingen m¨ojliga banor f¨or tolkningar av o¨kadprognosspridningsominvolveraro¨kados¨akerhet. Dettakanskegenomattana- lytikertvingasstartaomsininla¨rningsprocessellergenomattanalytikernaanva¨nder icke-fixerade sannolikhetsfo¨rdelningar i sin informationsma¨ngd. iii
Description: