ebook img

The Three-body Problem from Pythagoras to Hawking PDF

183 Pages·2016·4.911 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Three-body Problem from Pythagoras to Hawking

Mauri Valtonen · Joanna Anosova Konstantin Kholshevnikov Aleksandr Mylläri · Victor Orlov Kiyotaka Tanikawa The Three-body Problem from Pythagoras to Hawking The Three-body Problem from Pythagoras to Hawking ThiSisaFMBlankPage Mauri Valtonen (cid:129) Joanna Anosova (cid:129) Konstantin Kholshevnikov (cid:129) Aleksandr Mylla¨ri (cid:129) Victor Orlov (cid:129) Kiyotaka Tanikawa The Three-body Problem from Pythagoras to Hawking MauriValtonen JoannaAnosova UniversityofTurku UniversityofTexas Turku,Finland Austin,Texas,USA KonstantinKholshevnikov AleksandrMylla¨ri St.PetersburgStateUniversity St.George’sUniversity St.Petersburg,Russia St.George’s,Grenada,WestIndies VictorOrlov KiyotakaTanikawa St.PetersburgStateUniversity NationalAstronomicalObservatory St.Petersburg,Russia Tokyo,Japan Additionalmaterialtothisbookcanbedownloadedfromhttp://extras.springer.com. ISBN978-3-319-22725-2 ISBN978-3-319-22726-9 (eBook) DOI10.1007/978-3-319-22726-9 LibraryofCongressControlNumber:2016935696 ©SpringerInternationalPublishingSwitzerland2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthis book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade. Coverillustration:Chaosinthethree-bodyproblem.Thisillustratesthesensitivityofthethree-body problemtotheexactinitialconfiguration,representedbythepositionintheplane. Colorcorrespondsto differentgeometricconfigurationsaftersomethree-bodyevolution.Asmallinitialdifferenceleadsto verydifferentorbitalpaths. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAGSwitzerland Preface Writing a popular account of the three-body problem is a special challenge. The problemisasoldasscienceingeneral,andcontributionstowardsitssolutionhave beenmadebyanuntoldnumberofscientists.Yetwearenotyetatthestagewhere we could declare that the problem has been solved. Another challenge is to try to conveysomeoftheexcitementofthisproblemtothegeneralreaderwithouttheuse of mathematics. For a problem which is studied in mathematics departments of manyuniversities,itmeans,bynecessity,majorsimplificationsandoftenappealing to applications in the field of astronomy. Astronomical systems may be easier to visualizethanpurelymathematicalconstructions. Wehavetakenthehistoricalapproach.Thethree-bodyproblem,thedescription ofthemotionofthreecelestialbodiesundertheactionoftheirmutualgravitational pull, was first studied by Isaac Newton. In Chap. 1, we give a brief history of the problempriortoNewtonandonlytotheextentthatisrelevanttoNewton’swork. There is much astronomical and mathematical science before Newton that we are not able to describe here. Some additions to the historical background come in Chap.7afterwehavelearntconceptsthatareimportanttotheproblem,suchasthe ideaofchaos. Newton’slawofgravityisaccurateenoughformostastronomicalcalculations. However,themoreaccurateEinstein’slawofgravityisnecessaryinmanymodern applications.Infact,theneedtoimproveNewton’slawbecameapparentonlyinthe latenineteenthcentury,whenitwasrealizedthatplanetMercurydidnotbehaveas expected by the solution of the three-body problem in Newton’s theory. The last chapterdescribesmoredrasticchangestoNewton’slaw,suchasthelawsgoverning black holes. They cannot be understood without Einstein’s General Relativity, as hislawofgravityiscalled. Chapter 3 follows some steps in the evolution of the three-body problem. It includes, among others, the famous pre-Nobel competition for finding the answer and describes Poincare´ and Sundman as leaders of two schools of thought on the nature of the solution. For Poincare´ it was statistical at best, while Sundman claimed a fully deterministic solution. Both lines of enquiry have correspondence v vi Preface in the current work. Poincare´’s solution leads to chaos theory, and further to enquiriesaboutthenatureoftime,thesubjectofthefourthchapter. Inthenexttwochapters,wemeetastronomicalapplicationsontwodifferentscales, the Solar System and galaxies. Both of these systems have more than three bodies, more than three by far. However, it is possible to get first-order estimates of many processes using just three bodies in the calculations, as numerous scientists have demonstrated over the years. For example, two galaxies may be understood as two rigidbodieswhichprovidethevariablegravitationalfieldforthestudyofthemotionof athirdbody,suchasastar.Repeatingtheprocessformanystarsgivesusanoverview ofhowgalaxiesmadeofbillionsofstarsmaychangetheirshapeandotherproperties. Afterthefirstroundreview,wetakeamoredetailedlookatthestepsinvolvedin the history of the three-body problem. It includes new frontiers and some of the recent results. Among frontiers are the systems involving black holes which are found in the final chapter. It takes us straight to the current efforts to prove black hole theorems. That is, we try to verify the concept of black holes that is derived fromGeneralRelativity. It is not clear where one should start the history of the three-body problem. PythagorasprobablyunderstoodthatEarth,Moon,andtheSunarethreespherical celestialbodieswhoseexactalignmentsproduceeclipses,lunarandsolar.Butonly aftertheintroductionoftheforcelawbetweenthemdidthethree-bodyproblemin themodernsenseemerge.Newton’sattemptstosolvethethree-bodyproblemfilled agoodpartofhis famousworkPrincipia.Thethree-bodyproblemoftoday,with Einstein’slawofgravity,maybeusedtotesttheso-calledno-hairtheoremofblack holes.Theno-hairtheoremwasfirstformulatedbyIsrael,Carter,andHawking,and a distant quasar composed of two black holes and a cloud of gas is the system currentlyunderstudy.Thisrepresentsanenormousrangeofscale.Atthelowerend wehavethemassoftheSunandattheupperendmorethantenbillionsuns.The objectsofstudycanbeneartous,liketheSunabout8lightminutesaway,or3.5 billionlightyearsawayinthecaseofthebinaryblackholesystemOJ287. Vladimir Titov from St. Petersburg State University (Russia) has prepared animationsillustratingchoreographiesinthethree-bodysystems.Theseanimations and other add-on materials can be found on the book web page http://extras. springer.com. We would like to thank Sverre Aarseth, Nick Ourusoff, and Renate and Henrik Appelqvistforreadingthemanuscriptandforhelpfulcomments.WethankalsoLaura Garbolino,HeikeHartmann,G€oranO¨stlin,MarkHurn,KathrynShaw,AlanHarris, AnnikaAugustsson,JaanaTegelberg,SylvioFerrazMello,JoergWaldvogel,Arthur Chernin,GeneByrd,HarryLehtoandMartinGutknechtforhelpwithillustrations. WealsoacknowledgetheFreeSoftwareFoundationforthepermissiontousethe GNUFreeDocumentationLicenseinreproducingseveralofourfigures.Theyare indicated in the figure captions as originating from Wikimedia Commons. These figuresarepublishedunderthetermsoftheGNUGeneralPublicLicenseVersion3 (GNUGPLv.3)whichpermitsuse,duplication,adaptation,distribution,andrepro- duction in any medium or format, as long as you give appropriate credit to the originalauthor(s)andthesourceandindicateifchangesweremade.Ifyouremix, Preface vii transform,orbuilduponthisfigureorapartthereof,youmustdistributeyourwork underthesamelicenseastheoriginal.Figurecaptionsgivebibliographicdataofthe sourcewithname(s)oftheoriginator(s);itmayalsobeanhttpaddress. Wehopethatthissmallreviewwillstimulateinterestinthereader,andforthose withmathematicalknowledge,furtherenquiriestothemysteriesofthethree-body problem. Turku,Finland MauriValtonen Austin,TX JoannaAnosova St.Petersburg,Russia KonstantinKholshevnikov Grenada,WestIndies AleksandrMylla¨ri St.Petersburg,Russia VictorOrlov Tokyo,Japan KiyotakaTanikawa September2015 ThiSisaFMBlankPage Contents 1 ClassicalProblems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 ImpossibleProblemstoSolve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 HowtoSolvetheThree-BodyProblem. . . . . . . . . . . . . . . . . . . . . . . . 8 Pythagoras’Advice:UseaNumber. . . . . . . . . . . . . . . . . . . . . . . . . . . 9 EverythingisSpheres. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Itisanellipse!. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 ConicSections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 AnIsolatedBody. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 OneFixedCenter. . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 TypesofMotion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Two-BodyProblem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2 FromNewtontoEinstein:TheDiscoveryofLawsofMotion andGravity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 TheLawofGravity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Newton’sFailure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Newton’sPhysics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 TheBestofallPossibleWorlds.. . . . . . . . . . . . . .. . . . . . . . . . . . .. . 38 LetThereBeLight. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 TheRiseofRelativity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 GeometryandGravity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3 FromCometstoChaos. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 TheGreatInequality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 IsitReallyanInverseSquareLaw?. . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Halley’sComet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 LexellandtheDiscoveryUranus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 TheDiscoveryofNeptune. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Lexell’sCometAgain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 KingOscar’sCompetition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Sundman’sSolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.