ebook img

The theory of H(b) spaces. Vol.1 PDF

704 Pages·2016·3.307 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The theory of H(b) spaces. Vol.1

H The Theory of (b) Spaces Volume1 An H(b) space is defined as a collection of analytic functions that are in the image of an operator. The theory of H(b) spaces bridges two classical sub- jects,complexanalysisandoperatortheory,whichmakesitbothappealingand demanding. Volume1ofthiscomprehensivetreatmentisdevotedtothepreliminarysub- jects required to understand the foundation of H(b) spaces, such as Hardy spaces,Fourieranalysis,integralrepresentationtheorems,Carlesonmeasures, ToeplitzandHankeloperators,varioustypesofshiftoperatorsandClarkmea- sures. Volume 2 focuses on the central theory. Both books are accessible to graduate students as well as researchers: each volume contains numerous exercisesandhints,andfiguresareincludedthroughouttoillustratethetheory. Together,thesetwovolumesprovideeverythingthereaderneedstounderstand andappreciatethisbeautifulbranchofmathematics. EmmanuelFricainisProfessorofMathematicsatLaboratoirePaulPainleve´, Universite´ Lille 1, France. Part of his research focuses on the interaction between complex analysis and operator theory, which is the main content of thisbook.Hehasawealthofexperienceteachingnumerousgraduatecourses on different aspects of analytic Hilbert spaces, and he has published several papersonH(b)spacesinhigh-qualityjournals,makinghimaworldspecialist inthissubject. JavadMashreghiisaProfessorofMathematicsatUniversite´Laval,Que´bec, Canada,wherehehasbeenselectedStarProfessoroftheYearseventimesfor excellenceinteaching.Hismainfieldsofinterestarecomplexanalysis,oper- ator theory and harmonic analysis. He is the author of several mathematical textbooks, monographs and research articles. He won the G. de B. Robinson Award,thepublicationprizeoftheCanadianMathematicalSociety,in2004. NEW MATHEMATICAL MONOGRAPHS EditorialBoard Be´laBolloba´s,WilliamFulton,AnatoleKatok,FrancesKirwan,PeterSarnak,BarrySimon,BurtTotaro AllthetitleslistedbelowcanbeobtainedfromgoodbooksellersorfromCambridgeUniversityPress.Fora completeserieslistingvisitwww.cambridge.org/mathematics. 1. M.CabanesandM.EnguehardRepresentationTheoryofFiniteReductiveGroups 2. J.B.GarnettandD.E.MarshallHarmonicMeasure 3. P.CohnFreeIdealRingsandLocalizationinGeneralRings 4. E.BombieriandW.GublerHeightsinDiophantineGeometry 5. Y.J.IoninandM.S.ShrikhandeCombinatoricsofSymmetricDesigns 6. S.Berhanu,P.D.CordaroandJ.HounieAnIntroductiontoInvolutiveStructures 7. A.ShlapentokhHilbert’sTenthProblem 8. G.MichlerTheoryofFiniteSimpleGroupsI 9. A.BakerandG.Wu¨stholzLogarithmicFormsandDiophantineGeometry 10. P.KronheimerandT.MrowkaMonopolesandThree-Manifolds 11. B.Bekka,P.delaHarpeandA.ValetteKazhdan’sProperty(T) 12. J.NeisendorferAlgebraicMethodsinUnstableHomotopyTheory 13. M.GrandisDirectedAlgebraicTopology 14. G.MichlerTheoryofFiniteSimpleGroupsII 15. R.SchertzComplexMultiplication 16. S.BlochLecturesonAlgebraicCycles(2ndEdition) 17. B.Conrad,O.GabberandG.PrasadPseudo-reductiveGroups 18. T.DownarowiczEntropyinDynamicalSystems 19. C.SimpsonHomotopyTheoryofHigherCategories 20. E.FricainandJ.MashreghiTheTheoryofH(b)SpacesI 21. E.FricainandJ.MashreghiTheTheoryofH(b)SpacesII 22. J.Goubault-LarrecqNon-HausdorffTopologyandDomainTheory 23. J.S´niatyckiDifferentialGeometryofSingularSpacesandReductionofSymmetry 24. E.RiehlCategoricalHomotopyTheory 25. B.A.MunsonandI.Volic´CubicalHomotopyTheory 26. B.Conrad,O.GabberandG.PrasadPseudo-reductiveGroups(2ndEdition) 27. J.Heinonen,P.Koskela,N.ShanmugalingamandJ.T.TysonSobolevSpacesonMetricMeasureSpaces 28. Y.-G.OhSymplecticTopologyandFloerHomologyI 29. Y.-G.OhSymplecticTopologyandFloerHomologyII The Theory of H(b) Spaces Volume 1 EMMANUEL FRICAIN Universite´Lille1 JAVAD MASHREGHI Universite´Laval,Que´bec UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learningandresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781107027770 (cid:2)c EmmanuelFricainandJavadMashreghi2016 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2016 AcataloguerecordforthispublicationisavailablefromtheBritishLibrary LibraryofCongressCataloguinginPublicationdata Fricain,Emmanuel,1971–author. ThetheoryofH(b)spaces/EmmanuelFricain,JavadMashreghi. 2volumes;cm.–(Newmathematicalmonographs;v.20–21) ISBN978-1-107-02777-0(Hardback) 1. Hilbertspace. 2. Hardyspaces. 3. Analyticfunctions. 4. Linear operators. I. Mashreghi,Javad,author. II. Title. QA322.4.F732014 515(cid:2).733–dc23 2014005539 ISBN–2VolumeSet978-1-107-11941-3Hardback ISBN–Volume1 978-1-107-02777-0Hardback ISBN–Volume2 978-1-107-02778-7Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication, anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. Toourfamilies: Keiko&Shahzad Hugo&Dorsa,Parisa,Golsa Contents for Volume 1 Preface pagexvii 1 Normedlinearspacesandtheiroperators 1 1.1 Banachspaces 1 1.2 Boundedoperators 9 1.3 Fourierseries 14 1.4 TheHahn–Banachtheorem 15 1.5 TheBairecategorytheoremanditsconsequences 21 1.6 Thespectrum 26 1.7 Hilbertspaceandprojections 30 1.8 Theadjointoperator 40 1.9 Tensorproductandalgebraicdirectsum 45 1.10 Invariantsubspacesandcyclicvectors 49 1.11 Compressionsanddilations 52 1.12 Anglebetweentwosubspaces 54 NotesonChapter1 57 2 Somefamiliesofoperators 60 2.1 Finite-rankoperators 60 2.2 Compactoperators 62 2.3 Subdivisionsofspectrum 65 2.4 Self-adjointoperators 70 2.5 Contractions 77 2.6 Normalandunitaryoperators 78 2.7 Forwardandbackwardshiftoperatorson(cid:2)2 80 2.8 ThemultiplicationoperatoronL2(μ) 83 2.9 DoublyinfiniteToeplitzandHankelmatrices 86 NotesonChapter2 92 vii viii Contents 3 Harmonicfunctionsontheopenunitdisk 96 3.1 Nontangentialboundaryvalues 96 3.2 Angularderivatives 98 3.3 Somewell-knownfactsinmeasuretheory 101 3.4 BoundarybehaviorofPμ 106 3.5 IntegralmeansofPμ 110 3.6 BoundarybehaviorofQμ 112 3.7 IntegralmeansofQμ 113 3.8 Subharmonicfunctions 116 3.9 SomeapplicationsofGreen’sformula 117 NotesonChapter3 120 4 Hardyspaces 122 4.1 Hyperbolicgeometry 122 4.2 ClassicHardyspacesHp 124 4.3 TheRieszprojectionP 130 + 4.4 KernelsofP+andP− 135 4.5 DualandpredualofHpspaces 137 4.6 Thecanonicalfactorization 141 4.7 TheSchwarzreflectionprincipleforH1functions 148 4.8 Propertiesofouterfunctions 149 4.9 Auniquenesstheorem 154 4.10 MoreonthenorminHp 157 NotesonChapter4 163 5 Morefunctionspaces 166 5.1 TheNevanlinnaclassN 166 5.2 Thespectrumofb 171 5.3 ThediskalgebraA 173 5.4 ThealgebraC(T)+H ∞ 181 5.5 GeneralizedHardyspacesHp(ν) 183 5.6 Carlesonmeasures 187 5.7 EquivalentnormsonH2 198 5.8 Thecoronaproblem 202 NotesonChapter5 211 6 Extremeandexposedpoints 214 6.1 Extremepoints 214 6.2 ExtremepointsofLp(T) 217 6.3 ExtremepointsofHp 219 6.4 Strictconvexity 224 6.5 ExposedpointsofB(X) 227 6.6 StronglyexposedpointsofB(X) 230 6.7 EquivalenceofrigidityandexposedpointsinH1 232

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.