ebook img

The Taniyama-Shimura-Weil conjecture PDF

312 Pages·2009·7.735 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Taniyama-Shimura-Weil conjecture

The Taniyama-Shimura-Weil conjecture Adrien L(cid:252)cker - Alex Monnard Vlad Serban - Daniele Rotanzi Fabrizio Gelsomino - Kevin Fournier Semester project of mathematics Under the direction of Prof. Philippe Michel, Prof. Donna Testerman and Prof. Eva Bayer J’ai une dØmonstration vØritablement merveilleuse de cette proposition, que cette marge est trop Øtroite pour contenir. Pierre de Fermat (XVIIe siŁcle, France). On entre dans la premiŁre chambre et elle est obscure. ComplŁtement obscure. On se heurte aux meubles, on (cid:28)nit par conna(cid:238)tre leur emplacement. AprŁs quelques six mois, on (cid:28)nit par trouver le commutateur et soudain, la piŁce est ØclairØe. On peut voir exactement oø l’on se trouve. Puis on passe (cid:224) la piŁce suivante, et l’on a(cid:27)ronte de nouveau six mois d’obscuritØ. Donc, chacune des percØes qui ont ØtØ faites et qui sont parfois brŁves, ne durant qu’un jour ou deux, sont l’accomplissement des mois de t(cid:226)tonnements dans le noir, sans lesquels il n’y aurait jamais eu de lumiŁre. Andrew Wiles (1953, USA). i Contents List of Notation vii I Complex Multiplication and Galois Theory 1 Introduction 3 1 Basic Galois theory 5 1.1 Basic de(cid:28)nitions . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Galois theory on number (cid:28)elds . . . . . . . . . . . . . . . . . . 12 Q 1.3 Finite abelian Galois extensions of . . . . . . . . . . . . . . 24 2 Elliptic curves 29 2.1 Genaral de(cid:28)nitions for elliptic curves . . . . . . . . . . . . . . 29 2.2 Elliptic curves in characteristic (cid:54)= 2,3 . . . . . . . . . . . . . . 34 2.3 Elliptic curves as a group . . . . . . . . . . . . . . . . . . . . . 39 2.4 Equivalence and isomorphism . . . . . . . . . . . . . . . . . . 44 C 2.5 Elliptic curves over . . . . . . . . . . . . . . . . . . . . . . . 58 3 Elliptic curves and Galois theory 75 3.1 Points of (cid:28)nite order . . . . . . . . . . . . . . . . . . . . . . . 75 3.2 Complex multiplication . . . . . . . . . . . . . . . . . . . . . . 86 3.3 The ring End(E) . . . . . . . . . . . . . . . . . . . . . . . . . 92 Conclusion 97 iii CONTENTS II Reduction Type and L-series of Elliptic Curves 99 Introduction 101 4 Good and Bad reduction of an elliptic curve 103 4.1 General Weierstrass equation . . . . . . . . . . . . . . . . . . 103 Q 4.2 Minimal Weierstrass equation and reduction over . . . . . 106 p Q 4.3 Reduction type of elliptic curves over . . . . . . . . . . . . . 110 5 The L-series 115 5.1 Reminder on (cid:28)nite (cid:28)elds . . . . . . . . . . . . . . . . . . . . . 115 5.2 Several theorems on elliptic curves over (cid:28)nite (cid:28)elds . . . . . . 117 5.3 The zeta-function of an elliptic curve over (cid:28)nite (cid:28)elds . . . . . 119 Q 5.4 The L-series of an elliptic curve over . . . . . . . . . . . . . 124 6 Tate’s algorithm 127 6.1 Explanation of the Tate’s algorithm . . . . . . . . . . . . . . . 127 6.2 An application of Tate’s algorithm . . . . . . . . . . . . . . . 132 7 L-series and modular forms 135 III The Weil Conjectures for Elliptic Curves 139 Introduction 141 8 Algebraic Preliminaries 143 8.1 Galois Extensions . . . . . . . . . . . . . . . . . . . . . . . . . 143 8.2 Finite Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 8.3 Inseparable extensions . . . . . . . . . . . . . . . . . . . . . . 145 9 Algebraic Varieties and Curves 147 9.1 A(cid:30)ne and Projective Varieties . . . . . . . . . . . . . . . . . . 147 9.2 Algebraic Curves and their Maps . . . . . . . . . . . . . . . . 149 10 Elliptic Curves 151 10.1 The Dual Isogeny . . . . . . . . . . . . . . . . . . . . . . . . . 152 10.2 The Tate Module and Weil Pairing . . . . . . . . . . . . . . . 153 iv CONTENTS 11 The Frobenius Map 155 11.1 Frobenius morphism for elliptic curves . . . . . . . . . . . . . 157 12 Hasse’s estimate and the Weil Conjectures 159 12.1 Hasse’s estimate . . . . . . . . . . . . . . . . . . . . . . . . . . 159 12.2 The Weil Conjectures . . . . . . . . . . . . . . . . . . . . . . . 161 IV Mordell-Weil Theorem 165 Introduction 169 13 Pro(cid:28)nite Groups 171 13.1 Projective and Direct limits . . . . . . . . . . . . . . . . . . . 171 13.2 Galois theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 14 Cohomology and Discrete Valuation Rings 177 14.1 Group cohomology . . . . . . . . . . . . . . . . . . . . . . . . 177 14.2 Discrete Valuation Rings . . . . . . . . . . . . . . . . . . . . . 182 15 The Mordell-Weil Theorem 187 15.1 From Mordell-Weil to the Selmer group . . . . . . . . . . . . . 187 15.2 Finiteness of the Selmer group . . . . . . . . . . . . . . . . . . 189 15.3 The Descent Procedure . . . . . . . . . . . . . . . . . . . . . . 192 15.4 Some examples . . . . . . . . . . . . . . . . . . . . . . . . . . 194 V Modular Curves and Modularity Theorem 197 Introduction 199 16 The modular curve X(1) as a compact Riemann surface. 201 16.1 The modular group . . . . . . . . . . . . . . . . . . . . . . . . 201 16.2 The modular curve X(1) . . . . . . . . . . . . . . . . . . . . . 206 17 Modular curves as algebraic curves 215 17.1 Algebraic curves and function (cid:28)elds . . . . . . . . . . . . . . . 215 C 17.2 Function (cid:28)elds over . . . . . . . . . . . . . . . . . . . . . . 219 17.3 Modular curves as algebraic curves and modularity. . . . . . . 226 v CONTENTS VI Modular forms 229 Acknowledgements 231 Introduction 233 18 Prerequisites 235 19 Modular forms 239 19.1 Congruence subgroups . . . . . . . . . . . . . . . . . . . . . . 239 19.2 Modular forms . . . . . . . . . . . . . . . . . . . . . . . . . . 243 19.3 The Petersson inner product . . . . . . . . . . . . . . . . . . . 252 19.4 Eisenstein series . . . . . . . . . . . . . . . . . . . . . . . . . . 255 20 Hecke operators 261 20.1 The double coset operator and Hecke algebras . . . . . . . . . 261 20.2 Hecke operators for SL (Z) . . . . . . . . . . . . . . . . . . . . 267 2 20.3 Hecke operators for Γ (N) . . . . . . . . . . . . . . . . . . . . 270 0 20.4 Normality of Hecke operators . . . . . . . . . . . . . . . . . . 278 21 The L-function of a modular form 283 21.1 Euler product expansion of L(f,s) . . . . . . . . . . . . . . . 284 21.2 Oldforms and newforms . . . . . . . . . . . . . . . . . . . . . 287 21.3 Functional equation . . . . . . . . . . . . . . . . . . . . . . . . 295 Bibliography 298 Index 301 vi List of Notation We shall use these notations throughout this report: E(k) k-rational points of an elliptic curve E. k The algebraic closure of the (cid:28)eld k. L/K Field extension K ⊂ L. Gal(L/K) The Galois group of L/K. G The n-torsion subgroup of the group G. n ∆ The discriminant of an elliptic curve. lim The direct limit. −→ lim The projective limit. ←− E(cid:101) The reduction of an elliptic curve E modulo p. p P2(k) The projective space over k. ∆(cid:101) The discriminant of a reduced elliptic curve modulo p. p v The p-adic valuation. p Z (T) The Z-function of E. E ζ (s) The zeta -function of E. E L (s) The L-function of E. E f(E) The exponent of the conductor. v(D ) The valuation of the minimal discriminant of E. E P1(C) the Riemann sphere. H the PoincarØ half-plane. H∗ the extended upper half-plane. L the set of all latices. Γ(1) the modular group. p a prime number. f| α(z) (detα)k/2j(α,z)−kf(αz). k ι the multiply-by-d map (cid:16)f(z) (cid:55)→ f(dz)(cid:17). d vii LIST OF NOTATION j(α,z) j(α,z) = cz +d for α = (a b) ∈ GL+(Q). c d 2 M (Γ) the space of modular forms of weight k with respect to Γ. k S (Γ) the space of cusp forms of weight k with respect to Γ. k R(N) the Hecke algebra R(Γ (N),∆ (N)). 0 0 T , NT Hecke operator of level N. n n w the operator | ( −1). N k N viii

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.