The t-core of an s-core Matthew Fayers QueenMary,UniversityofLondon,MileEndRoad,LondonE14NS,U.K. [email protected] 1 1 2000Mathematicssubjectclassification: 05E10,05E18 0 2 n Abstract a We consider the t-core of an s-core partition, when s and t are coprime positive integers. J Olssonhasshownthatthet-coreofans-coreisagainans-core,andweexaminecertainactions 5 oftheaffinesymmetricgroupons-coreswhichpreservethet-coreofans-core. Alongtheway, 2 we give a new proof of Olsson’s result. We also give a new proof of a result of Vandehey, ] showingthatthereisasimultaneouss-andt-corewhichcontainsallothers. O C . h t a m [ 2 v 1 7 0 1 . 7 0 0 1 : v i X r a 1 2 MatthewFayers 1 Introduction Inthispaper,wedefineapartition tobeainfiniteweaklydecreasingsequenceofnon-negative integerswithfinitesum. Ifsisapositiveinteger,thenapartitionisans-coreifithasnorims-hooks, or equivalently if none of its hook lengthsis divisible by s. The s-core of an arbitrary partition is obtainedbyremovingasmanyrims-hooksaspossible. The notion of an s-core was introduced in the representation theory of the symmetric group: whensisaprime,thes-blocksofallsymmetricgroupsofagivendefectareindexedbythes-cores, and the relationships between these blocks are controlled by the combinatorics of s-cores. This can be generalisedto representationsofIwahori–Heckealgebras oftypeA at an sth root ofunity (wheres > 2nolongerneedstobeprime). This representation-theoretic work reveals a relationship between the set of s-cores and the alcovegeometryfortheCoxetergroupoftypeA ,whens> 2. Specifically,s-coresareinbijection s−1 withalcovesinthedominantregionoftheweightspace,whichinturnareinbijectionwithcosets ofthefiniteCoxetergroup(oftypeA )initsaffinecounterpart(oftypeA˜ ). Furthermore,the s−1 s−1 actionofthesegroupsofthesetofalcovescanbeinterpretedintermsoftherelationshipsbetween s-cores. A recent trend in the study of s-cores has been to compare s-cores and t-cores, for different integers s,t. For s > 2 there are infinitely many s-cores, but if s and t are coprime, there are only finitelymanypartitionswhicharesimultaneouslys-coresandt-cores. Theexactnumberwasfound byAnderson[A],andthese‘(s,t)-cores’havesincebeenstudiedinmoredetail. Inparticular, itis knownthatthereisan(s,t)-corewhichislargerthantheothers,havingsize 1 (s2−1)(t2−1),andit 24 wasaskedbyOlssonandStanton[OS]whetherthispartitioncontainsall(s,t)-cores. Thisquestion ffi has been answereda rmatively by Vandeheyin an unpublished thesis[V]; in the presentpaper we give a simpler proof. Another avenue is pursued by Fishel and Vazirani [FV], who examine (s,t)-coresinconnectionwithalcovegeometryinthecaseswheret ≡ ±1(mod s),exhibitingnatural bijectionsbetween(s,t)-coresand(bounded)regionsintheextendedShiarrangement. Anotheraspectofthecomparisonofs-andt-coresisaresultofOlsson[O]whichsaysthatifs andtarecoprimeandonetakesthet-coreofans-core,thentheresultingpartitionisstillans-core. Themainfocusofthispaperistoaskwhich(s,t)-coreoneobtainsbytakingthet-coreofans-core. We explore how the symmetry of the set of s-cores is manifested when one replaces each s-core with its t-core. One by-productofthis is anew proofofOlsson’s result. Weremark here thatthe hypothesisthatsandtarecoprimeinOlsson’sresultisunnecessary,asobservedbyNath[N]. Expertsincombinatorialrepresentationtheorywillbeawareofthetheoryofbarpartitionsand m-bar-cores which control the combinatorics of spin representation of the symmetric group; it is natural to ask whether analogues of these results in the present paper hold in this context. We addresstheseissuesinaforthcomingpaper[F]. Wenowsummarisethelayoutofthispaper. InSection2,wegiveabriefaccountofs-coresand abacusdisplays. InSection3wediscussalcovegeometryandtheaffineWeylgroupintypeA. We gointomoredetailhere,sincetheconventionsweuseforalcovesareslightlyunusual. InSection 4weconnects-coreswithalcovegeometryandproveourmain resultsonthesymmetryinherent in taking the t-core of an s-core. Finally in Section 5 we examine the largest (s,t)-core, and prove thatitcontainsall(s,t)-cores. Thet-coreofans-core 3 2 Partitions 2.1 Partitions ands-cores A partition is a sequenceλ = (λ ,λ ,...) ofnon-negative integerssuch that λ > λ > ··· and 1 2 1 2 + + the sum λ λ ... is finite. When writing a partition, we usually omit the trailing zeroes. A 1 2 partitionisoftenrepresentedbyitsYoungdiagram,whichistheset [λ] = (i,j) ∈N2 j6 λ . i n (cid:12) o (cid:12) WedrawtheYoungdiagramasanarrayofboxesint(cid:12)heplane;forexample,thearray represents the partition (6,6,2,1). (It is usual to use a symbol such as ∅ in place of the Young diagramforthepartition(0,0,...),butinthispaperweshalljustuseanemptydiagram.) Therim ofλisthesetofnodes(i,j) ∈[λ]forwhich(i+1,j+1) < [λ]. Nowfixapositiveintegers. Ifλisapartition,arims-hookofλisaconnectedportionoftherim, consisting of exactly s boxes, which can be removed from [λ] to leave a new Young diagram. A partitionisans-coreifithasnorims-hooks. Startingfromanypartitionλandrepeatedlyremoving rim s-hooks, one obtains an s-core, which is independent of the choice of rim hook removed at eachstage;thiss-coreisreferredtoasthes-coreofλ. Forexample, themarkedboxesin thefollowing Youngdiagramfor (6,6,2,1) constitutearim 5-hook. Whenthisisremoved,theremainingpartitionis(5,2,2,1),whichhasnorim5-hooks,and soisthe5-coreof(6,6,2,1). • • • • • Thenotionofans-corederivesfromtherepresentationtheoryofthesymmetricgroup: ifsisa primeandλ,µaretwopartitionsofsizen,thecorrespondingordinaryirreduciblerepresentations of S lie in the same s-block of S if and only if λ and µ have the same s-core. So the results in n n this paper can be interpretedas comparing the representationtheoryof the symmetricgroup for twodifferentprimes. Butfromacombinatorial pointofview, thereis noneedtoassumethat sis prime. 2.2 Beta-numbers Now we define beta-numbers and the abacus; these were introduced by James [J]. Given a partitionλ,define β = λ −i i i for i ∈ N. Then the sequence β ,β ,... is a strictly decreasing sequence such that β = −i for 1 2 i sufficiently large i. Conversely, any such sequence is the sequence of beta-numbers of some partition. Werefertotheset{β ,β ,...}asthebeta-setofλ. Givenapositiveintegers,thes-runner 1 2 abacusisanabacuswithsinfiniteverticalrunners,numbered0,...,s−1fromlefttoright;foreach 4 MatthewFayers j,runner jhasmarkedpositionslabelledbytheintegerscongruentto jmodulosincreasingdown therunner. Forexample,the4-runnerabacusisasfollows. 0 1 2 3 p p p p p p p p p p p p −4 −3 −2 −1 0 1 2 3 4 5 6 7 p p p p p p p p p p p p Thes-runnerabacusdisplayforλisobtainedbyplacingabeadontheabacusatpositionβ foreachi. i Theabacusdisplaymakesitveryeasytoseewhetherapartitionisans-core,sinceremovingarim s-hookcorrespondstomovingabeadupintoanemptyspaceimmediatelyaboveit. Henceλisan s-coreifandonlyifinthes-runnerabacusdisplayforλeverybeadhasabeadimmediatelyabove it. Moreover,itiseasytoobtaintheabacusdisplayforthes-coreofλfromtheabacusdisplayfor λ: onejustslidesbeadsupuntilthereisnobeadwithanemptyspaceaboveit. Example.Supposeλ = (6,6,2,1). Thenthebeta-setforλis {5,4,−1,−3,−5,−6,−7,...}. Sothe5-runnerabacusdisplayforλisasfollows. 0 1 2 3 4 p p p p p p p p p p p p p p p v v v v v v v v v v v v v v v p p p p p p p p p p p p p p p Theabacusdisplayofthe5-core(5,2,2,1)ofλisobtainedbymovingthelowestbeadonrunner0 uponeposition. ffi 3 Alcoves and the a ne symmetric group ffi Inthissectionweintroducealcovesandthea nesymmetricgroup. Thismaterialwillbevery familiar tomanyreaders,butwegiveadetailedaccountherebecausetheconventionsweuseare slightlyunusual. 3.1 Alcoves ands-points Asbefore,weassumesisapositiveinteger. Infact,fromnowonweassumethats > 2. LetPs ffi denotethea nespace Ps = p∈ Rs p +···+p = s . 1 s 2 (cid:26) (cid:12)(cid:12) (cid:16) (cid:17)(cid:27) We definethe dominant region to be thesubse(cid:12)(cid:12)tofPs consistingof pointsp for which p1 6 ··· 6 ps. (Notethatthisisunconventional–theinequalitiesareusuallytakentheotherwayround.) Thet-coreofans-core 5 Foreach1 6 i,j 6 swithi , jandforeachintegerk,wedefinethehyperplane Hk = p ∈ Ps p −p = ks , ij j i n (cid:12) o (cid:12) (cid:12) and we let H = Hk 16 i < j6 s, k ∈Z . The connected components of the complement in Ps ij (cid:26) (cid:12) (cid:27) oftheunionofthehy(cid:12)perplanesinH arecalledalcoves. Wewillabuseterminologybyreferringto (cid:12) (cid:12) thepoint(0,1,...,s−1)astheorigin,anddenotingit⊙. ThealcoveAcontainingthispointiscalled thefundamentalalcove, andisboundedbythehyperplanesH0 (for1 6 i < s)andH1 . i(i+1) 1s We define an s-point to be a point p ∈ Ps whose coordinates are integers which are pairwise incongruent modulo s. Obviously each s-point is contained in some alcove, and as we shall see below,eachalcovecontainsauniques-point. Example.In the case s = 3, we can draw a picture of part of the plane Ps with 3-points and hyperplanesmarkedasfollows. • • • 3,−1,1 2,1,0 1,3,−1 • • • • 3,−2,2 2,0,1 1,2,0 0,4,−1 • • • • 2,−2,3 1,0,2 0,2,1 −1,4,0 • ⊙ • 1,−1,3 0,1,2 −1,3,1 • • • 0,−1,4 −1,1,3 −2,3,2 • • • • 0,−2,5 −1,0,4 −2,2,3 −3,4,2 Foranyi,j,kasabove,letrk denotetheorthogonal(withrespecttotheusualinnerproducton ij Rs)reflectioninthehyperplaneHk;thisisgivenby ij rk : p7−→p−(p −p −ks)(e −e), ij j i j i wheree ,...,e arethestandardbasisvectors. rk preservesthesetofhyperplanesH;indeed,one 1 s ij cancheckthat Hn ({i,j}∩{l,m}= ∅) lm rk(Hn )= Hn−k (i = l, j , m) ij lm H2jmk−n (i = l, j = m). Hence the group generated by all the rkprelmserves the set of alcoves. It also preserves the set of ij s-points,andwecanregarditasactingonthesetofalcovesorthesetofs-points,asappropriate. 6 MatthewFayers ffi 3.2 The a nesymmetricgroup Nowweconsidertheaffinesymmetricgroup. ThisisthegroupSˆ withgeneratorsσ ,...,σ s 0 s−1 andrelations σ2 = 1 fori = 0,...,s−1, i σσ = σ σ fori . j±1(mod s), i j j i σσ σ = σ σσ fori ≡ j+1 . j−1(mod s). i j i j i j AleveltactionofSˆ s There is a well-known action of Sˆ on Ps given by mapping the generators σ ,...,σ to the s 0 s−1 reflections in the walls ofthe fundamentalalcove. In fact, we give a more generalversion ofthis action. Foranypositiveintegert,definetheleveltactionψ ofSˆ by t s σ 7−→ r0 fori = 1,...,s−1, i i(i+1) σ 7−→ rt . 0 1s Using the above formula for rk(Hn ), one obtains conjugacy relations between the reflections rk, ij lm ij andfromtheseitiseasytocheckthatthisreallydoesgiveanactionofSˆ . Givenσ ∈ Sˆ ,weshall s s write σˇ for theimage ofσ underψ , if tis understood. Wemay view ψ as an action on thesetof t t alcoves,oronthesetofs-points,asappropriate. Itisworthwhiletowritedownexplicitlytheactionofthegeneratorsσ ,...,σ : 0 s−1 σˇi : (p1,...,ps)7−→(p1,...,pi−1,pi+1,pi,pi+2,...,ps) fori = 1,...,s−1; σˇ : (p ,...,p )7−→(p −st,p ,...,p ,p +st). 0 1 s s 2 s−1 1 Thenextlemma,whichiswell-known,concernsthecaset = 1. Lemma3.1.Theimageoftheactionψ includesallthereflectionsrk,andistransitiveonthesetofalcoves. 1 ij Proof. LetGdenotetheimageofψ . Thenwehaver1 ∈ G,andwealsohave 1 1s r0 = r0 r0 ...r0 r0 r0 ...r0 r0 ∈ G. 1s (s−1)s (s−2)(s−1) 23 12 23 (s−2)(s−1) (s−1)s Byrepeatedlycomposingr0 andr1 ,wefindthatrk ∈ Gforallk. Andnowwecanseethatrk ∈ G 1s 1s 1s ij foralli,j,kwithi< jbydownwardsinductionon j−i: if j−i< s−1,thenwehaveeitheri> 1or j < s. Ifi > 1,thenthenbyinductionrk ∈ G,andhencerk = r0 rk r0 ∈ G. On theother (i−1)j ij (i−1)i (i−1)j (i−1)i hand,if j< s,thenrk ∈ Gbyinduction,andhencerk = r0 rk r0 ∈ G. i(j+1) ij j(j+1) i(j+1) j(j+1) Toseethattheactionistransitiveonalcoves,wenotethatwecangetfromanyalcoveBtoany otheralcove C by crossingsomefinitesequenceofhyperplanesin H. Applyingthereflectionsin eachofthesehyperplanesinturntakesBtoC. (cid:3) Since the fundamental alcove A clearly contains a unique s-point (namely the origin ⊙), we see that each alcove contains exactly one s-point. This gives a useful one-to-one correspondence betweens-pointsandalcoves. Thet-coreofans-core 7 AsecondleveltactionofSˆ s Now we assume that s,t are coprime, and consider another level t action of Sˆ on the set of s s-points. Given an s-point p and given i ∈ {0,...,s−1}, let j,k be theunique elementsof {1,...,s} suchthat p ≡ (i−1)t, p ≡ it (mod s). j k Defineσ˜ (p)tobethepointobtainedbyreplacingp withp +t,andp withp −t. Clearly σ˜ (p)is i j j k k i ans-point,anditisroutinetoverifythatthemap χ : σ 7−→ σ˜ t i i definesanactionofSˆ onthesetofs-points. Givenanyσ ∈Sˆ ,wewriteσ˜ fortheimageofσunder s s χ ,iftisunderstood. t Note that the maps σ˜ are not isometries, and there is no natural way to extend them to give an action on the whole of Ps. However, using the natural correspondence between alcoves and s-points, we may abuse notation and regard χ as an action ofSˆ on the setof alcoves. Recalling t s thatAdenotesthealcovecontainingtheorigin(0,1,...,s−1),wethenhavethefollowinglemma, whichiseasytocheck. Lemma3.2. 1. Iftisapositive integercoprimetos,thentheactionsψ ,χ onthesetofalcovescommute. t t 2. Ift= 1andi∈ {0,...,s−1},thenσˇ (A)= σ˜ (A). i i NowsaythattwoalcovesareadjacentifthereisonlyonehyperplaneinH separatingthem. Corollary3.3.SupposeBisanalcove,andi ∈ {0,...,s−1},anddefineσ˜ usingthelevel1actionχ . Then i 1 σ˜ (B)isadjacenttoB. i Proof. Writeσˇ fortheimageofσ ∈Sˆ underthelevel1actionψ . Sincethisactionistransitiveon s 1 thesetofalcoves,wecanwriteB = σˇ(A)forsomeσ. Hence σ˜ (B)= σ˜ (σˇ(A)) i i = σˇ(σ˜ (A)) byLemma3.2(1) i = σˇ(σˇ (A)). byLemma3.2(2) i ClearlyAandσˇ (A)areadjacent,andsinceσˇ isanaffinetransformationofPs,itpreservesadjacency i ofalcoves. (cid:3) Usingaverysimilarargument,onecanshowthatifpisans-pointandBthealcovecontaining it,theneachalcoveadjacenttoBcontainsthepointσ˜ (p)forsomei. i 3.3 s-sets Defineans-settobeasetofsintegerswhicharepairwiseincongruentmodulosandwhosesum s is . Thereisans!-to-1mapfroms-pointstos-sets,givenbyforgettingtheorderofcoordinates. 2 W(cid:16)he(cid:17)nrestrictedtothesetofs-pointsinthedominantregion,thismapbecomesabijection. Given thecorrespondencebetweens-pointsand alcoves, wehave an s!-to-1map fromthesetofalcoves tothesetofalcovesinthedominantregion;thisisgivenby‘folding’Ps alongthehyperplanesH0 ij foralli,j. Thisfoldingwillbeusefulinunderstandingsymmetrylater. Note that our second action χ of Sˆ on the set of s-points descends to an action on s-sets t s (although the action ψ does not). We use the same notation χ (and σ˜) for this action on s-sets t t withoutfearofconfusion. 8 MatthewFayers 4 The t-core of an s-core Now we come to themain part ofthe paper. We supposes,t are coprime integerswith s > 2, and we compare the t-cores of different s-cores. By representing s-cores as s-points, we use the geometricsymmetryofthelastsectiontoseethesymmetryoft-coresofs-cores. 4.1 s-cores ands-sets Recallthatapartitionisans-coreifandonlyifinitss-runnerabacusdisplayeverybeadhasa beadimmediatelyaboveit. Thismeansthatifwetakeans-coreλandthenforeachi = 0,...,s−1 definea to be thenumber ofthehighestunoccupied positionon runneri, then a ≡ i (mod s) for i i eachi,and a +···+a = 0+1+2+···+s−1 = s . 0 s−1 2 (cid:16) (cid:17) Hencetheset{a ,...,a }isans-set. Wedenotethiss-setQ(λ),andweletp bethecorresponding 0 s−1 λ s-pointinthedominantregion,i.e.thepointwhosecoordinatesaretheelementsofQ(λ)arranged inascendingorder. For example, taking s = 5 and returning to the 5-core (5,2,2,1) from the example in §2.2, we have Q((5,2,2,1)) = {5,−4,2,−2,9}, p = (−4,−2,2,5,9). (5,2,2,1) Itiseasytocheckthatanys-setisobtainedfromans-coreinthisway: givenans-setQ,construct an abacus display in which there is a bead at position b if and only if there is an element of Q below bon thesame runner; thisis thentheabacus displayofan s-core λ, with Q(λ) = Q. Hence wehaveanaturalbijectionbetweens-coresands-sets,andthereforebetweens-coresandalcoves ffi in thedominantregion. Usingthisbijection, wemay regardtheaction χ ofthea nesymmetric t groupons-setsasanactiononthesetofs-cores. Example.InFigure1weillustratethebijectionbetween3-coresandalcovesinthedominantregion ofP3,bydrawingtheYoungdiagramofa3-coreinsidethecorrespondingalcove. (Recallthatwe usetheemptydiagramforthepartition(0,0,...).) The aim of this paper is to compare the t-cores of different s-cores, when s and t are coprime integers. Ifwetaket = 4,andexpandandredrawFigure1witheach3-corereplacedbyits4-core, wegetthediagramonthefirstpageofthispaper. Remark.In the case t = 1, there is a more familiar description of the action χ on s-cores; this is 1 described in [L, §4] and elsewhere. Given a partition λ, say that a box in [λ] is removable if it can beremovedtoleavetheYoungdiagramofapartition(i.e.itconstitutesarim1-hook),whileabox notin[λ]isanaddableboxofλifitcanbeaddedto[λ]togiveaYoungdiagram. Theresidueofthe box(i,j)isdefinedtobetheresidueof j−imodulos. Now when t = 1, the action of σ˜ on an s-core λ is given by adding all the addable boxes of k residue k to λ, or removing all the removable boxes of residue k (an s-core cannot have addable and removable boxesofthesame residue). Intermsoftheabacus display forλ, thiscorresponds tointerchangingthe(k−1)thandkthrunnersoftheabacus(withaslightmodificationinthecase k = 0). This interpretation can be generalised to t > 1, if one considers addable and removable rim t-hooks,withasuitablenotionofresidue. Weleavetheinterestedreadertoworkoutthedetails. Thet-coreofans-core 9 Figure1: thecorrespondencebetween3-coresanddominantalcovesinP3 4.2 s-cores havingthe samet-core Incomparingthet-coresofdifferents-cores,thefollowingpropositionwillbecrucial. Proposition 4.1.Suppose s,t are coprime positive integers. Suppose λ,µ are s-cores, and that there is a bijection φ : Q(λ) → Q(µ) such that φ(b) ≡ b (mod t) for every b ∈ Q(λ). Then λ and µ have the same t-core. Proof. We use induction on the size of λ. If λ is not itself a t-core, then there is some b in the beta-setforλsuchthatb−tisnotinthebeta-setforλ. IfweletabetheelementofQ(λ)whichis congruent to b modulo s, then the element of Q(λ) congruent to b−t is a−t−ds for some d > 0. Letλ− bethes-coredefinedby Q(λ−)= Q(λ)∪{a−t,a−ds}\{a,a−t−ds}. Thebeta-setforλ− isobtainedfromthebeta-setforλbyreplacing a−s, a−2s, ..., a−ds with a−t−s, a−t−2s, ..., a−t−ds. Henceλ−isobtainedfromλbyremovingdrimt-hooks. Soλ−issmallerthanλ,andhasthesame t-core. λ− andµsatisfythehypothesesoftheproposition,sobyinductionλ− hasthesamet-core asµ,andwearedone. Sowemayassumethatλisat-core. Symmetrically,wemayassumeµisat-core,andwemust showthatλ= µ. Inotherwords,weneedtoshowthatapartitionλwhichisbothans-coreanda t-coreisdetermineduniquelybytheintegers n = a ∈ Q(λ) a ≡ i(mod t) i (cid:12)(cid:12)(cid:12)(cid:12)n (cid:12)(cid:12)(cid:12) o(cid:12)(cid:12)(cid:12)(cid:12) 10 MatthewFayers fori= 0,...,t−1. Since s and t are coprime, we can write the elementsof Q(λ) as b ,...,b in such a way that 0 s−1 b ≡ −tj (mod s) for each j. The fact that λ is a t-core means that for every a in the beta-set for λ j we have a−t also in the beta-set for λ, and this gives b > b −t for each j (reading subscripts j j−1 modulos). Soifwewriteb = b −t+m sforeach j,thenm ,...,m arenon-negativeintegers j j−1 j 0 s−1 whichsumtot. Nowconsiderthefollowingcyclicsequenceoflengths+t: S= (b −t, b −t+s, b −t+2s, ..., b , 0 0 0 1 b −t, b −t+s, b −t+2s, ..., b , 1 1 1 2 . . . b −t, b −t+s, b −t+2s, ..., b ). s−1 s−1 s−1 0 ThestepsbetweenconsecutivetermsofSare either−t(s times)or +s(ttimes). Hencemodulot, the steps are 0 or +s. Since s generates the cyclic group of integers modulo t, this means that S containsatleastonetermofeachresidueclassmodulot. Moreover,thetermsinSchangemodulo tonlyttimes,sothetermsinagivenresidueclassmodulotmustbeconsecutiveinS. Claim. Foreachi,Scontainsatleastn +1termscongruenttoimodulot. i Proof. We have just seen that this is true if n = 0, so suppose n > 0. S contains all the n i i i elementsofQ(λ)congruenttoimodulot,andifweletadenotethesmallestoftheseintegers, thenSalsocontainsa−t< Q(λ). Since (n +1) = s+t, theremustbeexactlyn +1termsin Scongruenttoimodulotfor eachi. i i i AndnPowSisdetermineduptotranslationandcyclicpermutationbytheintegersni: startingfrom the largest term divisible by t, S consists of n +1 terms divisible by t (with steps of −t between 0 them),andthenastepof+s,thenn +1termscongruenttosmodulot(withinterveningstepsof s −t),andthenastepof+s,andsoon. Sotheintegersn determineSuptotranslationand cyclic permutation,andhencedetermine i s Q(λ) up to translation. But the sumof the elementsof Q(λ) must be , so Q(λ), and hence λ, is 2 determined. (cid:16) (cid:17) (cid:3) Usingthisproposition,weseethattheactionχ ofSˆ onthesetofs-corespreservesthet-core t s ofapartition. Proposition4.2.Suppose sandt are coprime positive integers withs > 1, andfor i ∈ {0,...,s−1} write σ˜ fortheimageofσ undertheactionχ . Ifλisans-core, thenλandσ˜ (λ)havethesamet-core. i i t i Proof. By definition, σ˜ does not change the multiset of residues modulo t of the elements of an i s-set. HencebyProposition4.1,itdoesnotchangethet-coreofthecorrespondings-core. (cid:3) We shall refer to an orbit in the set of s-cores under the action χ as a level t orbit. From t Proposition4.2,weseethattwos-coreshavethesamet-coreiftheylieinthesameleveltorbit. In fact, we shall see that they have the same t-core only if theylie in the same level t orbit; the way wedo thisis toshowthateach leveltorbit contains at-core. Beforewe dothis, it will behelpful tointroducesomemorenotation: fors,tcoprime,defineRs tobetheleveltrhomboid t Rts = p∈ Ps 1 6 pi+1 −pi 6 tfori= 1,...,s−1 . n (cid:12) o (cid:12) (cid:12)