ebook img

The Structural Connectivity Underpinning Language Aptitude, Working Memory, and IQ in the ... PDF

21 Pages·2012·0.73 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Structural Connectivity Underpinning Language Aptitude, Working Memory, and IQ in the ...

LanguageLearning ISSN0023-8333 The Structural Connectivity Underpinning Language Aptitude, Working Memory, and IQ in the Perisylvian Language Network HuadongXiang DondersInstituteforBrain,CognitionandBehaviour DanDediu DondersInstituteforBrain,CognitionandBehaviourandMaxPlanckInstitutefor Psycholinguistics LeahRoberts UniversityofYorkandMaxPlanckInstituteforPsycholinguistics ErikvanOort DondersInstituteforBrain,CognitionandBehaviour DavidG.Norris DondersInstituteforBrain,CognitionandBehaviour,ErwinL.HahnInstituteforMagnetic ResonanceImaging,andMIRAInstituteforBiomedicalTechnologyandTechnicalMedicine PeterHagoort DondersInstituteforBrain,CognitionandBehaviourandMaxPlanckInstitutefor Psycholinguistics Inthisarticle,wereporttheresultsofastudyontherelationshipbetweenindividual differences in language learning aptitude and the structural connectivity of language pathways in the adult brain, the first of its kind. We measured four components of languageaptitude(vocabularylearning;soundrecognition;sound-symbolcorrespon- dence;andgrammaticalinferencing)usingtheLLAMAlanguageaptitudetest.Spatial workingmemory,verbalworkingmemoryandIQwerealsomeasuredascontrolfactors. CorrespondenceconcerningthisarticleshouldbesenttoLeahRoberts,CentreforLanguage LearningResearch,DepartmentofEducation,UniversityofYork,Heslington,York,YO105DD, UK.Internet:[email protected] LanguageLearning62:Suppl.2,September2012,pp.110–130 110 (cid:2)C 2012LanguageLearningResearchClub,UniversityofMichigan Xiangetal. LanguageAptitudeandLanguagePathwaysintheBrain Diffusion Tensor Imaging was employed to investigate the structural connectivity of languagepathwaysintheperisylvianlanguagenetwork.Regressionanalysissuggested significantcorrelationsbetweenmostofthesebehaviouralmeasuresandthestructural connectivity of certain language pathways, that is, grammatical inferencing and the BA45-andBA46-Temporalpathway,sound-symbolcorrespondenceandtheinterhemi- sphericBA45pathway,vocabularylearningandtheBA47-Parietalpathway,IQandthe BA44-andBA-47Parietalpathways,theBA47-Temporalpathwayandinterhemispheric BA45pathway,spatialworkingmemoryandtheinterhemisphericBA6pathwayandthe BA47-Parietalpathway,andverbalworkingmemoryandtheBA47-Temporalpathway. Thesefindingsprovidefurtherinsightsintotheneuralunderpinningsofthevariationin languageaptitudeofhumanadultsandarediscussedinrelationtorelevantfindingsin theliterature. Introduction Itisuncontroversialthatadultsdifferenormouslyintheirhowsuccessfulthey areatforeignlanguagelearningandoneofthereasonsbehindthisdifference has been suggested to be variations in language learning aptitude (or talent) (seeDeKeyser,2000,2012).Althoughthetopicoflanguagelearningaptitude hasbeenresearchedanddiscussedingreatdepthinthesecondlanguage(L2) acquisition literature (see Sparks, 2012; DeKeyser, 2012; Robinson, 2005, for overviews), we know almost nothing about the neural underpinnings of the variation in language learning aptitude. One recent study has revealed a correlationbetweenthestructuralconnectivityofcertainlanguagepathwaysin thebrain(theperisylvianlanguagepathwaysconnectingBroca’sandWernicke’s territories) and performance in a language-learning related experimental task in adults (theCalifornian Verbal Learning Test, a testof wordrecall) (Catani et al., 2007). Specifically, the authors found that better performance on the semanticassociationtaskwasassociatedwithdirectconnectionsbetweenthe inferior frontal and the posterior temporal regions in the right hemisphere and interestingly, with bilateral representation of language networks, rather than extreme left-lateralization. This suggests an important role for the right hemisphereinwordretrieval(seealsoHabib,Nyberg,&Tulving,2003),andan advantageforthistypeofsemantictaskforbilateralrepresentation.Importantly forthecurrentstudy,thefactthattheCatanietal.demonstratedaheterogeneous pattern of lateralization of perisylvian pathways in their large sample (50) of healthyadultspointstotheneedtoexamineindividualvariationinthestructural connectivityoflanguagepathwaysinthebrain.Inthestudywereportbelow, thefocusonindividualdifferencesinperformanceonlanguageaptitudetasks 111 LanguageLearning62:Suppl.2,September2012,pp.110–130 Xiangetal. LanguageAptitudeandLanguagePathwaysintheBrain andtheirrelationshipswiththestructuralconnectivityoflanguagepathwaysin thebrain,anunder-researchedtopic. LanguageLearningAptitude Languageaptitudeanditsassociationwithforeignlanguagelearningsuccess hasbeeninvestigatedformanyyears,mainlyfocusingontutoredlearnersand more recently also on learners in naturalistic settings (e.g., DeKeyser, 2000; Robinson, 2007). In the main, language learning aptitude is assumed to be a predominantly innate and somewhat fixed “gift” for learning languages; a cognitivecapacitythatsomeargueislargelyindependentofIQ,motivationand personality factors (e.g., Do¨rnyei & Skehan, 2003). Most language learning aptitudetasksarebasedontheworkofCarroll(e.g.,Caroll,1981;Carroll& Sapon,1959),andincludetestsofphonemecodingability(establishingsound- symbol correspondences), grammatical sensitivity, word (semantic) learning andinductivelearningability(e.g.,ModernLanguageAptitudeTest[MLAT]; Carroll & Sapon, 1959; Defense Language Aptitude Battery [DLAB]; Peter- son & Al-Haik, 1976). This is also the case for the aptitude test used in the currentstudy,theLlamaLanguageAptitudeTest(LLAMA;Meara,2005).Al- thoughnotstandardized,thistesthasbeenusedwithsuccessinotherlanguage learningstudies(e.g.,Abrahamsson&Hyltenstam,2008),oneofitsstrengths being that is language neutral (being based either on nonsense or extremely rare languages), as opposed to the majority of other aptitude tests which the participants must undertake in their first or dominant language. As well as measuringtheparticipants’languagelearningaptitude,wealsoexaminedthe impactofthecontrolvariablesspatialworkingmemory,verbalworkingmem- oryandIQ,giventhatdifferencesinsuccessfulsecondlanguagelearningmay alsoberelatedtogeneralcognitiveabilitiesandskillsinthefirstlanguage(L1) (seeSparks,2012). MappingBrainConnectivity Tostudylanguagepathwaysinthebrainandtheirstructuralconnectivity,Dif- fusionTensorImaging(DTI)wasemployed;atechniquethatcanprovideclear mapsofbrainconnectivity(Figure1).Morespecifically,DTIproducesimages ofbiologicaltissuesweightedwiththelocalmicrostructuralcharacteristicsof water diffusion. Therefore, using water molecules as a probe, the technique allowsforthetracingofstructuralconnectionsbetweenbrainregionsinvivo, in a non-invasive manner and provides quantitative measures of brain white matter organization, offering a highly detailed picture of the architecture of braintissue(LeBihanetal.,2001). LanguageLearning62:Suppl.2,September2012,pp.110–130 112 Xiangetal. LanguageAptitudeandLanguagePathwaysintheBrain Figure1 DTI(DiffusionTensorImaging)iscapableoftracingstructuralconnections betweenbrainregionsinvivo. Belowtheresultsofthecurrentstudyarepresented,inwhichweexamine therelationshipbetweenindividualdifferencesinperformanceonabatterylan- guagelearningaptitudeteststothestructuralconnectivityoflanguagepathways inthebrain. TheCurrentStudy Method Participants Thedatareportedinthepresentstudyincludestwosamples.Sample1consisted of15participants(3males)whohadjustgraduatedfromhighschool.Sample 2contained20participants(8males)whowerecollege/graduatestudents.The participantsinbothsampleswerehealthy,right-handedadultsbetweentheages of19–26years(SD=1.78).Allparticipantsprovidedwritteninformedconsent andthestudywasconductedaccordingtoinstitutionalguidelinesofthelocal ethicscommittee(CMOprotocolregionArnhem-Nijmegen,Netherlands).The majority of the participants were native speakers of German or Dutch, with Englishasasecondlanguage(seeAppendix). BehavioralTests Languagelearningaptitudetests TheLLAMALanguageAptitudeTest(Meara,2005)wasusedtogatherdata onthelanguagelearningaptitudeoftheparticipants.Itincludesfourcomputer- basedsubtestswhicharedesignedtobeindependentofthefirstlanguage(L1) ofthetest-taker.LLAMA_Bisavocabularylearningtask,whichmeasuresthe 113 LanguageLearning62:Suppl.2,September2012,pp.110–130 Xiangetal. LanguageAptitudeandLanguagePathwaysintheBrain abilitytolearnreasonablylargeamountsofvocabularyinarelativelyshorttime. LLAMA_Disasoundrecognitiontask,whichtestsifparticipantscanrecognize short stretches of previously encountered spoken language. LLAMA_E is a sound-symbolcorrespondencetask,whichrequiresparticipantstoworkoutthe relationship between the sounds and the writing system based on previously heard syllables and their transliterations in an unfamiliar alphabet. Finally, LLAMA_Fisagrammaticalinferencingtestthatrequiresparticipantstowork outthegrammaticalrulesthatoperateintheunknownlanguage. Testsofgeneralcognitiveability.Threemoretestsofgeneralcognitiveabil- itywerecarriedout.A20-minuteversionoftheRavenAdvancedProgressive Matrices (APM) Test was employed to measure IQ.1 This timed version has beenshowntobeanadequatepredictoroftheuntimedAPMscore(Hamel& Schmittmann,2006).Anewstandardcomputerizedversionofreadingspantest wasusedtotestverbalworkingmemory(vandenNoort,Bosch,Haverkort,& Hugdahl,2008).Thisversionusessentencematerialsandrequiresparticipants toreadandattempttounderstandsentenceswhilerememberingthefinalword. A spatial working memory test which includes one forward and one back- wardsub-testwasalsoconducted.Thistestisacomputerizedadaptationbased on the Spatial Span subtest of the Wechsler Memory Scale—Third Edition (Wechsler,1997). Inordertounderstandtheinterrelationshipsbetweenthevariousbehavioral tasks,weperformedaPrincipalComponentsAnalysis(PCA).Thisprocedure extractsanumberoforthogonalcomponentsequaltothenumberofvariables, withthefirstcomponent(PC1)explainingmostofthevarianceinthedataset, followedindecreasingorderoftheamountofvarianceexplainedbyPC2,PC3, etc.Thus,byanalysingtheloadingsofeachofourtestsonPC1,PC2,etc,we canbetterunderstandthenatureofourtasks. DTIparameters ParticipantsinbothsampleswerescannedonaSiemens3TTrioscannerwith thefollowingparameters: Sample 1: echo EPI (echo-planar imaging) sequence, repetition time (TR) = 10500 ms, echo time (TE) = 94 ms, 110 diffusion directions de- finedevenlyacrossthespherewithadiffusionweightingofb=1000s/mm2, 70slices,matrix=110×110,FOV(fieldofview)=220×220mm2,isotropic voxelsof2.0mm.3 Sample2:echoEPIsequence,TR=13000ms,TE=101ms,256directions atb=1500and24directionsatb=0,70slices,matrix=256×256,FOV= 256×256mm2,isotropicvoxelsof2.0mm3. LanguageLearning62:Suppl.2,September2012,pp.110–130 114 Xiangetal. LanguageAptitudeandLanguagePathwaysintheBrain DTIdataanalysis DTIdatasetswerepreprocessedbytheDTItoolboxdevelopedattheDonders InstituteforBrain,CognitionandBehaviour(Zweieretal.,2009).Theproba- bilistictractographytechniqueoftheFMRIBSoftwareLibrary(FSL)(Behrens etal.,2003)wasemployedtotracethepossiblepathwaysbetweentheseedre- gionintheleftparietallobeandeachofthefoursubregionsofBroca’scomplex (i.e.,leftBA6,BA44,BA45andBA47,asthetargetregion),respectively.To investigatethelateralityofthesepathways,thesametractographywasapplied totherighthomologousregions.Thepossiblepathwaysbetweenposteriortem- porallobe(seed)andeachofthefoursubregionsofBroca’scomplex(target) weretracedinthesameway.Seedregionsweredrawnbasedonourprevious study on the topographical functional connectivity pattern of the perisylvian languagenetwork(Xiang,Fonteijn,Norris,&Hagoort,2010).Brainregionsin theparietallobeorposteriortemporallobethatshowedsignificantfunctional connectivitytoBroca’scomplexweretakenasregionsofinterest(ROI).Voxels intheseROIswerethendilated(i.e.,extended)witharadiusof4mmunderthe restrictionofnotexceedingtheboundariesoftheparietalorposteriortemporal lobe. The purpose of the dilation is to better accommodate the endpoints of fiberbundles.TargetregionsweredefinedaccordingtotheAAL(Automated AnatomicalLabeling)template(Tzourio-Mazoyeretal.,2002).Anexclusion mask of the sagittal midline was also implemented in the tractography to re- movepathwaysthatcrossintotheotherhemisphere.Thepathwayswerevisual- izedwiththehelpofMRIcron(http://www.cabiatl.com/mricro/mricron/index. html). Two DTI measures were adopted to describe the structural connectivity properties of the traced pathways: the number of streamlines (Nstr) and the fractionalanisotropy(FA).Theprobabilistictractographyrepetitivelysamples from the distributions of voxel-wise principal diffusion directions, each time computing a streamline from the distribution on the location of the true fiber connections.Nstrcountshowmanysuchstreamlinesrunfromthepredefined seed region to the predefined target region (Behrens et al., 2003). Nstr is an estimationofthenumberofrealfibersbasedontheartificialreconstructionof these fibers. It should be kept in mind that Nstr (represented by a parameter called “waytotal” in FSL) is not a straightforward measure of tract integrity. It has been suggested that normalized values of waytotal should be used to avoidapossibletractabilitybiascausedbysubjectmotionorscannernoise.FA is a scalar measure of anisotropy. It is thought to reflect fiber density, axonal diameter,andmyelinationinwhitematter(Basser&Pierpaoli,1996).Toavoid subjectivethresholding,aprobability-weightedaverageFAwascalculatedfor 115 LanguageLearning62:Suppl.2,September2012,pp.110–130 Xiangetal. LanguageAptitudeandLanguagePathwaysintheBrain each pathway and subject using the following equation (derived from: Hua etal.,2008): (cid:2) (cid:3)(cid:2) MeanFA= (Pr∗FA) Pr (1) i i i WherePr istheprobabilityoftheithvoxeltobepartofthereconstructed i tract, empirically decided by the number of streamlines that pass through the ithvoxeldividedbythetotalnumberofstreamlines. Toassessthestructurallateralityofeachconnection,lateralizationindices (LI)werecalculatedforbothNstrandFAusingthefollowingequation: LI=(Left−Right)/(Left+Right) (2) Toseewhethertheabsolutedifferencebetweenleftandrightconnections also influence the behavioral measures, an absolute lateralization index (LA) wasalsocalculatedusingthefollowingequation: LA=Left−Right (3) Thus for both LI and LA, a more positive value indicates “more left- lateralized”andamorenegativevaluemeans“moreright-lateralized.” Regressionanalysisontherelationshipbetweenbehavioralmeasures andstructuralconnectivityprofiles StepwiseregressionanalysisimplementedinSPSS16.0(SPSS,Inc.,Chicago IL)wasusedtoinvestigatewhethereachofthebehavioralmeasuresthatwere gathered could be explained by the connectivity profiles of certain pathways. Behavioralmeasureswereregressedontothefollowing: - Numberofstreamlines(Nstr) - LateralisationindecesofNstr(LI_Nstr) - LateralisationindexofNstr(LA_Nstr) - thesummationofleftandrightNstr(Sum_Nstr). Sum_Nstrwasincludedasaregressortocontrolforbrainsizeandthebias oftractabilitycausedbysubjectmotionandscannernoise.Thegenderofthe LanguageLearning62:Suppl.2,September2012,pp.110–130 116 Xiangetal. LanguageAptitudeandLanguagePathwaysintheBrain Table1 Loadingsofthebehavioralmeasuresontheprincipalcomponents Component 1 2 3 Vocabularylearning .657 .214 −.273 Soundrecognition .438 −.712 −.108 Sound-symbolcorrespondence .618 .386 −.111 Grammaticalinferrencing .832 −.094 −.328 IQ .341 .667 .119 Spatialworkingmemory .349 .116 .816 Verbalworkingmemory .587 −.436 .413 subject (gender) and the sample to which the subject belongs (sample) were enteredascontrolregressorsaswell. Thesamestepwiseregressionanalyseswerecarriedouttoinvestigatethe relationship between the behavioral measures and the fractional anisotropy (FA). Results PCAAnalysisoftheBehavioralMeasures ThefirstthreePrincipalComponents(PCs)accountedfor67%ofthevariance. The first PC (PC1) explains 32.6% of the variance. The second PC (PC2) explains 19.4% and the third (PC3) 15% of the variance. The corresponding loadingsareshowninTable1. PC1haspositiveloadingsonall7behavioralmeasuresindicatingthatall thesebehavioralmeasuresmaybeimportantforforeignlanguagelearning.PC2 hadpositiveloadingsonvocabularylearning,sound-symbolcorrespondence, spatial working memory, and IQ (the largest loading) and negative loadings on sound recognition, verbal working memory and grammatical inferencing. Thissuggeststhatvocabularylearning,establishingsound-symbolcorrespon- dencesandspatialworkingmemoryaremorerelatedtoIQthanverbalworking memory, the ability to recognise sounds, and deducing grammatical patterns in the input. PC3 distinguished those abilities assumed to relate specifically tolanguageaptitudefrommoregeneralcognitiveabilities,withnegativeload- ingsonvocabularylearning,soundrecognition,sound-symbolcorrespondence, grammaticalinferencingandverbalworkingmemoryandpositiveloadingson IQandspatialworkingmemory. 117 LanguageLearning62:Suppl.2,September2012,pp.110–130 Xiangetal. LanguageAptitudeandLanguagePathwaysintheBrain Figure2 (a)Sagittalviewoftracedpathwaysbetweenparietal/posteriortemporallobe and 3 subregions (BA44, 45 and 47) of IFG (Broca’s complex). (b) Left or Right lateralized BA6-Temporal pathways projected on the MRICRON brain template. L: Lefthemisphere;R:righthemisphere;A:anteriorbrain;P:posteriorbrain. LanguagePathways DTI fiber tractography discovered robust structural connections for all seed- targetpairsin97%oftheparticipants(Figure2).Whileconnectionsbetween theparietal/posteriortemporallobeandBA6/BA44areobservedtoliemainly inthedorsalpartofthebrain,connectionsbetweenthetwolobesandBA47go throughtheventralpart.ConnectionsbetweenthetwolobesandBA45areseen inbothdorsalandventralpartsofthebrain.Interhemisphericpathwayswere showninFigure3;allofthesepathwaysgothroughthecorpuscallosum. TheRelationshipBetweenBehavioralMeasuresandStructural ConnectivityintheLanguagePathways The step-wise regression analyses found the most optimal models for vocab- ulary learning (for Nstr, adjusted R2 = 0.14, p = 0.03), sound recognition (forNstr,adjustedR2=0.37,p=.04),sound-symbolcorrespondence(forFA, adjusted R2 = 0.25, p = .003), grammatical inferencing (for Nstr, adjusted R2 = 0.36, p = 0.002), IQ (for Nstr, adjusted R2 = 0.76, p < .0001; for FA, LanguageLearning62:Suppl.2,September2012,pp.110–130 118 Xiangetal. LanguageAptitudeandLanguagePathwaysintheBrain Figure 3 Interhemispheric pathways of BA6, BA44, BA45, BA47, parietal lobe and posteriortemporallobeprojectedontheMRICRONbraintemplate.L:lefthemisphere; R:righthemisphere;A:anteriorbrain;P:posteriorbrain. adjusted R2 = 0.24, p = .005), spatial working memory (for Nstr, adjusted R2 = 0.32, p = .002; for FA, adjusted R2 = 0.23, p = 0.006), and verbal working memory (for Nstr,adjusted R2 = 0.34, p = .003). Table 2 shows the detailsofthebestpredictorssuggestedbyeachofthesemodels. ItshouldbenotedthatthesignificanceofthepredictorofNstrLA47P(ab- solutelateralizationindexofBA47-parietalpathway)forvocabularylearning did not survive a Bonferroni correction. We still report this result because it isrelevanttopreviousfindings(seeDiscussionformoredetails).Allthesig- nificant results reported are Bonferroni corrected unless otherwise specified. Figure 4 shows the correlations between the four language aptitude tests and theirbestpredictors. Discussion BehavioralMeasures Forthe7behavioralmeasures,thefirstthreePrincipalComponents(PCs)ex- plained most of the variance. PC1 was the largest component (32.6%) and represents the agreement between all these behavioral measures, suggesting thatageneralabilitymightbeimportanttoL2acquisition.PC2explains19.4% andseemstosuggestthatvocabularylearning,sound-symbolcorrespondence andspatialworkingmemoryaremorecloselyrelatedtogeneralIQthansound recognition and verbal working memory. Finally, PC3 explains 15% of the varianceanddistinguishesthetasksspecificallydesignedtotapintolanguage aptitude (vocabulary learning, sound recognition, sound-symbol correspon- denceandgrammaticalinferencing)frommoregenericmeasures(IQ,spatial andverbalworkingmemory). AnatomicalConnectionsinthePerisylvianLanguageNetwork Our fiber tracking results are generally in agreement with previous findings on language pathways (Catani, Howard, Pajevic, & Jones, 2002; Friederici, 119 LanguageLearning62:Suppl.2,September2012,pp.110–130

Description:
Psycholinguistics. In this article, we report the results of a study on the relationship between individual differences in language learning aptitude and the . tasks, we performed a Principal Components Analysis (PCA). This procedure extracts a number of orthogonal components equal to the number of
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.