MNRAS000,000–000(2016) PreprintJanuary27,2016 CompiledusingMNRASLATEXstylefilev3.0 The stellar-to-halo mass relation of GAMA galaxies from 100 square degrees of KiDS weak lensing data Edo van Uitert 1,2⋆, Marcello Cacciato3, Henk Hoekstra3, Margot Brouwer3, Cristo´bal Sifo´n3, Massimo Viola3, Ivan Baldry4, Joss Bland-Hawthorn5, Sarah Brough6, M. J. I. Brown7, Ami Choi8, Simon P. Driver9,10, Thomas Erben2, Catherine Heymans8, Hendrik Hildebrandt2, Benjamin Joachimi 1, Konrad Kuijken3, Jochen Liske11, Jon Loveday12, John McFarland13, Lance Miller14, Reiko Nakajima2, John Peacock8, Mario Radovich15, A. S. G. Robotham16, 6 Peter Schneider2, Gert Sikkema13, Edward N. Taylor17, Gijs Verdoes Kleijn13 1 0 2 1UniversityCollegeLondon,GowerStreet,LondonWC1E6BT,UK 2Argelander-Institutfu¨rAstronomie,AufdemHu¨gel71,53121Bonn,Germany n 3LeidenObservatory,LeidenUniversity,NielsBohrweg2,NL-2333CALeiden,TheNetherlands a J 4AstrophysicsResearchInstitute,LiverpoolJohnMooresUniversity,IC2,LiverpoolSciencePark,146BrownlowHill,LiverpoolL35RF,UK 5SydneyInstituteforAstronomy,SchoolofPhysicsA28,UniversityofSydney,NSW2006,Australia 5 6AustralianAstronomicalObservatory,POBox915,NorthRyde,NSW1670,Australia 2 7SchoolofPhysicsandAstronomy,MonashUniversity,Clayton,Victoria3800,Australia 8ScottishUniversitiesPhysicsAlliance,InstituteforAstronomy,UniversityofEdinburgh,RoyalObservatory,BlackfordHill,EdinburghEH93HJ,UK ] A 9InternationalCentreforRadioAstronomyResearch(ICRAR),TheUniversityofWesternAustralia,35StirlingHighway,Crawley,WA6009,Australia 10ScottishUniversitiesPhysicsAlliance,SchoolofPhysics&Astronomy,UniversityofStAndrews,NorthHaugh,StAndrewsKY169SS,UK G 11HamburgerSternwarte,Universita¨tHamburg,Gojenbergsweg112,21029Hamburg,Germany . 12AstronomyCentre,DepartmentofPhysicsandAstronomy,UniversityofSussex,Falmer,BrightonBN19QH,UK h 13KapteynAstronomicalInstitute,UniversityofGroningen,POBox800,NL-9700AVGroningen,theNetherlands p 14DepartmentofPhysics,OxfordUniversity,KebleRoad,OxfordOX13RH,UK o- 15INAF-OsservatorioAstronomicodiPadova,viadell‘Osservatorio5,I-35122Padova,Italy r 16InternationalCentreforRadioAstronomyResearch,UniversityofWesternAustralia,35StirlingHighway,Crawley,WA6009,Australia t 17SchoolofPhysics,TheUniversityofMelbourne,Parkville,VIC3010,Australia s a [ 1 January27,2016 v 1 9 ABSTRACT 7 We study the stellar-to-halo mass relation of central galaxies in the range 6 0 9.7<log10(M∗/h−2M⊙)<11.7 and z < 0.4, obtained from a combined analysis of . the Kilo Degree Survey (KiDS) and the Galaxy And Mass Assembly (GAMA) survey. 1 We use ∼100deg2 of KiDS data to study the lensing signal around galaxies for which 0 spectroscopicredshiftsandstellarmassesweredeterminedbyGAMA.Weshowthatlensing 6 alone results in poor constraints on the stellar-to-halo mass relation due to a degeneracy 1 between the satellite fraction and the halo mass, which is lifted when we simultaneously : v fit the stellar mass function. At M∗ > 5 × 1010h−2M⊙, the stellar mass increases with Xi halo mass as ∼Mh0.25. The ratio of dark matter to stellar mass has a minimum at a halo r mass of 8× 1011h−1M⊙ with a value of Mh/M∗ = 56+−1160 [h]. We also use the GAMA a groupcataloguetoselectcentralsandsatellitesingroupswithfiveormoremembers,which trace regionsin space where the local matter density is higher than average, and determine for the first time the stellar-to-halo mass relation in these denser environments.We find no significantdifferencescomparedtotherelationfromthefullsample,whichsuggeststhatthe stellar-to-halomassrelationdoesnotvarystronglywith localdensity.Furthermore,we find that the stellar-to-halo mass relation of central galaxies can also be obtained by modelling the lensing signal and stellar mass function of satellite galaxies only, which shows that the assumptionstomodelthesatellitecontributioninthehalomodeldonotsignificantlybiasthe stellar-to-halomassrelation.Finally,weshowthatthecombinationofweaklensingwiththe stellarmassfunctioncanbeusedtotestthepurityofgroupcatalogues. Keywords: gravitationallensing-darkmatterhaloes (cid:13)c 2016TheAuthors ⋆ [email protected] 2 Edo vanUitertet al. 1 INTRODUCTION isthemain driver behind thevariationof thestellar-to-halomass relation, and that the change in colour is simply a consequence Galaxiesformandevolveindarkmatterhaloes.Largerhaloesat- of quenching, as was already hypothesized in Mandelbaumetal. tractonaveragemorebaryonsandhostlarger,moremassivegalax- (2006). This scenario could be verified by measuring the stellar- ies.Theexactrelationbetweenthebaryonicpropertiesofgalaxies to-halo mass relationfor galaxiesin different environments. This andtheirdarkmatterhaloesiscomplex,however,asvariousastro- requiresagalaxy catalogue including stellar massesand environ- physicalprocessesareinvolved.TheseincludesupernovaandAGN mentalinformation,plusamethodtomeasuremasses.Weakgrav- feedback(seee.g.Benson2010),whoserelativeimportancesgen- itational lensing offers a particularly attractive way of measuring erallydependonhalomassinawaythatisnotaccuratelyknown, averagehalomassesofsamplesofgalaxies,asitmeasuresthetotal but environmental effects also play an important role. Measuring projected matter density along the line of sight, without any as- projections of these relations, such as the stellar-to-halomass re- sumptionabout thephysical stateof thematter,out toscalesthat lation,helpsustogaininsightintotheseprocessesandtheirmass areinaccessibletoothergravitationalprobes. dependences,andprovidesvaluablereferencesforcomparisonsfor Theseconditionsareprovidedbycombiningtwosurveys:the numerical simulationsthatmodel galaxyformationand evolution KiloDegreeSurvey(KiDS)andtheGalaxyAndMassAssembly (e.g.Munshietal.2013;Kannanetal.2014). (GAMA) survey. GAMA is a spectroscopic survey for galaxies Thestellar-to-halomassrelationhasbeenstudiedwithava- with r < 19.8 that is highly complete (Driveretal. 2009, 2011; rietyofmethods,includingindirecttechniquessuchasabundance Liskeetal.2015),facilitatingtheconstructionofareliablegroup matching(e.g.Behroozietal.2010;Mosteretal.2013)orgalaxy catalogue (Robothametal. 2011). GAMA is completely covered clustering(e.g.Wakeetal.2011;Guoetal.2014),whichcanonly bytheKiDSsurvey(deJongetal.2013),anongoingweaklensing be interpreted within a cosmological framework (e.g. ΛCDM). surveywhichwilleventuallycover1500deg2 ofskyintheugri- Satellitekinematicsofferadirectwaytomeasurehalomass(e.g. bands.Inthiswork,westudythelensingsignalaround 100000 Norbergetal. 2008; Wojtak&Mamon 2013), but this approach GAMAgalaxiesusingsourcesfromthe 100deg2ofKi∼DSimag- ∼ is relatively expensive as it requires spectroscopy for large sam- ing data overlapping with the GAMA survey from the first and plesofsatellites.Weakgravitationallensingoffersanotherpower- secondpubliclyavailableKiDS-DR1/2datarelease(Kuijkenetal. ful method that enables average halo mass measurements for en- 2015). sembles of galaxies (e.g. Mandelbaumetal. 2006; Velanderetal. The outline of this paper is as follows. In Sect. 2 we 2014). Recently, various groups have combined different probes describe the data reduction and lensing analysis, and intro- (e.g. Leauthaudetal. 2012; Couponetal. 2015), which enable duce the halo model that we fit to our data. The stellar-to- more stringent constraints on the stellar-to-halo mass relation by halo mass relation of the full sample is presented in Sect. 3. breakingdegeneraciesbetweenmodelparameters.Acoherentpic- In Sect. 4, we measure this relation for centrals and satel- tureisemergingfromthese studies: thestellar-to-halomass rela- lites in groups with a multiplicity Nfof > 5. We conclude in tion of central galaxies can be described by a double power law, Sect. 5. Throughout the paper we assume a Planck cosmology with a transition at a pivot mass where the accumulated star for- (PlanckCollaborationetal.2014)withσ8 =0.829,ΩΛ = 0.685, mationhasbeenmostefficient.Athighermasses,AGNfeedback ΩM = 0.315, Ωbh2 =0.02205 and ns = 0.9603. Halo masses isthought to suppress star formation, whilst at lower masses, su- aredefinedasM ≡ 4π(200ρ¯m)R2300/3, withR200 theradiusof pernovafeedbacksuppressesit.Thispivotmasscoincideswiththe aspherethatencompassesanaveragedensityof200timestheco- locationwherethestellarmassgrowthingalaxiesturnsfrombeing movingmatterdensity,ρ¯m=8.74 1010h2M⊙/Mpc3,atthered- · in-situdominatedtomergerdominated(Robothametal.2014). shiftofthelens.Alldistancesquotedareincomoving(ratherthan Most galaxies can be roughly divided into two classes, i.e. physical)unitsunlessexplicitlystatedotherwise. red, ‘early-types’ whose star formation has been quenched, and blue, ‘late-types’ that are actively forming stars. These are also crudely related to different environments and morphologies. The 2 ANALYSIS differences in their appearances point at different formation his- tories. Their stellar-to-halo mass relations may contain informa- 2.1 KiDS tionoftheunderlyingphysicalprocessesthatcausedthesediffer- To study the weak-lensing signal around galaxies, we use the ences. Hence it is natural to measure the stellar-to-halo mass re- shape and photometric redshift catalogues from the Kilo Degree lationsofredandbluegalaxiesseparately(e.g.Mandelbaumetal. Survey (KiDS; Kuijkenetal. 2015). KiDS is a large optical 2006;vanUitertetal.2011;Moreetal.2011;Velanderetal.2014; imaging survey which will cover 1500 deg2 in u, g, r and i to Wojtak&Mamon 2013; Tinkeretal. 2013; Hudsonetal. 2015). magnitudelimitsof24.2,25.1,24.9and23.7(5σina2′′aperture), The main result of the aforementioned studies is that at stellar respectively.Photometryin5infraredbandsofthesameareawill massesbelow 1011M⊙,redandbluegalaxiesthatarecentrals become available from the VISTA Kilo-degree Infrared Galaxy ∼ (i.e.not asatelliteof alarger system) reside inhaloes withcom- (VIKING)survey(Edgeetal.2013).Theopticalobservationsare parable masses. At higher stellar masses, the halo masses of red carriedoutwiththeVLTSurveyTelescope(VST)usingthe1deg2 galaxies are larger at low redshift, but smaller at high redshift at imager OmegaCAM, which consists of 32 CCDs of 2048 4096 agivenstellarmass.Tinkeretal.(2013)interpretthissimilarityin pixels each and has a pixel size of 0.214′′. In this paper×, weak halomassatthelow-massendasevidencethattheseredgalaxies lensing resultsare based on observations of 109 KiDS tiles1 that haveonlyrecentlybeenquenched;thedifferenceatthehigh-mass overlapwiththeGAMAsurvey,andhavebeencoveredinallfour end isinterpreted asevidence that bluegalaxies havearelatively optical bands and released toESOaspart of the firstand second largerstellarmassgrowthinrecenttimes,comparedtoredgalax- KiDS-DR1/2 data releases. The effective area after accounting ies. As red galaxies preferentially reside in dense environments such as galaxy groups and clusters, it appears that local density 1 Atileisanobservationofapointingonthesky MNRAS000,000–000(2016) Thestellar-to-halomassrelationofGAMAgalaxiesfrom100squaredegreesofKiDSweaklensingdata 3 for masks andoverlaps between tilesis75.1 square degrees. The image reduction and the astrometric and photometric reduction usetheASTRO-WISEpipeline(McFarlandetal.2013);detailsof the resulting astrometric and photometric accuracy can be found in deJongetal. (2015). Photometric redshifts have been derived withBPZ(Ben´ıtez2000;Hildebrandtetal.2012),aftercorrecting themagnitudes intheoptical bands for seeing differencesby ho- mogenisingthephotometry(Kuijkenetal.2015).Thephotometric redshifts are reliable in the redshift range 0.005 < z < 1.2, B withz beingthelocationwheretheposteriorredshiftprobability B distribution has its maximum, and have a typical outlier rate of <5% at z < 0.8 and a redshift scatter of 0.05 (see Sect. 4.4 B in Kuijkenetal. 2015). In the lensing analysis, we use the full photometricredshiftprobabilitydistributions. Shearmeasurementsareperformedinther-band,whichhas beenobservedunderstringentseeingrequirements(< 0.8′′).The r-bandisseparatelyreducedwiththewell-testedTHELIpipeline (Erbenetal. 2005, 2009), following procedures very similar to the analysis of the CFHTLS data as part of the CFHTLenS collaboration(Heymansetal.2012;Erbenetal.2013).Theshape measurements are performed with lensfit (Milleretal. 2007; Kitchingetal. 2008), using the version presented in Milleretal. (2013). We apply the same calibration scheme to correct for Figure1.SpectroscopicredshiftversusstellarmassoftheGAMAgalaxies multiplicative bias as the one employed in CFHTLenS; the intheKiDSoverlap.Thedensitycontoursaredrawnat0.5,0.25and0.125 accuracy of the correction is better than the current statistical timesthemaximumdensityinthisplane.ThetotaldensityofGAMAgalax- uncertainties, as is shown by a number of systematics tests in iesasafunctionofredshiftandstellarmassareshownbythehistograms Kuijkenetal.(2015).Shearestimatesareobtainedusingallsource onthex-andy-axes,respectively.Thedashedlinesindicatethemassbins galaxiesinunmaskedareaswithanon-zerolensfitweightandfor ofthelenses. whichthepeakoftheposteriorredshiftdistributionisintherange 0.005 < z < 1.2. The corresponding effective source number B remainderofthiswork.Thedistributionofstellarmassversusred- density is 5.98 arcmin−2 (using the definition of Heymansetal. shiftofallGAMAgalaxiesintheKiDSfootprintisshowninFig.1. (2012),whichdiffersfromtheoneadoptedinChangetal.(2013), ThisfigureshowsthattheGAMAcataloguecontainsgalaxieswith asdiscussedinKuijkenetal.2015). redshiftsuptoz 0.5.Furthermore,bright(massive)galaxiesre- ≃ sideathigherredshifts,asexpectedforaflux-limitedsurvey.Note that theapparent lack of galaxies moremassive than afew times 2.2 GAMA 1010h−2M⊙ atz < 0.2isaconsequence of plottingredshift on thehorizontalaxisinsteadofbinsofequalcomovingvolume.The The Galaxy And Mass Assembly (GAMA) survey (Driveretal. binsatlowredshiftcontainlessvolumeandthereforehavefewer 2009, 2011; Liskeetal. 2015) is a highly complete optical spec- galaxies(foraconstantnumberdensity).Itisnotaselectioneffect. troscopicsurveythattargetsgalaxieswithr < 19.8overroughly We use the group properties of the G3C catalogue 286 deg2. In this work, we make use of the G3Cv7 group cata- (Robothametal. 2011) to select galaxies in dense environments. logueandversion16ofthestellarmasscatalogue,whichcontain Groups are found using an adaptive friends-of-friends algorithm, 180000objects,dividedintothreeseparate12 5deg2 patches linkinggalaxiesbasedontheirprojectedandline-of-sightsepara- ∼ × thatcompletelyoverlapwiththenorthernstripeofKiDS.Weuse tions.Thealgorithmhasbeentestedonmockcatalogues, andthe the subset of 100000 objects that overlaps with the 75.1 deg2 globalproperties,suchasthetotalnumberofgroups,arewellre- ∼ fromtheKiDS-DR1/2. covered. Version 7 of the group catalogue, which we use in this Stellar masses of GAMA galaxies have been estimated in work, consists of nearly 24000 groups with over 70000 group Tayloretal. (2011). In short, stellar population synthesis models members.Thecataloguecontainsgroupmembershi∼plistsandvari- from Bruzual&Charlot (2003) are fit to the ugriz-photometry ousestimatesforthegroupcentre,aswellasgroupvelocitydisper- fromSDSS.NIRphotometryfromVIKINGisusedwhentherest- sions, group sizesand estimatedhalo masses. Welimitourselves framewavelength islessthan 11000 A˚.Toaccount for fluxout- togroupswithamultiplicityN >5,becausegroupswithfewer fof sidetheAUTOapertureusedfortheSpectralEnergyDistributions members are more strongly affected by interlopers, as a compar- (SEDs), an aperture correction is applied using the fluxscale pa- isonwithmockdatahasshown (Robothametal.2011).Werefer rameter.Thisparameterdefinestheratiobetweenr-band(AUTO) to these groups as ‘rich’ groups. We assume that the brightest2 aperture flux and the total r-band flux determined from fitting a group galaxy is the central galaxy, whilst fainter group members Se´rsicprofileoutto10effectiveradii(Kelvinetal.2014).Thestel- arereferredtoassatellites.Analternativeprocedure toselectthe lar masses do not include the contribution from stellar remnants. Thestellarmasserrorsare 0.1dexandaredominatedbyamag- ∼ nitudeerrorfloorof0.05mag,whichisaddedinquadraturetoall 2 ThisisbasedonSDSSr-bandPetrosianmagnitudeswithaglobal(k+ magnitude errors, thus allowing for systematic differences in the e)-correction(seeRobothametal.2011).Duetovariationsinthemass-to- photometrybetweenthedifferentbands.Therandomerrorsonthe lightratio,itoccasionallyhappensthatasatellitehasalargerstellarmass stellarmassesarethereforeevensmaller,andweignoretheminthe thanthecentral. MNRAS000,000–000(2016) 4 Edo vanUitertet al. centralgalaxyistoiterativelyremovegroupmembersthatarefur- Sec.3.4ofViolaetal.(2015).Wehavealsocomputedthecovari- thest away from the group centre of light. As the two definitions ancematrixusingbootstrappingtechniquesandfoundverysimilar onlydifferforafewpercentofthegroupsandthelensingsignals resultsintheradialrangeofinterest. are statistically indistinguishable (see Appendix A of Violaetal. Wegroup GAMA galaxies instellar massbins and measure 2015), we do not investigate this further and adopt the brightest theiraveragelensingsignals.Thebinrangeswerechosenfollowing groupgalaxyasthecentralthroughout. Toverifythatthese‘rich’ twocriteria.Firstly,weaimedforaroughlyequallensingsignal-to- groupstracedenseenvironments,wematchtheG3Ccatalogueto noiseratioof 15perbin.Secondly,weadoptedamaximumbin ∼ theenvironmentalclassificationcatalogueofEardleyetal.(2015), widthof0.5dex.Todeterminethesignal-to-noiseratio,wefitteda whousesatidaltensorprescriptiontodistinguishbetweenfourdif- singularisothermalsphere(SIS)totheaveragelensingsignaland ferentenvironments:voids,sheets,filamentsandknots.Usingthe determined the ratio of the amplitude of the SIS to its error. The classificationthatisbasedonthe4h−1Mpcsmoothing scale,we adoptedbinrangesarelistedinTable1,aswellasthenumberof findthat76%ofthecentralsofgroupswithN >5resideinfil- lensesandtheiraverageredshift;theaverage∆ΣisshowninFig. fof amentsandknots,comparedto49%ofthefullGAMAcatalogue, 2. We note, however, that our conclusions do not depend on the whichshowstheN >5groupsformacrudetracerofdensere- choiceofbinning. fof gions. Note that both the stellar mass catalogue and the GAMA group catalogue were derived with slightly different cosmologi- 2.4 Thehalomodel calparameters:Tayloretal.(2011)used(Ω ,Ω ,h)=(0.7,0.3,0.7) Λ M The halo model (Seljak 2000; Cooray&Sheth 2002) has be- and Robothametal. (2011) used (Ω ,Ω ,h)=(0.75,0.25,1.0) in Λ M come a standard method to interpret weak lensing data. The im- order to match the Millennium Simulation mocks. We accounted plementation we employ here is similar to the one described forthedifferenceinh,butnotinΩ andΩ ,becausethelensing Λ M in vandenBoschetal. (2013) and has been successfully ap- signalatlowredshiftdependsonlyweaklyontheseparametersand plied to weak lensing measurements in Cacciatoetal. (2014); thisshouldnotimpactourresults. vanUitertetal. (2015), and to weak lensing and galaxy cluster- The current lensing catalogues in combination with these ingdatainCacciatoetal.(2013).Weprovideadescriptionofthe GAMA catalogues have already been analysed by Violaetal. modelhere,aswehavemadeanumberofmodifications. (2015), where the main focus was GAMA group properties, and Inthehalomodel,allgalaxiesareassumedtoresideindark bySifo´netal.(2015),wherethemassesofsatellitesingroupswere matter haloes. Using a prescription for the way galaxies occupy derived.Here,weaimatabroaderscope,aswemeasurethestellar- darkmatterhaloes,aswellasforthematterdensityprofile,abun- to-halomassrelationover twoordersof magnitudeinhalomass. dance and clustering of haloes, one can predict the surface mass Studyingthecentralsandsatellitesin‘rich’groupssuppliesuswith density(andthusthelensingsignal)aroundgalaxiesinastatistical thefirstobservationallimitsonwhetherthestellar-to-halomassre- manner: lationchangesindenseenvironments. ωS Σ(R)=ρ¯ ξ (r)dω, (3) m gm Z0 2.3 Lensingsignal withξgm(r) the galaxy-matter cross-correlation, ω thecomoving distance from the observer and ωS the comoving distance to the Weak lensing induces a small distortion of the images of back- source. For small separations, R ωLθ, with ωL the comoving groundgalaxies.Sincethelensingsignalofindividualgalaxiesis ≈ distance to the lens and θ the angular separation from the lens. generally tooweaktobedetected due tothelow number density The three-dimensional comoving distance r is related to ω via of background galaxiesinwide-fieldsurveys, it iscommon prac- r2 = (ωL θ)2+(ω ωL)2.Theintegraliscomputedalongthe ticetoaverage the signal around many (similar)lens galaxies. In · − lineofsight. the regime where the surface mass density is sufficiently small, Asthecomputationofξ (r)generallyrequiresconvolutions gm the lensing signal can be approximated by averaging the tangen- in real space, it is convenient to express the relevant quantities tialprojectionoftheellipticitiesofbackground (source)galaxies, in Fourier-space where these operations become multiplications. thetangentialshear: ξ (r)isrelatedtothegalaxy-matterpowerspectrum,P (k,z), gm gm ∆Σ(R) via γ (R)= , (1) h ti Σcrit ξ (r,z)= 1 ∞P (k,z)sinkrk2dk, (4) with∆Σ(R)=Σ¯(<R) Σ¯(R)thedifferencebetweenthemean gm 2π2 Z0 gm kr − projectedsurfacemassdensityinsideaprojectedradiusRandthe withkthewavenumber.Onsmallphysicalscales,themaincontri- surfacedensityatR,andΣ thecriticalsurfacemassdensity: butiontoP (k,z)comesfromthehaloinwhichagalaxyresides crit gm (theone-haloterm),whilstonlargephysicalscales,themaincon- Σ = c2 DS , (2) tributioncomesfromneighbouringhaloes(thetwo-haloterm).Ad- crit 4πGDLDLS ditionally,thehalomodeldistinguishesbetweentwogalaxytypes, withDLandDStheangulardiameterdistancefromtheobserverto i.e.centrals and satellites.Centralsreside inthecentre of a main thelensandsource,respectively,andDLSthedistancebetweenthe halo, whilst satellites reside in subhaloes that are embedded in lensandsource.Foreachlens-sourcepairwecompute1/Σ by largerhaloes.Theirpowerspectraaredifferentandcomputedsep- crit integratingovertheredshiftprobabilitydistributionofthesource. arately.Henceonehas The actual measurements of the excess surface density pro- P (k)=P1h(k)+P1h(k)+P2h(k)+P2h(k), (5) files are performed using the same methodology outlined in Sec. gm cm sm cm sm 3.3of Violaetal.(2015).Thecovariance betweentheradial bins with P1h(k) (P1h(k)) the one-halo contributions from centrals cm sm ofthelensingmeasurementsisderivedanalytically,asdiscussedin (satellites), and P2h(k) (P2h(k)) the corresponding two-halo cm sm MNRAS000,000–000(2016) Thestellar-to-halomassrelationofGAMAgalaxiesfrom100squaredegreesofKiDSweaklensingdata 5 Figure2.ExcesssurfacemassdensityprofileofGAMAgalaxiesmeasuredasafunctionofprojected(comoving)separationfromthelens,selectedinvarious stellarmassbins,measuredusingthesourcegalaxiesfromKiDS.Thedashedredlineindicatesthebest-fithalomodel,obtainedfromfittingthelensingsignal only.Thesolidgreenlineisthebest-fithalomodelforthecombinedfittotheweaklensingsignalandthestellarmassfunction,theorangeareaindicatesthe1σ modeluncertaintyregimeofthisfit.Thestellarmassrangesthatareindicatedcorrespondtothelog10ofthestellarmassesandareinunitslog10(h−2M⊙). Table1.Numberoflensesandmeanlensredshiftofalllenssamplesusedinthiswork.Thestellarmassrangesthatareindicatedcorrespondtothelog 10 ofthestellarmassesandareinunitslog10(h−2M⊙).The‘All’samplecontainsallGAMAgalaxiesthatoverlapwithKiDS-DR1/2,whilst‘Cen’and‘Sat’ referstothesamplesthatonlycontainthecentralsandsatellitesinGAMAgroupswithamultiplicityNfof >5. M1 M2 M3 M4 M5 M6 M7 M8 [9.39,9.89] [9.89,10.24] [10.24,10.59] [10.59,11.79] [10.79,10.89] [10.89,11.04] [11.04,11.19] [11.19,11.69] Nlens hzi Nlens hzi Nlens hzi Nlens hzi Nlens hzi Nlens hzi Nlens hzi Nlens hzi All 15819 0.17 19175 0.21 24459 0.25 11475 0.29 3976 0.31 3885 0.32 1894 0.34 1143 0.35 Cen(Nfof >5) 15 0.08 55 0.12 185 0.16 242 0.18 185 0.19 276 0.21 241 0.23 209 0.26 Sat(Nfof >5) 1755 0.14 2392 0.18 3002 0.22 1267 0.26 388 0.27 343 0.27 138 0.29 65 0.32 terms. We follow the notation of vandenBoschetal. (2013) and describesthepowerspectrumofhaloesofmassM andM ,which 1 2 writethiscompactlyas: containsthelarge-scalehalobiasb (M )fromTinkeretal.(2010). h h Plin(k,z) is the linear matter power spectrum. We employ the m P1h(k,z)= (k,M ,z) (k,M ,z)n (M ,z)dM , (6) transfer function of Eisenstein&Hu (1998), which properly ac- xy Hx h Hy h h h h Z countsfortheacousticoscillations.Furthermore,weuse Px2yh(k,z)=Z dM1Hx(k,M1,z)nh(M1,z) Hm(k,Mh,z)= Mρ¯mhuh(k|Mh,z), (8) dM (k,M ,z)n (M ,z)Q(kM ,M ,z), (7) 2Hy 2 h 2 | 1 2 e Z with Mh the halo mass, and uh(kMh,z) the Fourier transform | where x and y are either c (for central), s (for satellite), or m of the normalised density distribution of the halo. We assume (for matter), nh(Mh,z) isthe halomass function of Tinkeretal. thatthedensitydistributionfolleowsaNavarro-Frenk-White(NFW; (2010), and Q(kM ,M ,z)=b (M ,z)b (M ,z)Plin(k,z) Navarroetal. 1996) profile, with a mass-concentration relation | 1 2 h 1 h 2 m MNRAS000,000–000(2016) 6 Edo vanUitertet al. fromDuffyetal.(2008): The contribution from the central galaxies is modelled as a log-normaldistribution: M −0.081 cwdhmer=e ffccoonncc×is1th0e.14no(cid:18)rmMapliizhvaotti(cid:19)on, whic(h1i+s za)−fr1e.e01p,arameter(9in) Φc(M∗|Mh)= exph−√(lo2gπ10lMn(∗1−0l2)oσgσc12c0MM∗c∗(Mh))2i, (15) the fit, and Mpivot = 2 1012h−1M⊙. Note that the choice forthisparticularparametr×isationisnotveryimportant,asessen- whereσcisthescatterinlogM∗atafixedhalomass.Forsimplic- ity,weassumethatitdoesnotvarywithhalomass,assupported tiallyallmass-concentrationrelationsfromtheliteraturepredicta by the kinematics of satellite galaxies in the SDSS (Moreetal. weakdependenceonhalomass.Furthermore,thescalingwithred- shift c (1+z)−1 is motivated by analytical treatments of 2009,2011),bycombininggalaxyclustering,galaxy-galaxylens- dm ∝ ingandgalaxyabundances (Cacciatoetal.2009;Leauthaudetal. haloformation(seee.g.Bullocketal.2001).Itisworthmention- 2012) and by SDSS galaxy group catalogues (Yangetal. 2008). ingthatmorecomplexredshiftdependencesareexpected(seee.g. Mc representsthemeanstellarmassofcentralgalaxiesinahalo Mun˜oz-Cuartasetal.2011)butthose deviationsareonly relevant ∗ ofmassM ,parametrisedbyadoublepowerlaw: atredshiftslargerthanone,wellbeyondthehighestlensredshiftin h thissFtuodryc.entralsandsatellites,wehave M∗c(Mh)=M∗,0[1+((MMhh//MMhh,,11))β]β11−β2 , (16) N M Hx(k,Mh,z)= hn¯xx|(z)hiux(k|Mh). (10) βwith(βM)ht,h1eapcohwaerracltaewrisstliocpmeaaststhsecalloew, M-(h∗i,g0h-a)nmoramssaelinzda.tioTnhiasnids 1 2 We set uc(kMh) = 1, i.ee., we assume that all central galax- thestellar-to-halomassrelationofcentralgalaxiesweareafter. | ies are located at the centre of the halo. We adopt this choice in For theCSMFof thesatellitegalaxies, weadopt amodified order toelimit the number of free parameters in the model; addi- Schechterfunction: tionally, lensing alone does not provide tight constraints on the masiesdcennotrrimngaldisiasttiroibnutoiofnt.hTehmisamsso-cdoenllcinengtrcahtiooincercealantiloenad(steoeaeb.gi-. Φs(M∗|Mh)= Mφs∗s (cid:18)MM∗∗s(cid:19)αsexp"−(cid:18)MM∗∗s(cid:19)2#, (17) vanUitertetal. 2015; Violaetal. 2015) but it does not bias the whichdecreasesfasterthanaSchechterfunctionatthehigh-stellar halomasses(vanUitertetal.2015)orthestellar-to-halomassrela- massend. Galaxygroup catalogues show thatthesatellitecontri- tion.Furthermore,weassumeu (kM ,z)=u (kM ,z),hence s | h h | h bution to the total CSMF falls off around the mean stellar mass thedistributionofsatellitesfollowsthedarkmatter.Thisisarea- ofthecentralgalaxyforagivenhalomass(e.g.Yangetal.2008). sonable assumption, given theelargediscrepanecies inthereported ThusoneexpectsthecharacteristicmassofthemodifiedSchechter trends in the literature, which range from satellites being either function, Ms, to follow Mc. Inspired by Yangetal. (2008), we ∗ ∗ moreorlessconcentratedthanthedarkmatter(seee.g.Wangetal. assumethatMs(M ) = 0.56Mc(M ).Forthenormalizationof ∗ h ∗ h 2014,andthediscussiontherein). Φs(M∗ Mh)weadopt WespecifythehalooccupationstatisticsusingtheConditional | StellarMassFunction(CSMF),Φ(M∗|Mh)dM∗,whichdescribes log10[φs(Mh)]=b0+b1×log10M13, (18) the average number of galaxies with stellar masses in the range M∗ ±dM∗/2 that reside inahalo of massMh. The occupation tweritsh.WMe13tes=tthMehs/en(1si0t1iv3ihty−o1fMou⊙r)r.ebsu0,ltbs1t,oatnhdeαloscaatrieonfroeefMparsa,maned- numbersrequiredforthecomputationofthegalaxy-matterpower ∗ totheadditionofaquadraticterminEq.(18),inAppendixB.We spectrafollowfrom findthatourresultsarenotsignificantlyaffected. M∗,2 Weassignamasstothesubhaloesinwhichthesatellitesre- hNx|Mhi(M∗,1,M∗,2)= Φx(M∗|Mh)dM∗, (11) sideusingthesamerelationthatweuseforthecentrals(Eq.16). ZM∗,1 For every stellar mass bin, we compute the average mass of the where‘x’referstoeither‘c’(centrals)or‘s’(satellites),andM∗,1 main haloes in which the satelliteresides, and multiply this with andM∗,2 indicatetheextremesofastellarmassbin.Theaverage aconstantfactor,f ,afreeparameterwhoserangeislimitedto sub numberdensityofthesegalaxiesisgivenby: valuesbetween0and1.Inthisway,wecancrudelyaccountforthe strippingofthedarkmatterhaloesofsatellites.Givenourlimited n¯x(z)= Nx Mh (M∗,1,M∗,2)nh(Mh,z)dMh, (12) knowledgeofthedistributionofdarkmatterinsatellitegalaxies,we h | i Z assumethatitisdescribedbyanNFWprofile,whichprovideade- andthesatellitefractionfollowsfrom centdescriptionofthemassdistributionofsubhaloesintheMillen- niumsimulation(PastorMiraetal.2011).Weusethesamemass- Ns Mh (M∗,1,M∗,2)nh(Mh)dMh fs(M∗,1,M∗,2)= h | i n¯ (z)+n¯ (z) . concentration relationasfor thecentrals.Thestatisticalpower of R c s ourmeasurementsisnotsufficienttoadditionallyfitforatrunca- (13) tionradius(seeSifo´netal.2015). Thestellarmassfunctionisgivenby: The above prescription provides us with the lensing signal fromcentralsandsatellites,withseparatecontributionsfromtheir ϕ(M∗,1,M∗,2)= [ Nc Mh + Ns Mh ]nh(Mh)dMh, (14) one-halo and two-halo terms. At small projected separations, the h | i h | i contribution of the baryonic component of the lenses themselves Z where N M and N M arecomputed withEq. (11) using becomes relevant. We model this using a simple point mass ap- c h s h thebinhlimi|tsofithesthellar|masisfunction. proximation: We separate the CSMF into the contributions of central and satellite galaxies, Φ(M∗|Mh)=Φc(M∗|Mh)+Φs(M∗|Mh). ∆Σ1ghal(R)≡ hπMR∗2i, (19) MNRAS000,000–000(2016) Thestellar-to-halomassrelationofGAMAgalaxiesfrom100squaredegreesofKiDSweaklensingdata 7 3 STELLAR-TO-HALOMASSRELATION Table2.Priorsadoptedinhalomodelfit Parameter type range priormean priorsigma We start with an analysis of the lensing measurements to exam- ine the stellar-to-halo mass relation of central galaxies, as was log10(Mh,1) flat [9,14] - - done in several previous studies (e.g. Mandelbaumetal. 2006; log10(M∗,0) flat [7,13] - - vanUitertetal.2011;Velanderetal.2014).Wefitthelensingsig- β1 Gaussian - 5.0 3.0 nalsoftheeightlenssamplessimultaneouslywiththehalomodel. log10β2 flat [−3,∞] - - Thebest-fittingmodelsfromthelensing-onlyanalysiscanbecom- σc flat [0.05,0.5] - - paredtothedatainFig.2.Theresultingreducedchi-squared,χ2 , αs Gaussian - -1.1 0.9 red b0 Gaussian - 0.0 1.5 hasavalueof1.0(with70degreesoffreedom),sothemodelspro- b1 Gaussian - 1.5 1.5 videasatisfactoryfit.Intheleft-handpanelofFig.3weshowthe fsub flat [0,1] - - constraintsonthestellar-to-halomassrelation.Abroadrangeofre- fconc flat [0.2,2] - - lationsdescribethelensingsignalsequallywell.Furthermore,the c0 flat [−5,5] - - right-handpanelofFig.3showsthattheuncertaintiesonthefrac- c1 flat [9,16] - - tionofgalaxiesthataresatellitesisalsolarge. vanUitertetal. (2011) pointed out that the uncertainties on thesatellitefractionobtainedfromlensingonlyarelargeatthehigh stellar mass end, and, even worse, that a wrongly inferred satel- litefractioncanbiasthehalomassastheyareanti-correlated.The with M∗ theaveragestellarmassofthelenssample. reasonforthisdegeneracy isthatloweringthehalomassreduces h i To summarise, the halo model employed in this paper themodelexcesssurfacemassdensityprofile,whichcanbepartly has the following free parameters: (Mh,1,M∗,0,β1,β2,σc) and compensatedbyincreasingthesatellitefraction,assatellitesreside (α ,b ,b ) to describe the halo occupation statistics of centrals onaverageinmoremassivehaloesthancentralsofthesamestel- s 0 1 and satellites. f controls the subhalo masses of satellites, and larmass,therebyboostingthemodelexcesssurfacemassdensity sub f quantifies the normalization of the c(M) relation. We use profile at a few hundred kpc. This problem was partly mitigated conc non-informative flat or Gaussian priors, as listed in Table 2, ex- in vanUitertetal. (2011) and Velanderetal. (2014) by imposing ceptforβ ,becauseourmeasurementsdonotextendfarbelowthe priors on the satellite fractions, which is not ideal, as the results 1 locationofthekinkinthestellar-to-halomassrelation.Asacon- aresensitivetothepriorsused.Asweemployamoreflexiblehalo sequence,wearenotabletoprovidetightconstraintsontheslope modelhere,thisproblemisexacerbatedandadifferentsolutionis at the low-mass end. Theother priors werechosen to generously required. encapsulate previous literature results and they do not affect our Inordertotightentheconstraintsonthesatellitefractionand results.Notethatforsomesamples,wehadtoadoptsomewhatdif- the stellar-to-halo mass relation, we either need to impose priors ferentpriors;wecommentonthiswhereapplicable. inthehalomodel,orincludeadditional,complementarydatasets. The parameter space is sampled with an affine invari- Since it is not obvious what priors to use, particularly since we ant ensemble Markov Chain Monte Carlo (MCMC) sampler aimtostudyhowthestellar-to-halomassrelationdependsonen- (Goodman&Weare2010).Specifically,weusethepubliclyavail- vironment,weoptforthesecondapproach. Themoststraightfor- ablecode EMCEE(Foreman-Mackeyetal.2013).WerunEMCEE ward complementary data set is the stellar mass function, which with four separate chains with 150 walkers and 4500 steps per constrainsthecentralandsatelliteCSMFsthroughEq.(14).Asa walker.Thefirst1000steps(whichamountsto600000evaluations) result, the number of satellites cannot be scaled arbitrarily up or are discarded as the burn-in phase. Using the resulting 2100000 downanymore,whichhelpstobreakthisdegeneracy. modelevaluations,weestimatetheparameteruncertainties;thefit SinceGAMA isahighlycomplete spectroscopic survey, we parameters that we quote in the following correspond to the me- can measure the stellar mass function by simply counting galax- dian of the marginalized posterior distributions, the errors corre- ies, as long as we restrict ourselves to stellar mass and redshift spondtothe68%confidenceintervalsaroundthemedian.Weas- ranges where the sample is volume limited. Hence we measure sess the convergence of the chains with the Gelman-Rubin test the stellar mass function in three equally log-spaced bins be- (Gelman&Rubin 1992) and ensure that R 6 1.015, withR the tween9.39<log10(M∗/h−2M⊙)<11.69andincludeallgalax- ratiobetweenthevarianceofaparameterinthesinglechainsand iesfrom the G3Cv7 group catalogue withz < 0.15. The choice thevarianceofthatparameterinallchainscombined.Inaddition, of the number of bins ismainly driven by the low number of in- wecomputetheauto-correlationtime(seee.g.Akeretetal.2013) dependentbootstraprealisationswecanusetoestimatetheerrors forourmainresultsandfindthatitisshorterthanthelengthofthe (discussed in Appendix A). We do not expect to lose much con- chainsthatisneededtoreach1%precisiononthemeanofeachfit strainingpower fromthestellarmassfunction bymeasuringitin parameter. threebinsonly.Notethatthemeanlensredshiftissomewhathigher Forsomelensselections,wealsorunthehalomodelinan‘in- thantheredshiftatwhichwedeterminethestellarmassfunction, formed’setting.WhenweusetheGAMAgroupcataloguetoselect buttheevolutionofthestellarmassfunctionisverysmalloverthe andanalyseonlycentralsorsatellites,weonlyneedthepartofthe redshiftrangeconsideredinthiswork(see,e.g.,Ilbertetal.2013) halomodelthatdescribestheirrespectivesignals.Hence,whenwe andhencecanbesafelyignored.Thestellarmassfunctionisshown onlyselect centrals, weset theCSMFofsatellitestozero. When inFig.4,together withtheresultsfromBaldryetal.(2012),who weselectsatellitesonly,wemodelboththeCSMFofthesatellites measured the stellar mass function for GAMA using galaxies at and of the centrals of the haloes that host the satellites. Weneed z<0.06.Themeasurementsagreewell. the latterto model the miscentred one-halo termand the subhalo We determine the error and the covariance matrix via boot- massesofthesatellites. strapping, as detailed in Appendix A. We show there that 1) the bootstrapsamplesshouldcontainasufficientlylargephysicalvol- MNRAS000,000–000(2016) 8 Edo vanUitertet al. Figure3.(left:)Stellar-to-halomassrelationofcentralgalaxiesfromKiDS+GAMA,determinedfromfittingthelensingsignalonly(dark/lightbrownindi- cating1-/2-σmodeluncertaintyregime)orbycombiningthelensingsignalwiththestellarmassfunction(orange/yellowindicating1-/2-σmodeluncertainty regime).Thecontoursarecutatthemeanstellarmassofthefirstandlaststellarmassbinusedinthelensinganalysis,toensureweonlyshowtheregime wherethedataconstrainsit.(right:)ThefractionofgalaxiesthataresatellitesasafunctionofstellarmassforallGAMAgalaxies.Thecolouredcontours showthe68%confidenceintervalforthefitstothelensingsignalonlyandtothecombinedfits,asindicatedinthepanel.Theupperthickblackdashedline showsacrudeestimateofthesatellitefractionbasedontheGAMAgroupcatalogues(asdetailedinSect.3.3),thelowerthickdottedlineshowsalowerlimit. Hatchedareasshowtheoverlapbetweenthe1-σlensing-onlyresultsandthecombinedanalysis. ume.Ifthesamplevolumeistoosmall,theerrorswillbeunderes- timated;2)themajorcontributiontotheerrorbudgetcomesfrom cosmicvariance.ThecontributionfromPoissonnoiseistypically of order 10-20%; 3) the stellar mass function measurements are highlycorrelated.Smith(2012)showedthatthishasamajorimpact ontheconfidencecontoursofmodelparametersfittedtothestellar massfunction.Includingthecovarianceisthereforeessential,not onlyforstudiesthatcharacterisethestellarmass/luminosityfunc- tion(forexampleasafunctionofgalaxytype),butalsowhenitis usedtoconstrainhalomodelfits. To determine the cross-covariance between the shear mea- surements and the stellar mass function, we measured the shear of all GAMA galaxies with log10(M∗/h−2M⊙)>9.39 and z<0.15ineachKiDSpointing,andusedthesameGAMAgalax- ies to determine the stellar mass function. These measurements wereusedasinput toour bootstrap analysis. Thecovariance ma- trixofthecombinedshearandstellarmassfunctionmeasurements revealedthatthecross-covariancebetweenthetwoprobesisnegli- gibleandcanbesafelyignored.Thecovariancebetweenthelensing measurementsandthestellarmassfunctionforsmallersubsamples ofGAMAgalaxiesisexpectedtobeevensmallerbecauseoflarger measurement noise.Therefore,wedonotrestrictourselvestothe overlappingareawithKiDS,butusetheentire180deg2ofGAMA areatodeterminethestellarmassfunctiontoimproveourstatistics. Figure 4. Stellar mass function determined using all GAMA galaxies at Wefitthelensingsignalofallbinsandthestellarmassfunc- z < 0.15.Orangeregionsindicatethe68%confidenceintervalfromthe tion simultaneously with the halo model. The best-fit models are halomodelfittothelensingsignalandthestellarmassfunction,linearly shown inFig. 2 and 4, together withthe 1σ model uncertainties. interpolated between thestellar massbins.Thesolidgreenlineindicates Thereducedχ2ofthebest-fitmodelis80/(83 10)=1.1(eight thebestfitmodel.ThestellarmassfunctionfromBaldryetal.(2012),de- − massbinstimestenangularbinsforthelensingsignal,plusthree terminedusingGAMAgalaxiesatz<0.06,isalsoshown. massbinsforthestellarmassfunction),sothehalomodelprovides anappropriatefit.Thelensingsignalofthebest-fitmodelisvirtu- MNRAS000,000–000(2016) Thestellar-to-halomassrelationofGAMAgalaxiesfrom100squaredegreesofKiDSweaklensingdata 9 allyindistinguishablefromthebest-fitmodelofthelensing-onlyfit. shouldenableustoderiverobustandphysicallymeaningful con- Thestellar-to-halomassrelation,however,isbetterconstrained,as straintsonf .Thesubhalomassofsatellitesisnotconstrained conc isshowninFig.3.Therelationisflattertowardsthehighmassend, byour measurements, which iswhywe donot show it inFig.5. as a result of a better constrained satellitefraction that decreases This is not surprising, given that most of our lenses are centrals, withstellarmass(discussedinSect.3.3). and that the lensing signal is fairly noisy at small projected dis- TheconstraintsontheparametersarelistedinTable3.The tancesfromthelens. marginalised posteriors of the pairs of parameters are shown in Fig.5.Thisfigureillustratesthatthemaindegeneraciesinthehalo model occur between the parameters that describe the stellar-to- 3.1 Sensitivitytestsonstellar-to-halomassrelation halo mass relation, and between the parameters that describe the We have performed a number of tests to examine the robustness CSMFofthesatellites.Thesedegeneraciesareexpected,giventhe of our results.For computational reasons, welimitedthenumber functional formsthatweadopted (seeEq.16,17,18).Forexam- of model evaluations to 750000 (instead of 2100000), divided ple, a larger value for Mh,1 would decrease the amplitude of the over two chains. We adopted a maximum value of R = 1.05 in stellar-to-halomassrelation,whichcouldbepartlycompensatedby theGelman-Rubinconvergencetesttoensurethatresultsaresuffi- increasingM∗,0;hencetheseparametersarecorrelated.Similarly, cientlyrobusttoassesspotentialdifferences. increasingb0wouldleadtoahighernormalisationofΦs(M∗|M), First,wetestifincompletenessinourlenssamplecanbiasthe whichcouldbepartlycompensatedbydecreasingb ,hencethese 1 stellar-to-halo mass relation. As GAMA is a flux-limited survey, twoparametersareanti-correlated.Furthermore,bycomparingthe our lens samples miss the faint galaxies at a given stellar mass. marginalisedposteriorstothepriors,weobserve thatall parame- If these galaxies have systematically different halo masses, our tersbutone,β ,areconstrainedbythedata.Wehaveverifiedthat 1 stellar-to-halomassrelationmaybebiased.Tocheckwhetherthis varyingtheprioronβ doesnotimpactourresults.Comparingthe 1 isthecase,weselecteda(nearly)volume-limitedlenssampleusing posteriorsofthecombinedfittotheanalysiswhereweonlyfitthe the methodology of Langeetal. (2015). This method consists of lensingsignalrevealsthatthestellarmassfunctionhelpsbycon- determiningalimitingredshiftforgalaxiesinanarrowstellarmass strainingseveralparameters;thosethatdescribethestellar-to-halo bin,z ,whichisdefinedastheredshiftforwhichatleast90%of massrelationandthosethatdescribethesatelliteCSMF. lim thegalaxiesinthatsamplehavez <z ,withz themaxi- InFig.6,wepresentthestellar-to-halomassrelationofcen- lim max max mumredshiftatwhichagalaxycanbeobservedgivenitsrest-frame tralgalaxiesandtheratioofhalomasstostellarmass.Therelation spectralenergydistributionandgiventhesurveymagnitudelimit. consistsof twoparts. Thisisnot simplyaconsequence of adopt- z isdetermined iterativelyusing only galaxieswithz < z . ing a double power law for this relation inthe halo model, since lim lim Weremovedallgalaxieswithredshiftslargerthanz ( 60%of thefithasthefreedomtoput thepivotmassbelow theminimum lim ∼ thegalaxiesinthefirststellarmassbin,fewerforthehighermass massscaleweprobe,whichwouldeffectivelyresultinfittingasin- gle power law. For M∗ < 5 1010h−2M⊙, the stellar-to-halo bins) and repeated thelensing measurements. Theresulting mea- × surementsareabitnoisier,butdonotdiffersystematically.Wefit massrelationisfairlysteepandthestellarmassincreaseswithhalo ourhalomodeltothislensingsignalandthestellarmassfunction. massasapowerlawofM withanexponent 7..Athigherstellar masses,therelationflattenhsto M0.25.Thera∼tioofthedarkmatter Theresultingstellar-to-halomassrelationbecomesbroaderbyup tostellarmasshasaminimum∼atahhalomassof8 1011h−1M⊙, to20%atthelowmassend,butisfullyconsistentwiththeresult whereM∗c = (1.45 0.32) 1010h−2M⊙ and×thehalomassto showninFig.6.Henceweconcludethatincompletenessofthelens stellar mass ratio ha±s a value×of Mh/M∗ = 56+−1160 [h]. The un- sampWleeishuanvleikaelslyottoesstiegdnitfihecainmtlpyabctiaosfovuarriroeususltass.sumptionsinthe certaintyonthisratioreflectstheerrorsonourmeasurementsand setupofthehalomodel.WegivedetailsofthesetestsinAppendix does not account for theuncertainty of thestellar massestimates B. None of the modifications led to significant differences in the themselves,whicharetypicallyconsiderably smallerthanthebin stellar-to-halomass relation, which shows that our resultsare in- sizesweadoptedandhenceshouldnotaffecttheresultsmuch.The sensitivetotheparticularassumptionsinthehalomodel. locationoftheminimumisimportantforgalaxyformationmodels, asitshowsthattheaccumulationofstellarmassingalaxiesismost efficientatthishalomass. 3.2 Literaturecomparison In the lower left-hand panel of Fig. 6, we also show the in- tegrated stellar mass content of satellite galaxies divided by halo We limit the literature comparison to some of the most re- mass.Inhaloeswithmasses&2 1013h−1M⊙,thetotalamount cent results, referring the reader to extensive comparisons be- × ofstellarmassinsatellitesislargerthanthatinthecentral.More tweenolderworksinLeauthaudetal.(2012);Couponetal.(2015); stellarmassiscontainedinsatellitestowardshigherhalomasses;at Zu&Mandelbaum(2015).Ourmaingoalistoseewhetherourre- 5 1014h−1M⊙ 94%ofthestellarmassisinsatellitegalaxies. sultsareingeneral agreement. In-depthcomparisons betweenre- × ∼ Notethatanotherconsiderablefractionofstellarmassiscontained sultsaregenerallydifficult,duetodifferencesintheanalysis(e.g. inthediffuseintra-clusterlight(uptoseveraltensofpercents,see thedefinitionofmass,choicesinthemodelling)aswellasinthe e.g.Lin&Mohr2004)whichwehavenotaccountedforhere. data(e.g.thecomputationofstellarmasses-note,however,thatthe Thenormalisationofthemass-concentrationrelationisfairly stellarmassesusedintheliteraturestellar-to-halomassrelationswe low,fconc =0.70+−00..1195.Anormalisationlowerthanunitywasan- comparetoareallbasedonaChabrierInitialMassFunction,asare ticipated aswe didnot account for miscentring of centrals inthe ours). halo model. Miscentring distributes small-scale lensing power to Leauthaudetal.(2012)measuredthestellar-to-halomassre- largerscales,aneffectsimilartoloweringtheconcentration.Inour lation of central galaxies by simultaneously fitting the galaxy- fits,itmerelyactsasanuisanceparameter, andshouldnot bein- galaxy lensing signal, the clustering signal and the stellar mass terpretedasconflictingwithnumericalsimulations.Infuturework, function of galaxies in COSMOS. The depth of this survey al- we will include miscentering of centrals in the modelling, which lowed them to measure this relation up to z = 1. In Fig. 6, we MNRAS000,000–000(2016) 10 Edovan Uitertet al. 10(cid:0)✁✂1✄1☎✆✝12✞✟✄✠13 (cid:0)✁1✂0✄☎✆✝11✡✟☎✠12 12 ✦✤✥✜ 11 ✚✢✣✛✜10 ✘✙ 0 4 ☛✄8 12 12 ✛ 8 ✧ 4 0.705 0.00 0.2☛5☞0.50 0.75 0.50 ★ ✧ 0.25 0.00 0.1✌0✍.✎2✏✑0.3 0.4 0.4 0.3 ✪✫✬✭ 0.2 ✩ 0.1 1.2✒0✓.8 0.4 0.4 ✯ 0.8 ✮ 1.2 1.5✔☎0.0 1.5 1.5 0.0 ✜ ✰ 1.5 0.8✔✄1.6 2.4 2.4 1.6 ✛ ✰ 0.8 0.4 ✕✖0✎.8✗✖ 1.2 1.2 ✱✲✫✳✲ 0.8 0.4 10 11 12 13 10 11 120 4 8 12 0.00 0.25 0.50 0.75 0.1 0.2 0.3 0.4 1.2 0.8 0.4 1.5 0.0 1.5 0.8 1.6 2.4 0.4 0.8 1.2 (cid:0)✁✂✄☎✆✝✞✟✄✠ (cid:0)✁✂✄☎✆✝✡✟☎✠ ☛✄ ☛☞ ✌✍✎✏✑ ✒✓ ✔☎ ✔✄ ✕✖✎✗✖ Figure5.Posteriorsofpairsofparameters,marginalisedoverallotherparameters.DimensionsarethesameasinTable3.Solidorangecontoursindicate the1-/2-σconfidenceintervalsofthelensing+SMFfit,whilstthebrowndashedcontoursindicatethe1-/2-σconfidenceintervalsofthelensing-onlyfit.Red crossesindicatethebest-fitsolutionofthecombinedfit.Thepanelsonthediagonalshowthemarginalisedposterioroftheindividualfitparameters,together withthepriors(bluedottedlines).IncludingtheSMFinthefitmainlyhelpstoconstrainthestellar-to-halomassrelationparameters(Eq.16)andαs.The degeneraciesbetweenthestellar-to-halomassrelationparametersandthosethatdescribethesatelliteCSMF(Eq.17,18),followfromthefunctionalformwe adopted. showtheirrelationfortheirlow-redshiftsampleat0.22<z<0.48, (2012) are based on photometric redshifts, which generally in- whichisclosesttoourredshiftrange.Therelationsagreereason- duce asmall Eddington biasin thestellar massestimates, partic- ably well. We infer a slightly larger halo mass at a given stellar ularly at the high-stellar mass end where the stellar mass func- mass, most noticeably at the high mass end. Their Mh/M∗ ratio tion drops exponentially (as illustrated in Fig. 4 in Droryetal. reaches a minimum at a halo mass of 8.6 1011h−1M⊙ witha 2009).Incontrast,thestellarmassesinGAMAarecomputedus- × value of Mh/M∗ =38[h], 1.5σ below the minimum value of ing spectroscopic redshifts, and this bias does not occur. We at- ∼ the ratio we find. A systematic shift in stellar mass may explain temptedvariousshiftsinstellarmassandfoundthatthestellar-to- muchofthedifference.ThestellarmassesusedinLeauthaudetal. halomassrelationsfullyoverlapifwedecreasethestellarmasses MNRAS000,000–000(2016)