Geoderma, 62 ( 1994) 3 1 l-326 311 reiveslE ecneicS ,.V.BmadretsmA ehT etats fo eht tra niscirtemodep re t.eAP ,shguorruB nahoJ bamuoB d ntatoc S.R csetaY ‘Department of Physical Geography, University of Utrecht, Utrecht, The Netherlands ‘USDA/ARS, U.S. Salinity Laboratory, Riverside, Ca., USA ) 3 l9,i 98rn1poAisi vree rtdfeatpe c; c2 ha9,c 99rd1aeMvieceR( ABSTRACT sih Tr ey plsafwpeeiirv beerht etats efgodelw ofnok e hltait a npdlosnaiartoapi mrfeaotv liossa re b,m n e3e pt-gdop1nlh ei essS nnhkcnei rio gdor iraeWtfseW se osdnsmeen iuohsiecdtohsejtiPedr .2991 ehT sreesp s ae,u,pescsr nsthyoic tlide, etpydmasrnac aoani,elshpltpoaot ni smret fotnerruc gnidna tdsnraedn ue hhtcr asecsiepro ttaht ew dlu oghnsi teabgi tnsievni eht txen wef .sraeeryutuF snoi trcoefri deh tyduts fyoti lld iieebosrassaiur cansvii dsmret f oseus sriof l,i yosesevursussriof ,sgenui sln,srslosdoiei eofdt , r ho asydudtmfc elndneoieulaeamnv sacuirsno-mtoiirnmcffpioecffe lacit syitti aloest itlrsnt bbeo oula asef io iiylugol.tbxorliiaaaisataotm d vnvsarnnfeadoAeorfprpuac .dedulcni osla si erawtfos INTRODUCTION ehT eltit fo neehpgtonhisnkergoawW ,”scirtemodeP ,“saw denioc yb-orP reolsAsef x yentarBcM to describe the quantitative study of the variation of dlei f. lhigousoht leAht mret sa hre hgtno inenadaiesmt ulo i,oescneic stisaw ylet ariadeelmcmi ot sltisoist nteaihcts eht drow sah owtstoor : srefoetr pedo dle ilfiosna d srefer ot evitat istenhacuaqorppa htob rofstnemerusaem metric and area1 characterization. “Pedometrics” is also the eponymous title of a gnikr opwuorg fo eht ,S SnSoIisivid ,5 hcihw saw tes pu ot yduts eht-itnauq evita tstcepsa fo eht laitaps dna lar onpomiettairav of dleif .lios li osStsitnei cesvah neeb erawa fo eht melborp fo eht laitaps dnalaropmet variation of field soils since the beginning of the 20th century (Beckett and Webster1,9 71S;m ith1,9 38W;e bster1,9 94)H.o weveriw,tan sou tn titlh e lat1e9 60’asn1 d9 70’tsh afti elsdc ientistbse gatsnot udsyo ivla riatioiann ci t.aymae wtte s nhssyteTetssd isrne deierfutfpe’te wosdlni iosspam nihcihw lios noitairav saw nees sa na emocl eewcnnuasiun taht decuder pam-libailer ity. Gradually the general nature of soil variation, and its unpredictability, have led us to see variability as a key soil attribute rather than a nuisance, tropeR fo eht ”redniojer“ ,noisses ,scirtemodcP ,ncgnincgaW 3-l rebmetpeS 1992. 00 1 607-6 00.70$/49/l 0 4991 reiveslE ecneicS .V.BlA l sthgir .deweser SSDI0016-7061(93)EOO8O-F 312 P.A. BURROUGH ET AL. hguoht dseinhetth gwielinve s iylniatr etcon derahs yy bl,reanlouycrietvreap yb srennal pdn anois iscreedkam ohw hsiw ot esu nloiiotsamro fsnai asisab rof noisi.cgendikam ehT ts ayltn eswrtae yevah nees ysneacmnav dnai eh tyroeht foaitaps l -ats tistics, in technology for handling data and the availability of quantitative atad os taht l iyotsilibaira vsi won hcum re tdtoeobtsred nnuaht ti desu oteb .fc( retsbeW dna ,revilO ;0991 ,bguorruB 991 1 .)a lio Sytilibairav sahneeb the subject of a huge research effort in recent year s ,hguorruB( 199 3 ) . The mia f osriehp tasp ie doitv owafreepi iv ,f reteoeb rngteedah rettfrlsouwconk d estanese rypber ne eh,gtgnniinteegea mWni smretfo )a( eht yroeht fo lait,anpositairav )b( snoitacilppa gnisu noitamrofni tuoba lios,ytilibairav taotvoh(alecis )l able. Wree vietwh espeo intsb,o tfho trh ceu rrensti tuationi,. et.h qeu estioonf “What do we know at presen t ?“ , dna rof eht elbaeeserof ,erutuf .e.itahW“ should we know?“. In this paper we also identify some issues for future investigation. THE CURRENT STATE OF KNOWLEDGE ABOUT SOIL VARIABILITY Theory ehT deen ot ek attnuocca f oy tlialiit ba napgeisnhriwalvl eldioomgsnimrof and environmental processes is now abundantly clear. The phenomenon of lios ytilibairav sah neeb dehcaorppa yb l a,cniorietmeautcnaiifriasvsiatllcum statistical methods, continuous (fuzzy) classification, geostatistics, fractal ,sdo hltaecmita myeghotlaomhprom dna soahc yroeht ,hguorruB( .)3991ehT yroehot f Geostatistics, de ts aatrsobrbiafle y norehtaM ( 791 )1 d nnaeehdtam accessible by Joumel and Huibregts ( ,)8791 av astk sadaanvsaiIrS ( ,)9891 Webster and Oliver ( ,)0991 Cressie ( 19 9 1 ,) Deutsch and Journel ( 1992) and others, has been extremely useful in providing a suitable theoretical krowemarf rof gniyduts l i,oystilibair advna rof gnidivorp a dnuloasciteroeht sisab ro f,noita lloaprruettcnuir tssisylana dna rof eht ngised fo lamitpo-mas gnilp.skrowten Today it is clear that the estimation of the variance of a soil property has little meaning unless it is expressed in terms of the size and kind of spatial estwiamEsax tipwevrtrhdae ei.rlsffc iausoobhatnirre beiom idtnulsssi tt y to georeferenced spatial units. It is also useful to distinguish soil properties htiw dna tuoh tti cwle arecicidntacvaerlp edrna ot eton eht deen otenimreted stpteaahmtnepicd oao rlva alr isatnrcmueuc ltotufir veasr iat e land qualities emso orfhfot single characteristics (e.g. ,OAF.)6791 THE STATE OF THE ART IN PEDOMETRICS 313 Applications Variability studies are now an integral part of soil science. Studies in the tsal ytnewt sraey evah derolpxe eht melborp fo lios ytilibairav morfynam stniop fo ,weiv dna ev adhetal e nreohntemon eo htspmelbor pftoneicilfifoes use (e.g see Bouma, 1989). Soil variability is being linked to the concept of retlhiea isbnoifiololfir tmya tmieoranes:lou ifra ebsi ilnictslytu adtee ments tuoba niatrecnu srotcaf hcus sa laitaps ,ytilibairav atad ,ytilauq gnilacs-caf tors, and simulation models. The reliability/uncertainty issue is becoming man-by used are studies variability when especially important, increasingly tnemega rof noisice.dgnikam Current soil surveys provide some information on the internal variability gf nositpip natumub ew od to nweohntkehw r characteristics permanent soil evah )erutxet .g.e( withdiinf fereonctc ur- characteristic spatial structures rences or delineations of the same soil series. Many soil properties are not constant (e.g. level of nutrients, moisture, bulk density) and their spatial structures are also a function of time and process. Also, if a mapped unit is detaer ts usoaeneg onm ioghn isksa eme c-h,ont.roepi.sii(c erdof dnuorrgetaw as-the coannsdi derabbel e ramvmiuaflyian cseatsrtheaiesbo sinmlsei ntty) , tnemss eysam eybls.udoeiwraelsf erehT si won a daor bsusnesno c etvai htstattneermpe rtdeaettvnsiiredmorf lios spam deen ot edulcni nnaois sle ar.np yoxftieoit lnlieibvoansiolCesrpam are increasingly being supported with information about the variability of deppam stinu dna ytilau qlortnoc ni lios yevrus si gnimoc eebnituor sa-pam gnip sdohtem emoceb erom detamotua .g.e( ,tgerB.)9891 evitatitnauQ atad no lios ytilibairav era derots ni lacihpnaorigtoaemgrofni :smetsys yeht era desu rof gnippam dna rof gnisimitpo lios yevrus,tgerB( 1989; Burrough , .)a1991 Digital databases and improved methods for data noitcelloc dn alacitsit astissoyelgana naem taht deliated seiduts fo lios-airav bilitaynt dhc eo nsequencetsh ereocfae na silbmyea deT.hc eo ntributioonf soil variability to (a) errors in maps, (b) uncertainty in the results of quan- evitatit sledom fo epac s,dsneaslsecorp dna )c( eht ytilibailer fo dnal-aulave noit seiduts nac eb detamitse dna syevrus nac eb d.eyzligmniitdproocechaT deen ot ekat tnuocca fo lyatiitlaipbsa inrea hvgwnilled olmi onsoitamrofdna , sleast snheeccmuonsropri vsnae ffonu rdna l inoosiso reeD( ooR te ,.la)2991 si wo nyltnadn.urbaaelc Tools eh Tnoitacilbup fo elgni sretup msomcargorp rof gnisyl alnaaita-plsibairav yti .g.e(i n has been complemented and im- Computers and Geosciences) proved upon by the provision of theoretical texts (Journel and Huijbregts, 197W8e;b staeOnrld i ve1r9,9 C0r;e ssi1e9,9 O1l;e 1a9,9 a1tbn)hyd e -ed 314 P.A. BURROUGH ET AL. velopment of software packages for statistics and geostatistics (see Appen- .)xid ,paehC lufrewop lanosrep sretupmoc evah edam scitsitatsoegelbaliava otnam y people dna edveathalum ieths tgnihcaet fo eht sdohtem ni-isrevinu seit ot lios ,stsitnei clsacis y,hsprehpa rsgtoseiggoloeg dna .stsigolordyhehT metsys noitamrofni lacihpargoeg fo ytilibaliava s )SIG( asnod ii nlf ormation smetsys )SIS( rof gnirots lios atad ni latigid ,mrof rof gnippam dna rof-etni gnitarg lios atad h tniowitamrofn ino rehto stcepsa fo ehtnemnorivne t -ruB( ,hguor 991 1 )b sdaehtalu mkirtosw no eh tsmelbor pdna e hltacit-cialrpppa snoitac fo yltiiolsi b.agi.rea(v xkO dn a,srepiuK91 9 I). While tools in data analysis have improved, and laboratory methods of chemical analysis have become more automated, there have been relatively we fsecnavda ni eht dniopiatrcell ofco atad ni eht .gdnlieticfe llliooCs-mas selp si llits evisnepxe dna emit ,gnimusno chguoht secnavda ni-atnemurtsni tpieornrm aiptri edp,r oducimbelaes uremmpaoehnfnyy ts ipcraolp ertoifes eht lios r e.gga.ret(nel lden ha,ceSlttiloo D991.)1 ACTION FOR IMPROVING KNOWLEDGE ABOUT SOIL VARIABILITY Theory haveprobably we area, research popular a remains geostatistics Although sufficient theory for many practical purposes in soil science. However, the elor fo lios gn ismersosfecorp n ignitare nlyeitgoislibair anvi ecaps dnaemit is still generally only understood in qualitative terms. There is little under- gnidnat sfo woh li ogssneismsreoc fonrapc tluser ni eh tsuoi rsadvnik fo-aps tviaarli aFtsiihigoonnw n . 1. Mosst tu dsioovefias lr iabilihtabyve ee n post i.e. unknown patterns of distribution are sampled in an attempt to map hoc, the true variation by interpolation rather than by predicting the spatial or lar onpomiettubirtsi dmorf a la cginsiydhnpatsrednu fo lios gnimrof dnalios chanpgrioencqgefuh seTiyaswthvdre heareserlo t. eelo no tgrsiuo cnraolf f reta wldenduoomrg ni l i,oescnei cds nhacraese rni siht aera si,dedeen hguohtlA yllaicifrepus ,evitatitnauq ynam fo eht erom decnavda -pa proaches to gnilledom lios ytilibairav hcus(a s slatcarf and chaos theory - ,hgu o)r3r9u9B1 era ero me v yi:lteupvr iitnrtacphsit ertdciserp yamreven . e.g. e lebbi sost o ypylat scwaoxhe a n nryeetvt iitfl gao inplbicia ioiyfsrniaacveps aera stluser morf a ralucitra ptes fo rae.nsiels-sneocnorp litnU now, s naicirt eemvoadhep diap tso mnoitnetta ot eht melborp fo-aps tial variation. The time component is rarely included in geostatistical anal- yses. Typically, the scientist is confronted either with spatially rich/tempo- yllar roop ro yllaropmet yllaitaps/hcir roop .atad A a consequence, only S limited use can be made of the data. There is a lack of suitable theory for describitvnhager iabiliity n time ocfr iticaslo iplr opertiessu camhso isture dna cinagr orett a.mtnetnoc roF eht l alcaictispiyt taattsaodegtes , -rec supply 315 THE STATE OF THE ART IN PEDOMETRICS al - X )b X 1Z .-;-:.-. c X X cl dJ X n X e/ .giF .1 lacitehtopyH sledom fo suoirav smrof foaitaps l noitairav tahtac n rucco ni .lios)a( dezilaedI suonegomoh noitairav nihtiw pam stinu gnivah prahs seiradnuob taht era netfodesu ot etamixorppa emos fo eht gniwollof laer sdnik .noitairavfo )b( suounitnoC htooms,noitairav lacipyt fo emos .smrofdnal )c( tinu-nihtiW noitairav rellams naht neewteb tinu noitairav sanac rucco nehw lios noitairav si detanimod yb secnereffid ni suoenegomoh lacigoloeg .stinu)d( suounitnoC htooms noitairav htiw lacol esion taht si nommoc rof ynam lacigolordyhseitreporp hcus sa retawdnuorg .slevel )e( yranoitats-noN noitairav gnidulcni a dnert ( 1), tpurbaegnahc )2( dna regralaht n egareva tinu-nihtiw noitairav )3( taht srucco htiw ynam lios .setubirtta)f( noitairaV erehw trohs egnar stceffe hcus sa laicalgirep features ro lacol slevel fo lisotsnatullop nac pmaws lla rehto.slangis tain question s nac eb derewsna ,tub fi eht etubirtta segnahc revo ,emit a lluf elacs gnilpmas troffe si deriuqer ot etadpu eht .noitamrofni kroW nolaropmet noitairav fo lios lliw ylbaborp eriuqer noitaroballoc htiw stsitneics ni rehto senilpicsid hcus sa ygoloroetem dna.ygolordyh nI etips fo a eguh hcraeser ,erutareti legdelwonkuoba t soil ytilibairav sillits 316 P.A. BURROUGH ET AL. dispersed and not organized in such a way that there is a general theory or elur esa b g .nryiott ficelliriideobehsarTip rsaiv a deen oetzina gdrnoa-etsys e zeig tdra eumy lotnwiool n ilknbiiao ishrcauvs a ya wt ashrtes ufo l-iroosfni mation unskilled in geostatistics and modelling can make the best possible sno i ssrnieocdien tdu.iyd tnfnooic aetcrneOcn u eehgtdelw osnakh neeb-htag dere ,ddneazi nnaeghrto ti yam e belbisne sot esu tr espmxeetsys ot pleheht res uesoohc woh tseb ot lae.dy thntiiawtrecnu For regional, continental and global studies we face the problem that the spatial resolution of the application is often quite different from the spatial noituloser ro( eht )troppus fo eht sno ietvaivtraetsnbeos e,rspeelri(forptniop .e,)sssuenalocp demteBaips si nwo nytktaih ltli ibsoais inrea tvefgnoriahltiw spatial units, such as soil associations used for regional studies, we need to ask if it is sensible to use point data and detailed models to make regional estimates of attributes such as expected crop yields (Bregt and Beemster, .)9891 roF saera hcihw osla evah lios spam ta regral selacs ti yam eberom s ts i e .neftr nu roa oei-eemef labghihdbrua Wtteirsros tseeteehntvkgeaaismew avakianlloalwb lulesende eg ceteosb sea wriyl l ite ximsastpc lsaa lreg en o ylb idsestoapl(uspacne ni na trepxe )metsys dna diova oduesp.ycarucca Applications Futuarpep licatiokonnfso wledsogofevi alr iabiliwtimyiblo neln itoring (determining derived variables using pedo-transfer functions, remote sen- sing, etc.), for predicting values of attributes that are too expensive to mea- sduirreec camotnerblna eyos tud rierde cetfanlonvyrdi, r onmenta l -lledom .gni ehT tsal y lstrinaalturcoiptmr iaspa yethntiatre cnniu led osmtluseryam netfo eb eud ylegral ot s eeihttn idaetsrueaccnu yb laitaps dna laropme-tirav abilibitonytt dhhae at tnamhd oe d pealr amete(rBso um1a9,8 H9e;u velink te ,.la.)9891 yyntaiMl isbeaiidruatvs era edam ni alac i,gtoxleotdne opecrehw lios-ed snoitpi recrsa desab no cs in.toseinntoeaz gcihirclouphspA sa dnnoailtaulave studiessh ouladl scoo nsidetrh kei ndosvf a riatiotnh aatr ien ducewdi thian nevig epyt fo lios yb lios .tnemeganam tnereffiD sepyt fo tnemeganamnac netf oevah a ro jtacmapmi no , rleuisoouisav cayehebe hbttcef felariuotscurts ro eht tnetnoc fo cina g.rroettam nI gniydut s,l yistotissliitbnadeilirucaosvhs be more aware of this phenomenon and Stratification of soil data by land tnemeganam rehtar naht yb lios epyt yam yllanoisacco eb elbatiforp,surB( .)499 1s i sheeTlspimsaa xheephmte deen rof a l asciistyilracn afo eht-marap yduts deilppa fo epyt ralucitrap yna rof tnaveler tsom era taht atad dna srete .g.e( ,amuoB.)2991 noi tganliulmlieSdom syilgnisa egrncineib desu reovfitatit ndanuaql-lave .noitau retaW dna etulo swolf si ydlelbaiu rsccuist e sndsiilneidmormeteydb eht drahciR/ycraD noita uhyqcleit hiswceimlups mssialios otb e -enegomoh EHTTATS E EHT FO TRA NISCIRTEMODEP 317 dn a.ciporto stisoM dleif slios era r eshutoieennegom orhon ciportosidna ous contain either contrasting soil horizons or macropores, such as cracks in swelling soils and biopores in biologically active soils. Because many land ,seitilauq hcus sa erutsi oymtilibaliava ro ,ytilibaciffart era dessessa ybgnisu noitalu msiesiduts taht ylticilp meimussa eht lios ot eb ,suoenegsotmlouhser yam . genbi deareelhsTim si osla a ksir taht eg rlaalitaps r ol-alriobpamiertav yti ni eht cis asbci tlsiiorset cfaor a,hecru tcxientag rroettam dna klub,ytisned which are used as model inputs, may give incorrect assessments (Bouma, 991 .)1 f Inoita lsulmeidsom era os evitisnes o tsnoitaira vni tupni atad saot yield unreliable results then their relevance and usefulness should be ques- tioned. The interplay between soil variability and the sensitivity of mathe- val-parameter and data in variatteimopnosr al and spatial to modelsm atical ues should lead to the development of robuster models and to an improved understanding of the limitations of current linear modeiling (De Roo et al., 1992). erutuF snoitacilppa ni erutlucirga dna latnemno rtinvenmeeganam lliw-er quire detailed knowledge of soil variability in both space and time. For ex- ,el psmraezilitref nac eb deilppa er o,myltneicif fhetiw decsuedcenreuqesnoc to the environment if the application to a crop can take account of levels of rezilitref taht era ydaerla ni eht lios .g.e( ,ekniF .)3991 noitagirrI retawnac osla eb deilppa ni caificeps -,eytaiws yb enro eightntairduitoavsa -rroevo-ni fertila-pply whdiecvhe lopbeede n haves yPsrtoetmowsstau ytfpeferi .c ient srezi ot sdlei fg n sirdrseeoutltula pochmricotlicnphopwca era dediug yb-gid ital maps of the field variability. However, it is still unclear how well these systems protect ground water from contamination. Data on soil variability lliw eb desu ot eetcanre edsnilefegnvoecl no slneodiotmc itdaehrtp eradesu yb srennalp dna noisi c.esdrekam ehT esu fo sledom dlnaacihpa-rrgoofengi mastyisoivtstnnahoe craimodlitlnsaua tdbaeia w ldliiilltfolyfw e lraenndt es usoiranecs ot eb .dyelreavpimtocceffe Tools scitsita tssaoheG devorp ot eb a yrev lufesu loot rgonfiyfit nlaiuoqs-airav bility, though its use has raised many questions about numbers of samples, -citrap erehw dna nehw dna ,atad yfitarts ot woh ,margoirav a ledom ot woh ral useuqinhcet era t s.oemtairpo repspeahT seussi deen ot eb desserddadna toolnse etdbom e a daev ailablteh apte rmiuts ertseo x plorteh esqeu estions .y lsidsoahet eyM rfoota raotlaipdsxyelana s )ADE( l inkedt o -wodniwitlum ing statistical programs on microcomputers (e.g . ,.la te ttelsaH REGARD - )0991 wolla eht resu ot erolpx ex eeltpamiorcavit lautmad stes ylisae dnaot remoovuet liseotrrrs a ncgleu sterTwwshaih.eyni s c h ADE tsissa nac -soeg lacitsitat sesylana deen ot eb .rdeehttarguiftsevni ethnTempo lleav c efiedotrsaiwttaftoss oreogf gniwol lsaresu ot krowhtiw 318 P.A. BURROUGH ET AL. g.e( atad evitatilauq . Bierkens aBnud r roug1h9,9 qo3ur)a ntitatidvaeait na probabilistic way (e.g. Yates and Yates, 1988; Deutsch and Journel, 1992) sdee n o.t dselg oaeeorbkTuiolcAnDeA M (ni lesseW g , kdnnialev9u1eH 9 )1 for analysing how errors in data affect the results of environmental models need to be made widely available. In the United States, a recent National ymedacA fo e ecdenetentiricem Scmhnoto Cicswdohte m rgonfisdsneusosrag yt irdleeitsbasawerretn sleuhvt deen rof sdoht ehmcihw dle isytluser ni-borp citsili b.asmret nI eh ts’eett inmomioncipo ylno siht epyt fo noitamrofnliliw elb aenseu -sdrneaglanam ot eka md e,m srynoloflinasiiicceepds eni eht-serp ecne . yfto nsidaothrte echMncuihw od t osne ietdiilvio bryapabmordpaelsim eht resu ot nginiveile beht ledom tuptuo si.niatrec eh Tg nn iiklacbmomlubt so t rseetitdeub t fsyoti llii bosasiir akvcal fo.atad Methondesdbte eeodv elopfegodar t herignogdo adqt uai cklaylin,and r ge amounts. There is a need to integrate modem remote sensing systems with geographicianlf ormatisoyns teptmroso viddaewbt ieaatt htr eers olutiionn space and time than is now usually possible. Geoelectrical and geophysical smets yhscus rs eagg nadir nt t ,uarndeoraenlrtdlatgealtnreiehlpco9So1(D 9 )1 or electro-magnetic measurements (e.g. Brus et al., 1992) may be useful in emos.secnatsmucric tI si ygl ngtinnmiaostcareeobrpcmni iot wonk eht ltaccaixhepa-ragcooelg stoooibifosl ne rvatoirrioetdnnloe sta ra ht ceecm u raltatenold ys cfaepae- serut hcus sa ,y g,omlrooefgd nlaalcol feiler d n.ay gdolleohr-ddlynahabHolg gninoi tsimseotpsys )SPG( taht ev ineocietramrof nmiorf a krowten foecaps setille tearsa gnimoc otni esu rof.siht ,slooT hcus sa tre p,xsemetsy sdeen ot eb depoleved ot edivor psresuhtiw up-to-date information on how to tackle soil variability and how it affects issues such as crop yield estimation, environmental management etc. A re- tn eeclpmaxe fo a luf etsrue pmxeetsys si ALES ,retissoR( .)9891 NOISSUCSID DNA :SNOISULCNOC EHT TNATROPMISEUSSI Issues for soil survey Current soil surveys provide some information on the internal variability fo gnip psatminu tub ew od ton wonkehtehw r lios scitsiretcarahc permanent .g.e( )erutxet evah within different occur- characteristic spatial structures secner rsonoitaenil efdo eht emas lios .seires etoN taht ynam liosseitreporp anrpoeet r mane(nntu trientmso,i sturbeu,dl ekn sitaytn)hd e sipra tisatlr uc- serut era osla anoitcn uffo emit d.nsas eecroerhpT si a deen rofc iatametsys spatial variability analysis of permanent properties in multiple delineations fO lios.seires tA mraf ,level lyitoislibair asvi won gdneiteebrpret nnii smret fo-anretla sa e y r ttf atenios-n vel mbesirirgr umit e bono.seaffafifdgfoielairbendaiaVfm THE STATE OF THE ART IN PEDOMETRICS 319 seen as a key attribute rather than just a nuisance. So far, attention has been focused on soil fertility but moisture supply, egallit practices, planting and seeding, and biocide applications will follow. We need to be able to define evi tsceerjubdoecorp rof gnin isfaeedra-b unsihtiw sdleif taht tca saylevitaler homogeneous management units. There is a need for procedures to assist noitacifita rytbs 1aera yevrus ro yb etome r.gn insonietsalu msilSedomdluoc be used to define variability over time when the underlying physics of the system is known. Other methods are needed for defining the time-rate of egnahc ni lyitoislibai rr aosvfeitre peorrephw eht scisyhp si ylegrnawlonknu or misunderstood. Inclusions of different soil types in a mapped unit may esuac e ryetvneisatre cnn eugh nweitnaiimrrpeotre pdspeasu rof .dnal roF-xe ,elpma n,ade tdreodpuelrcnnu ilios ,epyt neve fi t istneserper a llamsnoitrop fo eht ,latot nac g neibtats aovte ddnuo rrge tyatwilauq fi seehittrep ofropeht included soil enhance transport. These impurities are similar to fractures or rehto larutcurts .serutaef sdohteM rof ,gnitae nginliezdiretcarahc dna-troper gni si hntoitamrofn iera.dedeen For regional, continental and global studies we face the problem that the laita pnsoituloser fo eht noitacilppa si etiuq tnereffid morf eht laitaps-uloser tion of the observations (representative profiles, point samples, pedons). When soil variability is known to be large within the spatial units used for lan osiegiedruts ti s iyrassece not wonk woh oetsila rtennieogp atadof r -om delling potential crop yields and other difficult to measure properties. For saera htiw lios spam ta regral ,selacs dnuos sdohtem rof gnliaknaomitroporp s e detregaotamhrigetoivseaew f yt rseepuolrap vsrtoifnu -ebru.asdedeen soil erehW o nre gerlaa lcssp atmsixe ew tsum es uged lelbllawaloinakva e -issop( y ldbetaluspacn eni na trepxe )metsys dna diova oduespycarucca . since Also ,ssmees ls,b esodcnr nooprariupsciccoe dt as u, ossiedrloaahvct seemradedeen which operate at these scales, that translate information from one scale to rehtona dna edivorp e hyttniatrecn ufo gniod.os Issues for modelling Because of the effect of weather on soil behaviour, temporal variation is also very important. We can model processes retrospectively and can cali- brate and “validate” (or quasi-validate) the models. For land management and planning we need to predict future conditions for alternative land use .soirane ctsI lliw e blaitness eot wonk fi laer e mginti ldleekdcoemhc yblaer em igtnirotino mdna muidem mret reh tsateswacerof si lufesu dn.aelbadroffa It is necessary to know how the probable, large inaccuracies of long-term weather forecasts can affect model predictions and therefore to know how accurately soil characteristics must be measured or defined given the likely egral laropmet dna lai tyatpislibairav fo rehtaew dna .etamilc ehTnoitcaretni fo suo idreatevaslseercorp s sdeen ot deobotsre dfn i uegtnairlulcecldaloimw 320 P.A. BURROUGH ET AL. reve eb .deveihca sihT semoceb erom tnatropmi sa seid ustssapmocnreegral saera .g.e( eht labolg.)elacs It is important to determine the uncertainty in the data as well as in the predictive methods. Resource managers are quite dismayed at the current slevel yfton itanterseecrnpu n ign i.lslterdoofmfe feIcned isfdnnoacb eraoot large, then the methods are not helpful for practical decisions, regardless of detail. As the size of the area to be managed increases, simpler approaches mbaeyc ommouersn eeie faiscunt eld sad sbbteatelotro e ey r mitanhpee- etairpor plevel fo liated fo sledom dna gn intoriotpapmursofn irof ynanevig .esu tI sme eys lleak cisi ldttosahih tttdealmtusooceg eb desu oetnimreteehdt leve ly tfioxelp maoc l e sddsolam upnomehovscing eeht level fo liated foeht elbaliava .noitamrofni Predicting soil attributes using a digital elevation model and terrain anal- sesy yam evah y ns antmoniattarcoip fmrii omefavr igtnciildle,erydpnonmeJ( 491 691,1 .)1 si hhTcaor ptphagim eb dias ot ” y gtenibiltiecbciandiiersrapv“ the aim is to predict the spatial distribution of soil attributes from easy to obtain, nondestructive, non-soil, high resolution data. If this type of an ap- hcaorp nac ec ued tosarerptuacmciats efo eht naem dn aecnairav fo eht-birtta ptarrtetsutdhulpauinemrbyritcenofe oneta da c-,irmecoe v alefseyl s iensg elba ni ) yelhetvi traalee nr,(eru thugf usophitllihP (891 9 ) sdaehnr afwoeht smelborp taht ytiraenil-non yam.gnirb Issues for methods and procedures weN sdohte mhcihw e cnuo di,eteracmn iaetirsrieauvqe rrewe fselpmasdna nac esu ”tf onso“itamro fdnliuohs eb .degaru oscdnoehteM dluohs eb-leved depo hcihw wo lnloaitamitse ni htob eht laitaps dna laropm entiamod-lumis taneously. Methods should be developed that provide probability informa- noit lufesu rof melbo r.pgnivlos weN sdohtem rof gnilpu olcaiyttaiplsibairav ot sledo mdluohs eb.depoleved One serious problem is the need for more and better data. A systematic, deliated laitaps sisylana fo tnenamrep lsicoistsiretc adrlauhocw eb ,laeditub yam ton .elbacitc aorTp od os dl ueorwiuqer ngeanviinsinae rtrtxoee(rwen )gnirih fo lios yevr ulsennosrep dna eht tsoc g nfiotagi tdseepvpnaimerslios polibteias cbnctaaocalstettmli plih(ayctesHeiy aato . bsiwealtce.te sv, . e r, naem d n)aecnaira vfo scit s eidhrlteutoccara hecb dei ldpapeutssni fo aegnar thdeeterminet oi mportanti s it Also,v a“ltuyep.i cal” a or val“uleisk ely” of uncertaintitdhnyae wat esatial phnslre e dictimveet hodRse.s ourmcaen - sr eygaa mton e belb ao ts deto saheuhtvt eaomh ohtgi.hy talneiva etflroecnu efc Ind enedahib tfsnio co,oe tgnre ah sltedho thetrea mtlounf ergsonufikam practical decisions, regardless of their level of sophistication. Methods are dedeen oetnim ree tteaehi dtrlpeovreplpa fo liated rof sledom gdnniatroppus noitamrofni ot eveihca ralucitrap.slaog
Description: