ebook img

The star formation rates of active galactic nuclei host galaxies PDF

0.44 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The star formation rates of active galactic nuclei host galaxies

Mon.Not.R.Astron.Soc.000,000–000(0000) Printed14January2016 (MNLATEXstylefilev2.2) The star formation rates of active galactic nuclei host galaxies. Sara L. Ellison1, Hossen Teimoorinia1, David J. Rosario2, J. Trevor Mendel2 1DepartmentofPhysics&Astronomy,UniversityofVictoria,FinnertyRoad,Victoria,BritishColumbia,V8P1A1,Canada. 2Max-Planck-InstitutfurExtraterrestrischePhysik,Giessenbachstrasse,D-85748Garching,Germany. 6 1 14January2016 0 2 n ABSTRACT a Using artificial neural network (ANN) predictions of total infra-red luminosities (L ), we J IR compare the host galaxy star formation rates (SFRs) of ∼ 21,000 optically selected active 3 galactic nuclei (AGN), 466 low excitation radio galaxies (LERGs) and 721 mid-IR selected 1 AGN. SFR offsets (∆ SFR) relative to a sample of star-forming ‘main sequence’ galaxies (matchedinM ,zandlocalenvironment)arecomputedfortheAGNhosts.Opticallyselected ] (cid:63) A AGNexhibitawiderangeof∆SFR,withadistributionskewedtolowSFRsandamedian∆ SFR=−0.06dex.TheLERGshaveSFRsthatareshiftedtoevenlowervalueswithamedian G ∆ SFR = −0.5 dex. In contrast, mid-IR selected AGN have, on average, SFRs enhanced by h. a factor ∼ 1.5. We interpret the different distributions of ∆ SFR amongst the different AGN p classes in the context of the relative contribution of triggering by galaxy mergers. Whereas - theLERGsarepredominantlyfuelledthroughlowaccretionratesecularprocesseswhichare o notaccompaniedbyenhancementsinSFR,mergers,whichcansimultaneouslyboostSFRs, r t mostfrequentlyleadtopowerful,obscuredAGN. s a Keywords: galaxies:active,galaxies:Seyfert,galaxies:interactions [ 1 v 9 1 INTRODUCTION magneticspectrumfromtheX-rayandopticaltothemid-infrared 4 (IR) and radio (e.g. see Alexander & Hickox 2012 for a review). 3 3 Nuclearactivityisprevalentinstarforminggalaxies,indicatingthat AGN selected at different wavelengths can exhibit very different 0 a ready supply of matter for the production of stars is linked to properties in their accretion rates, environments and host galaxy . thefuellingofactivegalacticnuclei(AGN).However,thelevelof properties(e.g.Kauffmannetal.2003;Tasseetal.2008;Hickox 1 star formation in AGN hosts, relative to galaxies that do not ex- etal.2009;Smolcic2009;Best&Heckman2012).Thedifferent 0 hibitsignsofnuclearactivity,iscontentious.StudiesofAGNhost techniquesusedinstudiesofdifferentAGNsamplesmakesitdif- 6 1 galaxies have variously shown that they exhibit elevated (Silver- ficult to fairly compare the SFRs throughout the AGN family. A : man et al. 2009; Santini et al. 2012; Juneau et al. 2013; Rosario more complete understanding of the SFRs in AGN therefore re- v etal.2015;Magliocchettietal.2016),normal(Hatziminaoglouet quires both large, sensitive samples for which the distribution of i X al. 2010; Harrison et al. 2012; Rosario et al. 2013; Stanley et al. SFRs can be fully parametrized, and a homogeneous comparison 2015;Xuetal.2015;Lanzuisietal.2015)orsuppressed(Salimet betweenmulti-wavelengthselectedAGN. r a al.2007;Mullaneyetal.2012;Hardcastleetal.2013;Gurkanet Oneofthefundamentalchallengesinthepursuitofahomo- al.2015;Shimizuetal.2015;Leslieetal.2016)levelsofstarfor- geneous, multi-wavelength assessment of star formation in AGN mation,eitherthrough‘direct’measuresofthestarformationrate, isthelackoflargesampleswithuniformlyandrobustlymeasured SFR,orindirectlythroughgalaxycolour. SFRs.SincetheAGNitself‘contaminates’theopticalrecombina- Atleastpartoftheapparenttensionintheliteraturemaybeas- tion lines that are commonly used to calibrate SFRs, these stud- sociatedwithobservationalmethodsandbiasesinthedata.Forex- ieshavehadtoadoptalternativemethodstodeterminetheSFRs. ample,sincestarformationrateisknowntocorrelatecloselywith Twocommonapproacheshaveemergedinrecentyears.Thefirst stellarmass,andAGNtendbemoreprevalentinhighermassgalax- methodappliestheanti-correlationofD4000andspecificSFRmea- ies,asimplecomparisonofAGNandnon-AGNwillbebiasedto- sured in star-forming galaxies (e.g. Brinchmann et al. 2004) and wards high SFRs in the former. Comparing SFRs at fixed M is assumes that the same anti-correlation applies in AGN. The ad- (cid:63) therefore essential (e.g. Shimizu et al. 2015; Leslie et al. 2016). vantageoftheD4000 SFRcalibrationisthatitisreadilyappliedto Somedisagreementbetweenstudiesmayalsoariseduetotheneed galaxieswithopticalspectroscopy,andSFRscanhencebedeter- to either stack or average the data in small samples (Mullaney et minedforlargenumbersoflocalAGNhosts,suchasthoseinthe al.2015).Furthermore,thenatureofstarformationinAGNmay SDSS.ThemaindisadvantageoftheD4000techniqueisthatitsun- evolveasafunctionofredshift(Magliocchettietal.2015).Amore certaintiesarerelativelylarge(Rosarioetal.2016). subtle point is that AGN may be selected over a broad range of MorerobustSFRsforlocalAGNmaybedeterminedfromfar luminositiesandviaanumberofdiagnostics,spanningtheelectro- IRluminositieswhicharegenerallyconsideredtobelesscontam- (cid:13)c 0000RAS 2 Ellisonetal. inatedbyAGNthanothertracers(e.g.Netzeretal.2007;Buatet from the SDSS for star-forming galaxies. In this paper, we addi- al.2010;Hatziminaoglouetal.2010;Mullaneyetal.2011).How- tionallyutilizetheL valuesoftheEllisonetal.(2016)catalogto IR ever,theuseofIRSFRdiagnosticstowidelycharacterizethelo- determineSFRsforAGNhostgalaxies;indeed,L SFRsareused IR cal galaxy population has so far been relatively limited. Until re- throughout this paper, for both star-forming and AGN dominated cently, the main resource for large area studies of galactic IR lu- galaxies,unlessotherwisestated.Throughoutthispaperwerequire minositiesweretheallskysurveysperformedbytheInfraredAs- σ (the uncertainty on the ANN predicted L ) to be less than ANN IR tronomical Satellite (IRAS) (Neugebauer et al. 1984) and AKARI 0.1dex(247,137galaxeis)andconvertL toSFRusingequation IR (Murakamietal.2007).However,thesesurveyssufferfrompoor 1. angularresolutionandshallowsensitivity,leadingtoproblemsin InordertocomparetheSFRsofAGNtothoseofstar-forming confusionanddetectionofonlythehighestSFRgalaxies.TheHer- (non-AGN)galaxies,wedefinetheSFRoffset(∆SFR)ofagiven schelSpaceObservatory(hereafter,simplyHerschel,Pilbrattetal. galaxy(SFR )relativetoasetofcomparisonstarforming(asde- gal 2010),hasrecentlyprovidedasignificantstepforwardintermsof finedbyKauffmannetal.2003andwithS/N>3)galaxiesthatare bothangularresolutionandsensitivity.Severallargesurveyshave matchedinstellarmass,redshiftandlocalgalaxydensity(environ- beenperformedwithHerschel,suchastheHerschelMulti-Tiered ment), also selected from the SDSS. Local density is defined as Extragalactic Survey (HerMES, Oliver et al. 2012) and the Her- Σ = 5 ,whered istheprojecteddistanceinMpctothe5thnear- 5 πd2 5 schelStripe82survey(Vieroetal.2014).However,eventhelargest estneig5hbourwithin±1000kms−1.Normalizeddensities,δ ,are 5 oftheHerschelextra-galacticsurveys,theHerschelAstrophysical computedrelativetothemedianΣ withinaredshiftslice±0.01. 5 TerahertzLargeAreaSurvey(H-ATLAS,Ealesetal.2010),cov- Thebaselinetoleranceusedformatchingis0.1dexinM ,0.005 eredonly∼550deg2,whichismuchsmallerthantheareascov- (cid:63) inzand0.1dexinδ .Werequireatleast5comparisongalaxiesin 5 eredbyopticalspectroscopicsurveyssuchastheSDSS.Therefore, thematchedsample;ifthisisnotachievedthenthemass,redshift asignificantchallengeinstudyingtheSFRsofAGNhasbeenas- andlocaldensitytolerancesaregrowninfurtherincrementsof0.1 semblingsamplesthatarebothlarge,andforwhichrobust(e.g.IR) dex,0.005and0.1dexrespectively,untiltheminimumsizecrite- SFRsareavailable.Largesamplesarevitalforthemeasurementof rionof5ismet.TheSFRofthecomparisonstarformingsample SFRdistributions,ratherthanbinnedaverageswhichcanbedomi- (SFR ) is taken as the median of the matched control sample. comp natedbyoutliers(Mullaneyetal.2015).InEllisonetal.(2016)we TheSFRoffsetisthendefinedas: presented a catalog of ∼ 330,000 infra-red luminosities (L ) for IR galaxiesintheSDSS,derivedbyartificialneuralnetwork(ANN) ∆SFR=logSFRgal−logSFRcomp. (2) techniques.Inthecurrentwork,weusetheL catalogofEllison IR etal.(2016)toexploretheSFRsofAGNinthelocalUniverse. 3 RESULTS 3.1 OpticallyselectedAGN 2 METHODOLOGY Baldwin,Phillips&Terlevich(1981)pioneeredtheuseofemission lineratiostodistinguishgalaxiesdominatedbyvariousphotoion- Full details of the L determinations used in this work are pro- IR izing processes. Diagnostics separating star-forming from AGN vided in Ellison et al. (2016); only a brief summary is presented dominated galaxies are now commonly referred to as ‘BPT’ dia- here.TheHerschelStripe82Survey(Vieroetal.2014)coversato- grams, in reference to these authors. In this paper, we make use talof79deg2inanequatorialstripoftheSDSSfootprint.Rosario of three of the most commonly used diagnostics which incorpo- etal.(2016)cross-matchedthe250µmdetectedgalaxiesfromHer- ratetheratiosof[NII]/Hαand[OIII]/Hβ,byKewleyetal.(2001), schelwiththeSDSSDR7MainGalaxySamplewhoseextinction Kauffmannetal.(2003)andStasinskaetal.(2006),hereafterK01, correctedPetrosianr-bandmagnitudesarebrighterthan17.77and K03andS06respectively.S06identifiesgalaxieswithevenasmall whoseredshiftsareintherange0.04<z<0.15,usingapositional AGNcontribution.K03isslightlymorerelaxedinitsselectionof matchingtoleranceof5arcsecs.TheHerschel-SDSSmatchedcata- AGNbutstillincludesgalaxiesthatarecompositesofstarforma- logcontains3319galaxies,whichwerefurthercross-matchedwith tionandAGN.AGNidentifiedbyK01arethosedominatedbythe theWideFieldIRSkyExplorer(WISE,Wrightetal.2010)catalog AGN. to yield photometry spanning the mid- to far-IR. Infra-red lumi- We begin our analysis with a single definition of ‘AGN’, nosities were derived by Rosario et al. (2016) by fitting the mid- adoptingK03asourfiducialclassification(althoughourresultsare and far-IR photometry with the spectral energy distribution tem- qualitativelysimilarwithanyofthe3diagnostics),withaS/N>5 plates of Dale & Helou (2002). AGN are expected to contribute requirement to minimize the contribution by Low Ionization Nu- negligibly to the L of this sample (see Rosario et al. 2016 for IR clearEmissionlineRegions(LINERs;seeLeslieetal.2016foran moredetails). assessmentofSFRoffsetsintheLINERpopulation).Theseselec- TheL isestimatedfromanartificialneuralnetworkthatuses IR tioncriteriayield20,926AGNwithrobust(σ < 0.1dex)L 1136Herscheldetectedgalaxieswith23physicalparameters,such ANN IR predictions.Fig.1showsthelocationofthemainsequenceofstar asstellarmasses(Mendeletal.2014),emissionlinestrengthsand forminggalaxiesasfilledbluecontours.TheSFRsofAGNderived photometry(Simardetal.2011),measuredfromSDSSdata.Based fromtheANNL areshowninredcontours.Forcomparison,we onthepopularconversionpresentedbyKennicutt(1998),theL IR IR alsoshowtheaperturecorrectedAGNSFRsderivedfromtheSDSS maybeconvertedtostarformationrates(foraChabrierinitialmass spectraviatheD method. function)using 4000 AsfoundbypreviousauthorsusingtheD methodtomea- 4000 logL (erg/s)=logSFR(M /yr)+43.591. (1) sureSFRs(e.g.Salimetal.2007;Shimizuetal.2015;Leslieetal. IR (cid:12) 2016), the optically selected AGN clearly have L SFRs that lie IR TheSFRsthatresultfromtheANNpredictionswereshown belowthemainsequence,i.e.AGNhavelowSFRsfortheirM , (cid:63) by Ellison et al. (2016) to be in excellent agreement with those typicallyby0.05–0.1dex,withamedian∆SFR=-0.06.Themain (cid:13)c 0000RAS,MNRAS000,000–000 SFRsofAGN 3 8.5 9.0 9.5 10.0 10.5 11.0 0.5 1.5 0.4 1.0 ) yr 0.3 / 1.0 fl M 0.2 R ( 0.5 Hβ 0.5 0.1 g SF 0.0 OIII]/ 0.0 Lo 0.5 og [ 0.0 0.1 L 0.2 0.0 R 0.1 0.5 0.3 F S 0.2 ∆ 0.3 0.4 0.4 8.5 9.0 9.5 10.0 10.5 11.0 1.0 0.5 1.5 1.0 0.5 0.0 0.5 Log (M /M ) Log [NII]/Hα fl Figure2.BPTdiagramcolourcodedby∆SFRforAGN.The3blacklines Figure1.Upperpanel:Acomparisonofstarformationrates(fromANN showtheAGNdemarcationsof(fromtoptobottom),K01,K03andS06. LIR estimates) in star forming galaxies (filled blue contours) and AGN Arandomsampleof5000outof∼33,300AGNselectedbyS06withLIR (open contours) classified according to Kauffmann et al. (2003). Lower basedSFRsisshown. panel:TheoffsetbetweenSFRsinAGN(asmeasuredfromLIR)relative tothemainsequence.Inbothpanels,redandgreencoloursrefertoSFRs al.(2015)haveinvestigatedtheeffectofstarformation‘dilution’, derivedfromANNLIRpredictionsandfromD4000measurements,respec- tively. wherebyhighSFRscanmoveevenmoderatelypowerfulAGNonto thestarformingbranchoftheBPTdiagram.Thedilutioneffectis mostproblematicforlowmassgalaxies.However,asshowninthe lowerpanelofFig.1themedianvalueof∆SFRinopticallyse- sequenceoffsetsmeasuredusingD extendedtosomewhatlower 4000 lectedAGNdoesnotdependstronglyonM ,indicatingthatany SFRsthantheL derivedvalues.Thereareatleasttwopossible (cid:63) IR bias against the identification of highly star-forming AGN is not reasonsforthis.First,theSFRsderivedfromtheANNarelimited drivingthetendencytowardssuppressedSFRs. toabout0.3M yr−1,duetothedetectionlimitinthetrainingset. (cid:12) Fortheremainderofthispaper,weusetheK03classification It is therefore likely that there is a further tail of low SFR AGN asourfiducialdefinitionof‘optical’AGN. that are not included in our sample due to an effective ‘detection limit’intheANNL predictions(e.g.Leslieetal.2016).Asec- IR ondpossiblereasonforthemoreextendedgreencontoursisthat,as 3.2 AGNselectedintheIRandradio shownbyRosarioetal.(2016)andEllisonetal.(2016),theD 4000 basedSFRsaremuchmoreuncertainthanthosederivedfromL , Thephysicalproperties,suchasstellarmassdistribution,morpho- IR sothelowerSFRsintheformermaybearesultofabroadererror logicalstructureandaveragecolours,ofAGNhostgalaxiesdepend disribution. stronglyonhowtheAGNareselected(e.g.Hickoxetal.2009).In Inordertoinvestigatethedependenceof∆SFRontherela- thissub-section,wedetermineSFRoffsetsfromthemainsequence tivecontributionoftheAGN,inFig.2weplottheBPTdiagramfor fortwoothersamplesofAGN,oneselectedbasedonradioemis- AGNcolour-codedby∆SFR.Inordertoexplorethedependenceof sion,andtheotherbasedonmid-IRcolourselection.Thenovelty ∆SFRoverthemaximumrangeontheBPTdiagram,we‘relax’the ofourworkisthatwecanmakeadirectcomparisonofSFRoffsets definitionofAGNbyadoptingthecriteriaofS06,butalsoshowing forthesethreepopulationsbasedonahomogeneousanalysis. thedemarcationlinesfoK01andK03.Thereare∼33,300galax- The sample of low luminosity radio-selected AGN, specifi- ies that are classified as AGN by the S06 criterion for which we callythelowexcitationradiogalaxies(LERGs),istakenfromthe haveANNL predictionsandforwhich∆SFRcanbedetermined. SDSScatalogcompiledbyBest&Heckman(2012).Wedetermine IR To avoid crowding on Fig. 2 we plot a random sample of 5000 the SFRs of the Best & Heckman LERG catalog from our ANN AGN. For reference, all three commonly used diagnostics (K01, LIRpredictions;thereare466LERGsforwhichσ <0.1. ANN K03,S06)areshowninFig.2asblacklines.Negativevaluesof∆ The sample of mid-IR selected AGN is identified by cross- SFR(lowSFRs)dominatethroughouttheAGN‘wing’.Theexcep- matchingtheWISE AllSkySurvey(Wrightetal.2010)withthe tionisveryclosetotheS06demarcation,wherethereappeartobe SDSS and requiring a maximum angular separation of 6 arcsecs. fewergalaxieswithsuppressedSFRs.Despitethegeneralprefer- We use the W1 and W2 band profile magnitudes, with a mini- enceforAGNtoexhibitlow∆SFRs,thereisawidevarietyofSFR mumS/Nrequirementof5andidentifyAGNasgalaxiesexceeding enhancementsatmostlocations.Fig.2demonstratesthat,although W1−W2>0.8(Sternetal.2012).721oftheseWISEselectedAGN thereisatrendtowardsmoresuppressedSFRsaswemovealong haveANNL withσ <0.1. IR ANN theAGNbranch(seealsoLeslieetal.2016),evengalaxiesthatare InFig.3weshowtheSFRoffsetsofthethreeAGNsamples dominated by AGN can sometimes exhibit strong SFR enhance- (colouredhistograms),aswellasthedistributionof∆SFRamongst ments(seealsothemiddlepanelofFig.3).Animportantcaveatto star-forminggalaxies(blackline).Bydefinition,thislatterdistribu- theseconclusionsisthatsamplesofopticallyselectedAGNmaybe tionshouldbecentredat∆SFR=0,sincethestarforminggalax- inherentlybiasedagainstgalaxieswithveryhighSFRs.Trumpet iesdefinethemainsequencefromwhichoffsetsarecomputed;the (cid:13)c 0000RAS,MNRAS000,000–000 4 Ellisonetal. inmid-IRselectedAGNenhancedrelativetothemainsequence, whereasLERGshaveSFRsthatarealmostuniversallybelowex- 2.5 N(AGN)=466 SF pectationsfortheirM (seealsoGurkanetal.2015)?Hardcastle (cid:63) 2.0 LERG AGN etal.(2013)posedasimilarquestionafterfindingthathighexcita- 1.5 tionradiogalaxies(HERGs)hadenhancedSFRs,incontrasttothe 1.0 lowSFRsinLERGs.Hardcastleetal.(2013)proposedthisdiffer- 0.5 encewasduetotheenvironmentsinwhichLERGsanHERGsare 0.0 ) typicallylocated(Best&Heckman2012).However,sinceourstar- ed 2.5 N(AGN)=20,926 SF formingcomparisonsampleismatchedinδ ,thisseemsunlikely aliz 2.0 Opt. AGN tobetheexplanationforthedifferent∆SFR5distributionsseenin m 1.5 Fig.3. or 1.0 n Our finding that IR, optical and radio-selected AGN form a N ( 0.5 sequence in ∆ SFR is consistent with an evolutionary picture in 0.0 which an abundant gas supply triggers enhanced star formation 2.5 N(AGN)=721 SF in an obscured AGN phase. As the fuel supply declines, so does 2.0 mid-IR AGN the star formation rate and the obscuration. A similar picture has 1.5 been proposed by Hickox et al. (2009), based on a comparison 1.0 between the host galaxy and clustering properties of a sample of 0.5 IR,X-rayandradioselectedAGN.Hickoxetal.(2009)foundthat 0.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 AGNselectedinthesewaysformedasequenceindecreasingstar formation and accretion rate, and increasing halo mass. The evo- ∆ SFR lutionarysequencebetweenstarformationandobscurationisfur- ther supported by the observation that, for samples of X-ray se- lectedAGN,starformationratesaresignificantlyenhancedforthe Figure3.Distributionsof∆SFRforvariousclassesofAGN.Inallpanels, obscured/absorbed AGN, but are normal or suppressed for unob- thedistributionof∆SFRinstarforminggalaxiesisshowninblack;by scured AGN (Stevens et al. 2005; Juneau et al. 2013). Moreover, definition,thisdistributioniscentredaround∆SFR=0. theX-rayabsorbedAGNfractionincreasesasgalaxieslieprogres- sivelyabovethestarformingmainsequence(Juneauetal.2013). width of the histogram simply shows the scatter in the main se- Galaxy mergers are a natural mechanism to explain such an quence.IntheupperpanelofFig.3weconfirmtheresultofGurkan evolutionarysequence,asfirstproposedbySandersetal.(1988), et al. (2015), who studied LERGs in the H-ATLAS sample, that sincemergersareknowntobecapableoftriggeringbothstarfor- LERGs are offset to lower SFRs than the star forming main se- mation(e.g.Scudderetal.2012)andAGNactivity(e.g.Ellisonet quence.TheopticallyselectedAGN(K03)areshownintheblue al.2011).Inthisscenario,themergerremnantofagas-rich,ma- histogramofthemiddlepanelofFig.3.Bycomparingthetopand jor merger first undergoes a significant starburst, possibly mani- middlepanelsofFig.3itcanbeseenthat,whilstboththeLERGs festingasaluminous(orultra-luminous)IRgalaxyandhighaccre- andtheopticallyselectedAGNhaveamodal∆SFRthatisneg- tionrateAGN(possiblyaquasar).Asthestarburstfades,theAGN ative,thedistributionsarequitedifferent.Onaverage,theLERGs transitionsfromobscuredtounobscuredandthegalaxyeventually are shifted to much lower values of ∆ SFR than the optically se- evolves to an early type (e.g. see Fig. 6 in Alexander & Hickox lectedAGN;themedianoffsetis∆SFR=−0.5.Whilst65percent 2012foraschematicviewofthisprocess). of optically selected AGN lie within a factor of two of the main ThedependenceofstarformationrateenhancementonAGN sequence,andcanevenexhibitenhancedSFRs,theLERGsrarely obscurationduringthepost-mergerphaseissupportedbytheobser- attainthemainsequenceSFRfortheirstellarmass. vationthatcertainclassesofAGNaremoreprevalentamongston- InthelowerpanelofFig.3weshowthedistributionofSFR goingmergers.Forexample,inclosepairsandrecentpost-mergers, offsetsforAGNidentifiedinthemid-IR.Forthefirsttime,wecan opticallyselectedAGNareover-abundant(relativetotheAGNfre- nowcomparetheSFRoffsetsinahomogeneouswayforthethree quencyinisolatedgalaxies)byafactorof2–3(Ellisonetal.2013), AGN populations. In contrast to the optically selected AGN and comparedtoafactorof5–20inmid-IRselectedAGN(Satyapalet theLERGs,themedian∆SFRofmid-IRselectedAGNis+0.17 al.2014).Mid-IRselectedAGNhavealsobeenshowntoexhibit dex,indicatingthatthetypicalpowerful,dust-obscuredAGNhas a high dual black hole fraction (Secrest et al., in preparation), in a factor of ∼ 1.5 excess SFR compared with the main sequence. contrast to optical searches which have a low success rate in de- However,thetailofthe∆SFRdistributionextendsupto+1dex, tectingbinaries(Fuetal.2011;Muller-Sanchezet.al2015).The indicatingthatsomemid-IRselectedAGNhaveSFRsafactorof connectionbetweenobscurationandmergingisalsofoundinthe 10abovetheircomparisonsample.SuchelevatedSFRsareabsent X-ray,wherethemostabsorbedAGNarefoundmostfrequentlyin intheLERGsample,andrareamongsttheopticallyselectedAGN. mergers(Kocevskietal.2015;Lanzuisietal.2015). In Ellison et al. (2016) we showed that the ANN predictions of IncontrasttotheconsistentlinkbetweenobscuredAGNand L wereaccurateevenwhentheSFRwaselevatedtotheselevels mergers,theresultsfortheunobscuredpopulationhasbeenmore IR abovethemainsequence. controversial.WhereasanexcessofAGNismeasuredinclosepairs ofgalaxies(Ellisonetal.2011;Silvermanetal.2011),demonstrat- ingthatmergersmaytriggerAGN,themorphologicalclassification ofAGNindicatesthatmergersdonotappeartodominatethetrig- 4 DISCUSSIONANDCONCLUSIONS geringofunobscuredAGN(e.g.Gaboretal.2009;Kocevskietal. Whatdrivesthedifferencebetweenthe∆SFRdistributionsofthe 2012).TheseresultsareconsistentwiththedistributionofSFRsin 3typesofAGNshowninFig.3?Inparticular,whyaretheSFRs opticallyselectedAGN(Fig3,middlepanel),inwhichthemajor- (cid:13)c 0000RAS,MNRAS000,000–000 SFRsofAGN 5 ityofgalaxieshavenormal-to-lowSFRs,andarehenceunlikelyto Ellison,S.L.,Patton,D.R.,Mendel,J.T.,Scudder,J.M.,2011,MNRAS, belinkedtomergers.ThesmallnumberofopticalAGNwithen- 418,2043 hanced SFRs may be those that are merger triggered, a postulate Ellison,S.L.,Teimoorinia,H.,Rosario,D.J.,Mendel,J.T.,2016,MNRAS, thatisconfirmedthroughvisualinspectionoftheSDSSimages. 455,370 Fu,H.,Myers,A.D.,Djorgovski,S.G.,Yan,L.,2011,ApJ,733,103 In contrast to optical and mid-IR selected AGN, there is no Gabor,J.M.,etal.,2009,ApJ,691,705 excessofLERGsinmergersamples,indicatingthattheyarefuelled Gurkan,G.,etal.,2015,MNRAS,452,3776 bysecularprocesses,wherelowlevelsofaccretion(notconnected Hardcastle,M.J.,etal.,2013,MNRAS,429,2407 withastarburst)canbemaintainedfromacombinationofstellar Harrison,C.M.,etal.,2012,ApJ,760,L15 andexternalsources(Ellison,Hickox&Patton2015).Ratherthan Hatziminaoglou,E.,etal.,2010,A&A,518,L33 an ‘evolutionary’ (i.e. time sequence) scenario, our observations Hickox,R.C.,etal.,2009,ApJ,696,891 maythereforealsobeexplainedbydifferentrelativecontributions Juneau,S.,2013,ApJ,764,176 ofmergerstothe3AGNclasses.I.e.LERGshavethelowestSFRs Kauffmann,G.,etal.,2003,MNRAS,346,1055 becausethereisnoboostfrommergers,whereasahigherfraction Kennicutt,R.C.1998,ARA&A,36,189 of IR selected AGN are linked to mergers and have experienced Kewley,L.J.,Dopita,M.A.,Sutherland,R.S.,Heisler,C.A.,Trevena,J., 2001,ApJ,556,121 triggered star formation during the interaction. Put another way, Kocevski,D.,etal.2012,ApJ,744,148 mergersmayleadtohighSFRsandluminous(obscured)AGN,but Kocevski,D.,etal.2015,ApJ,814,104 adistinct,secularpathwayisresponsibleforlowerluminosityAGN Lanzuisi,G.,etal.,2015,A&A,573,137 withnormalorlowSFRs(e.g.Shaoetal.2010). Leslie,S.K.,Kewley,L.J.,Sanders,D.B.,Lee,N.,2016,MNRAS,455, Theideathatthedistributionof∆SFRinthedifferentAGN L82 classesisbydrivenbytherelativecontributionsofmergersissup- Magliocchetti,M.,Lutz,D.,Santini,P.,Salvato,M.,Popesso,P.,Berta,S., ported by differences in their merger fractions. We compute the Pozzi,F.,2016,MNRAS,456,431 mergerfractionforeachAGNclassasthefractionofgalaxiesclas- Mendel,J.T.,Palmer,M.J.D.,Simard,L.,Ellison,S.L.,Patton,D.R., sifiedasamergerinGalaxyZoo,requiringamergervotefraction> 2014,ApJS,210,3 0.4(e.g.Dargetal.2010).Mergerfractionsforthedifferenttypes Mullaney,J.R.,Alexander,D.M.,Goulding,A.D.,Hickox,R.C.,2011, MNRAS,414,1082 of AGN are: radio - 1 per cent, optical - 3 per cent, mid-IR - 7 Mullaney,J.R.,etal.,2012,ApJ,419,95 percent.Thehighermergerfractionamongstthemid-IRsampleis Mullaney,J.R.,etal.,2015,MNRAS,453,L83 despitearedshiftdistributionskewedtowardsslightlyhigherval- Muller-Sanchez,F.,Comerford,J.M.,Nevin,R.,Barrows,R.S.,Cooper, uesthantheopticalAGNandLERGsamplesmakingitpotentially M.C.,Greene,J.E.,2015,ApJ,813,103 harder to identify mergers therein. Although these merger frac- Murakami,H.,etal.,2007,PASJ,59S,369 tions should not be considered as absolute, due to the limitations Netzer,H.,etal.,2007,ApJ,666,806 of visual classification in shallow ground-based images, without Neugebauer,G.,etal.,1984,ApJ,278,L1 removalofprojectedcompanions,theirrelativevaluesareindica- Oliver,S.J.,etal.,2012,MNRAS,424,1614 tivethatmergersaremostprevalentamongstIRselectedAGN,and Pilbratt,G.L.,etal.,2010,A&A,518,1 leastcommonamongstLERGs.Acompleteassessmentofmergers Rosario,D.J.,etal.,2013,A&A,560,72 Rosario,D.J.,etal.,2015,A&A,573,85 inthissampleisbeyondthescopeofthispaper,butwenotethat Rosario,D.J.,Mendel,J.T.,Ellison,S.L.,Lutz,D.,Trump,J.R.,2016, theexcessofmergersamongstmid-IRselectedpersistsforstricter MNRAS,inpress cutsonmergervotefraction. Salim,S.,etal,2007,ApJS,173,267 In conclusion, our main result is that the SFRs of AGN are Sanders, D. B., Soifer, B. T., Elias, J. H., Madore, B. F., Matthews, K., criticallydependentonhowanAGNisselected.IRselectedgalax- Neugebauer,G.,Scoville,N.Z..,1988,ApJ,325,74 iesintheSDSSshowamedianSFRenhancementofafactorof∼ Santini,P.,etal.,2012,A&A,540,109 1.5,comparedtoanunder-abundanceofstarformationinoptically Satyapal,S.,Ellison,S.L.,McAlpine,W.,Hickox,R.C.,Patton,D.R., selectedAGN(by∼25percent)andlowluminosityradio-selected Mendel,J.T.,2014,MNRAS,441,1297 AGN(byafactorof3).Weproposethatthesedifferencesmaybe Scudder,J.M.,Ellison,S.L.,Torrey,P.,Patton,D.R.,Mendel,J.T.,2012, explainedbyarelativelyhighfractionofmergersamongstIRse- MNRAS,426,549 Shao,L.,etal.,2010,A&A,518,L26 lectedAGN,alowermergerincidenceamongstopticallyselected Shimizu,T.T.,Mushotzky,R.F.,Melendez,M.,Koss,M.,Rosario,D.J., AGN,andthedominationofsecularfuellingprocessesforLERGs, 2015,MNRAS,452,1841 whicharehostedprimarilybymassivegalaxieswithlowSFRs. Silverman,J.D.,etal.,2009,ApJ,696,396 Simard,L.,Mendel,J.T.,Patton,D.R.,EllisonS.L.,McConnachie,A.W., 2011,ApJS,196,11 Smolcic,V.,2009,ApJ,699,L43 REFERENCES Stanley,F.etal.,2015,MNRAS,453,591 Alexander,D.M.,Hickox,R.C.,2012,NewAR,56,93 Stasinska,G.,CidFernandes,R.,Mateus,A.,Sodre,L.,Asari,N.V.,2006, Baldwin,J.A,;Phillips,M.M.,Terlevich,R.,1981,PASP,93,5 MNRAS,371,972 Best,P.N.,Heckman,T.M.,2012,MNRAS,421,1569 Stern,D.,etal.,2012,ApJ,753,30 Brinchmann,J.,Charlot,S.,White,S.D.M.,Tremonti,C.,Kauffmann,G., Stevens,J.A.,Page,M.J.,Ivison,R.J.,Carrera,F.J.,Mittaz,J.P.D.,Smail, Heckman,T.,Brinkmann,J.,2004,MNRAS,351,1151 Ian,McHardy,I.M.,2005,MNRAS,360,610 Buat,V.,etal.,2010,MNRAS,409,1 Trump,J.R.,etal.,2015,ApJ,811,26 Dale,D.A.,&Helou,G.,2002,ApJ,576,159 Tasse,C.,Best,P.N.,Rottgering,H.,LeBorgne,D.,2008,A&A,490,893 Darg,D.W.,etal.,2010,MNRAS,401,1552 Viero,M.P.,etal.,2014,ApJS,210,22 Eales,s.,etal.,2010,PASP,122,499 Wright,E.L.,etal.,2010,AJ,140,1868 Ellison,S.L.,Mendel,J.T.,Patton,D.R.,Scudder,J.M.,2013,MNRAS, Xu,L.,Rieke,G.H.,Egami,E.,Pereira,M.J.,Haines,C.P.,Smith,G.P., 453,3627 2015,ApJS,219,18 Ellison,S.L.,Patton,D.R.,Hickox,R.C.,2015,MNRAS,451,L35 (cid:13)c 0000RAS,MNRAS000,000–000

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.