ebook img

The Standard Model: How far can it go and how can we tell? PDF

0.25 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Standard Model: How far can it go and how can we tell?

The Standard Model: How far can it go and how can we tell? rsta.royalsocietypublishing.org J. M. Butterworth1 1 DepartmentofPhysics&Astronomy,University Research CollegeLondon TheStandardModelofparticlephysicsencapsulates Articlesubmittedtojournal our current best understanding of physics at the smallestdistancesandhighestenergies.Itincorporates Quantum Electrodynamics (the quantised version 6 SubjectAreas: of Maxwell’s electromagnetism) and the weak and 1 Maxwell,ParticlePhysics strong interactions, and has survived unmodified 0 for decades, save for the inclusion of non-zero 2 neutrino masses after the observation of neutrino Keywords: n oscillations in the late 1990s. It describes a vast QCD,QED,electroweak a array of data over a wide range of energy scales. J I review a selection of these successes, including 1 Authorforcorrespondence: the remarkably successful prediction of a new scalar 2 boson,aqualitativelynewkindofobjectobservedin JonButterworth 2012attheLargeHadronCollider.Newcalculational ] e-mail:[email protected] x techniques and experimental advances challenge e the Standard Model across an ever-wider range of - p phenomena, now extending significantly above the e electroweak symmetry breaking scale. I will outline h some of the consequences of these new challenges, [ andbrieflydiscusswhatisstilltobefound. 2 v 9 5 1. Introduction 7 2 Consider a naive question. If take any object and cut it 0 into half, then cut it in half again, and again, and keep . 1 doing that, what to I get in the end? What structure is 0 revealed?Indeed,doIreachanend,orcanIcarryonfor 6 ever? 1 : Answeringthisquestionisoneofthegoalsofphysics. v Itisreductionistapproachwhichisnotthewholestory, i X ofcourse-whatevertinyconstituentsarerevealed,their r interactionsleadtorichemergentphenomenarevealing a newphysics,nottomentionchemistry,biologyandthe rest. However, knowledge of the structure of matter at thesmallestaccessiblescalesisimportant,andissurely oneofthemostexcitingfrontiersofscience. (cid:13)c TheAuthors. PublishedbytheRoyalSocietyunderthetermsofthe CreativeCommonsAttributionLicensehttp://creativecommons.org/licenses/ by/4.0/, whichpermitsunrestricteduse, providedtheoriginalauthorand sourcearecredited. Theresolutionrequiredtoseetheever-smallerpiecesrequireshigherandhigherenergy,and 2 thusthefrontieroftheverysmallbecomesthehigh-energyfrontier.Similarly,theenergiesand distancesinvolvedmapthesamefrontierontothephysicsoftheveryearlyuniverse;thehot, densemomentsafterthebigbang.Butintheend,thequestionisthesame-whatistheuniverse ...rsta madeof? ....ro .y ThecurrentanswerisencapsulatedintheStandardModel.Quarksinsixflavours-up,down, ...als charm,strange,topandbottom.Leptons-alsosixkinds,theelectron,muonandtau,plusthree ...oc nofeugtaruingoesb.oTshoenrse-artheealpshooctoornrecsaprorynidnigngelaencttriopmaratigcnleest.isTmhe,stheeinWteraancdtwZitbhoesaocnhsocathrreyribnygethxcehwaneagke .....ietyp .u forcLei,kaenadngylumoonsstcaanrsrwyienrgstihnessctireonncge,ftohricse.isAanpdrionvtihsieobnaaclksgtartoeumnednlti,edsethteermHiingegdsbboysoonu.rcurrent .....blish abilitytohalvethings,or,lessdestructively,toresolveever-tinierobjects.Butithasjustachieveda ...ing ...o majorpredictivesuccesswiththediscoveryoftheHiggsboson,anditisremarkablethatwehave .r .g . aself-consistenttheoryinwhichtheseobjectsarepointlike,andwhichcandescribephenomena ..P .h osovmereasneleenctoerdmhoiugshlriagnhgtseoofftheneemrgoydealn,danddisltoaonkceatswcahleesr.eIfnurtthheerfopllroowgriensgssmecatyiobneseIxpweicllterdec.ount ....il.T ..ra .n ...s. .R 2. Atomic scales ... .S ..o IwillstartthetouroftheStandardModelattypicalatomicscalesofaround102eV.(Thegluonand ..c. ..A thephotonmasses,atzero,areoffthelowendofalogarithmicscale,andneutrinomassesIwill ..0 .0 returntolater.)Precisionatomicphysicsmeasurementsplayedacriticalroleinthedevelopment ...00 oftheQEDsectoroftheStandardModel,andthecurrentposter-childforhighprecisionquantum- .0 .0 fieldtheoryistheanomalousmagneticmomentumoftheelectron,wheretheoryandexperiment ..0 . are in agreement at the level of one part in 1013 [1,2]. Obtaining this precision in the theory requires the incorporation of electroweak and strong corrections, due to contributions to the interactionbetweentheelectronandthephotoncomingfromloopsinvolvingvirtualparticles. Sincenon-StandardModelparticlesmayalsocontributeinsuchloops,thismeasurement,coupled withprecisemeasurementsofthefinestructureconstant,cansetalimitsonsometypesofnew physicsmodelsatenergyscalesmuchhigherthanatomicphysicsscales[3].Thesameistrueof theanomalousmagneticmomentofthemuon,andsincemanynewphysicscontributionsscale withthesquareoftheleptonmass,thesensitivityofthesemeasurementstosuchcontributionsis higher.Themuonanomalousmagneticmomentislesspreciselyknownthanthatoftheelectron (thoughstilltoanimpressiveaccuracyofaboutonepartin1010),andcurrentlyexhibitsa3.6σ discrepancybetweentheoryandmeasurement.Takenatfacevalue,thisisevidenceforphysics beyondtheStandardModel,potentiallyatscalesclosetotheelectroweakscale(1011 eV).New measurementsandimprovedcalculationswillhopefullysoonclarifythesitutation[4]. 3. QCD and hadron masses Movingupwardinenergyscalefromatomicbindingenergies,pasttheelectronmass(0.5×106 eV) and nuclear binding energies (≈107 eV), we reach an energy scale of great importance, ΛQCD≈2×108 eV. For a specified renormalisation scheme, this scale is equivalent to the dimensionlessstrongcouplingatsomereferencescale,andisafundamentalparameterofQCD.It determinesthescaleatwhichquarksandgluonsareconfinedinsidehadrons.Inasenseitisonly abovethisscalethatquarksandgluonsbecometherelevantdegreesoffreedomintheStandard Model.Belowthisscale,theycannotberesolvedinsidehadrons,whichare(atleastmostly)qq¯or qqqboundstates. Inthisregionthestrongcouplingisstilltoolargetoallowtheconvergenceofaperturbative expansionintermsofFeynmandiagrams.However,latticetechniquescanbeusedtocalculate important emergent physical properties such as the confinement potential and hadron masses (see for example [5,6]). Recent experimental progress in exploring the hadronic mass spectrum 3 andconfinementincludesthediscoveryoftetraquark(qqq¯q¯)andpentaquark(qqqqq¯)states[7–10]. 4. ‘Hard’ QCD ...rsta ...r .o .y AstheenergyscaleincreaseswellaboveΛQCDandtypicalhadronmasses,thecouplingconstant, ...als αs, decreases, and the strong force exhibits the property of asymptotic freedom [11,12]. This ...oc mdeegarnesesthoaftfraetedscoamle,saonfdacraolucunldat1io0n10sceaVnabnedpearbfoovrme,eqduuasrkinsgapnedrtgulruboantisveareexpinadneseiodntshienrαesle.vant ......ietypu gluTohnestcwanombeoestxpimloproedrtainnttahnisdednierergctywreagyisminewarheicihntthheeepxriostdeunccteioanndofbhehadavroionuicro’jfetqsu’,aarnksdatnhde .....blish study of the internal structure hadrons. And as well shall see, both types of measurement are ...ing ...o interconnected. .r .g . Jets result from a short-distance, high-energy scatters between a pair of partons (a general ..P .h tJeertsmasreusseedentoforerfeerxatmoqpulearinksthanedpgroluceosnss)e,+oer−fr→omhtahderodnesc,ayfoorfcaenmtraes-soifv-mepasasrteicnleerigniteospoafrmtoonrse. ....il.T thanafew109eV,wheretheunderlyingprocessatleadingorderintheperturbativeexpansionis ...ran takentobetheelectroweakannihilationoftheelectronandpositrontoavirtualphoton(γ)orZ ...s. .R boson,whichthendecaystoqq¯.Whileweaklycoupledatshortdistances,thosepartonswill,as ... .S theyflyapart,experiencethelinearlyincreasingconfinementpotentialmentionedintheprevious ..o .c .. section.Theincreasingpotentialenergywithdistanceimpliesthatitisenergeticallyfavourable ..A tocreatemorepartons,shorteningthedistancesoverwhichthepotentialacts;aprocessending ..0 .0 atlowerenergiesintheproductionofcolor-neutralhadrons.Thesehadronsformcollimatedjets ...00 .0 whichpreserve,toagreatextent,thekinematicsoftheinitiatingpartons.Theproductionofthree- .0 ..0 jetevents[13]atthePetracolliderinDESY[14]wasgenerallyseenasthefirstdirectevidencefor . theexistenceofgluons,asthekinematicsandcrosssectionswereaspredictedbycalculationsof theprocesse+e−→qq¯g.Jetshavebeenmeasuredpreciselyine+e−,ep,pp¯andppcollisionsand provideastringenttestofQCDandasensitiveprobeofshort-distancephysics. Thefirstevidenceforpointlikeobjectsinsidehadrons-lateridentifiedwiththequarksalready introducedbyGell-MannandZweigtoexplainhadronproperties-camefromthedeeplyinelastic scatteringofelectronsoffprotons.Thesquaredfour-momentumtransfer,Q2,insuchcollisions dictatestheresolution,anditwasseenthatatsomepoint,correspondingtoenergieswellabove ΛQCD, the cross section approximately ’scaled’. That is, once the propagator dependence was accounted for, the dependence on Q2 was very weak, as expected if a pointlike particle has been resolved. The residual dependence on Q2 - scaling violation - is due to the radiation of gluonsfromthequarks,and,sinceittakesplaceatshortdistances,iscalculableinQCDusing perturbative techniques [15–19]: the excellent agreement between data - principally from the HERA ep collider [20] - and fits incorporating these scaling violations to next-to-next-leading orderinperturbativeQCDisanothervindicationofthetheory. Thepartondensitiesextractedinthiswayareneededtomakepredictionsforjet(andother) crosssectionsinhadroncolliders.Andprecisemeasurementsofjetsareusedtoconstrainthose partondensitiesfurther. 5. The Electroweak scale Thetransitiontothenextimportantenergyscaleinphysicsisnicelyillustratedbystayingwith deepinelasticscattering.Electron-protoncollisionscannotonlybemediatedbyphotonexchange, butalsobytheexchangeofweakbosons,theW andtheZ.SincetheW carrieselectriccharge, those events will have distinct final states, in which the emerging scattered lepton has turned intoaneutrino.Asmightbeexpected,theratesofthese’charged-current’eventsaremuchlower thanthoseoftheelectromagneticscatters,reflectingtherelativestrengthoftheelectromagentic andweakforces.However,astheenergyscaleincreases,theratesconverge,untilataround1011 eV, they become roughly equal. This effect, measured at HERA [20], reflects the fact that most oftheapparentdifferenceinstrengthofthetwoforcesatlowerenergiesisduetothedifferent 4 propagatormasses(zeroforthephoton, 1011eVfortheW andZ).Oncetheenergyissuchthat thesemassesarenolongerimportant,asymmetryisrestored,andtheforcesbecomecomparable instrength.Thisenergyscaleisknownastheelectroweaksymmetrybreakingscale. ...rsta ...r .o .y (a) The Z and the neutrinos ...als ...oc SthtuedpireescoisfethinefoZrmbaotsioonn,ornesomnaannytlyfeaptruordeuscoefdeilnecetr+oew−eackollpishiyosniscsa.tOLnEePmaanjdorStLriCum[2p1h],wpraosvtidhee ......ietypu .b ppZrreeinccciissleeuldmyinceaagls,cucurrlueamcteiaedlnliytn,oetfhletehctienrodvweisceiabaylkewtdhieedcotahryyo,cafhntahdneinsZesl;estnhZsai→ttiivsen,etthouetarslilhntaohpse.epToohfsestshiebelmeredesaeoscnuaarynecmcheea.nnTtnhseiislnscdoaifnctahbteee .........lishing.o that there are three, and only three, flavours of neutrinos - and thus only three generations of ..rg . matter,assumingeachgenerationcontainsalight,weakly-interactingneutrino. ..P .h ....il.T (b) Loops and fits ..ra .n ...s. To realise the full potential of the precise data from LEP and LEP2, higher order corrections ...R. involving virtual-particle loops have to be implemented in the electroweak theory. This means ...So thatthedatahaveindirectsensitivitytotheexistenceandpropertiesofundiscoveredparticles,too ..c. heavytobeproduceddirectlyinthecollisions.Atthetimeoftheexperiments,suchundiscovered ....A0 preagritoicnlecsoninscislutednetdwtihthetthoepStqaunadrakr.dTMheoddeislcfiotvs,esrywiotcfhtehdeattotpenqtiuoanrktoatthethlaesTterevmataroinnin[g22u,2n3k]n,oinwna .....0000 .0 particleintheStandardModel,theHiggsboson. ..0 . The Higgs boson is scalar particle predicted by the mechanism for electroweak symmetry breaking based on work in the early 1960s [24–29] which was later incorporated into the SM [30–33].ThismechanismallowstheW,Zandthefermionstoacquiremassbycouplingtoascalar fieldwithanon-zerovacuumexpectationvalue;introducingmassinthiswaypreservesthegauge symmetriesofthetheory,andthusthepropertyofrenormalizabilityrequiredtomakethetheory predictiveathigherordersandhigherenergies. TheprecisemeasurementsofthetopandW massesattheTevatron[34,35]increasedthepower oftheSMfits,and-againvialoopcorrections-ledtoconstraintsonthemassoftheSMHiggs boson, should it in fact exist. Meanwhile, direct searches at LEP2, the Tevatron and early LHC dataexcludedsignficantrangesofpossiblemassvalues. (c) Discovery and vindication ThediscoveryoftheHiggsboson[36,37],withamass(1.25×1011)eV[38]oncemoreconsistent with the constraints from electroweak precision data, was a remarkable triumph not only for the accelerator and the experiments, but for the theoretical ideas behind the SM. So far, all the propertiesoftheboson-charge,spin,parity,andtheproductioncrosssection×branchingratio forthosedecaymodeswhichhavebeenmeasured-areinagreementwithexpectationsoftheSM. TheSMnowhasno“missingparticles”.Withouttheexperimentaldiscoveryofthisqualitatively unique object, the SM could have been just an effective theory valid only up to 1012 eV or so. WiththeknowledgethattheHiggsbosonexists,thetheoryiscapableofmakingpredictionsat energiesfarabovetheelectroweakscale. 6. To the TeV scale and beyond Armed with this new discovery and increased energy at the LHC, particle physics is now exploringmulti-TeVscalephysics-1012eVandbeyond.MakingpredictionswiththeSMinthis qualitativelynewregimebringsnewchallengesforthetheory. (a) New features, new demands 5 As the energy of a collision increases, so does the phase space accessible for the production of high-energy objects such as high-momentum jets, leptons and photons. Increasing the energy ...rsta far above the electroweak scale means that objects with masses around the electroweak scale ...r .o cqtthhauuenasrtakhplsesrooaorndbyduetctopehdreboeWdreuaq,cbZueliedraetnwsodiirtnHehnpiohgrovgigdashtubivcoeeensoewcnraghslic.aeutDsliaesastnicaodrcni/tbauoilnarltgleiyncwhmhintiheigqahausnuenysrue.ddmIenbgberyperasetr.htoiIecfnuepltxrahperec,eirStsihiMmoenreetnththii.sseTafimhninesaaelnmesdsteaatftonoepssr ............yalsocietyp thatcalculationsof’inclusive’quantities,whichintegrateoverlargeregionsofphasespace,are ..ub not sufficient, since the experiments must place selection requirements on the final state. For ....lish example, the detectors have a limited angular (rapidity) acceptance, and also cannot measure ...ing jetsorparticlesatarbitrarilylowtransversemomenta.Ifthetheorycanonlycalculatetotalcross ...o .r sections, or totally inclusive quantities, then exptrapolations have to be applied to the data in ..g order to make comparisons. These extrapolations must make some theoretical assumptions - ...Ph typicallytheywilluseaMonteCarloeventgenerators,whichsimulatethefullyexclusivefinal ....il.T state [39]. The accuracy of the comparison is likely then not limited by the inclusive theory ..ra .n calculation, or by the intrinsic experimental uncertainty, but by the accuracy of the generator, ...s. as well as by the assumption that no unexpected physics occurs in the regions which are not ...R. coveredbythedetector. ...So Forthesereasons,muchactivityinthetheorycommunityisnowfocussedonpreciseexclusive ..c. ..A calculations,whichinmanycasesareimplementedwithinMonteCarlogenerators.Thisisnot ..0 .0 done so much to improve the accuracy of the extrapolations, but to remove the need for them ...00 altogether,bymakingprecisepredictionsofrealisticmeasurementswithinthefiducialacceptance .0 .0 regionsofthedetectors. ..0 . AkeyissuehereisthematchingoftwoperturbativeapproachestoQCD.Thematrixelement calculations at the heart of event generators can be increased in multiplicity, thus filling phase spacemoreaccurately,andcanalsoincorporatethefullcomplementofhigher-orderterms,which meansalsoincludingdiagramsinvolvingloops(similartothoseimplicatedinthemuonmagnetic moment, discussed above). In the latter case the precision of the calculation is systematically improved. There are, however, regions of phase space which contain kinematic enhancements whichmeansuchanapproachconvergesveryslowly,ifatall.Suchenhancementstypicallyoccur whenpartonsaresoftoralmostcolinear-forexampleintheearlystagesofjetformation.They usuallyoccurinsuchawaythattheemissionofanewpartonintroducesalargelogarithmofthe ratioofsomekinematicfactors,whichcannegatethesuppressionarisingfromtheintroductionof anadditionalαsfactor,andimplythattheserieswillnotconverge.Fortunuately,techniqueshave beendevelopedtocastsuchtermsintheformofsummableseries;theyhavealsobeimplemented algorithmicallyinMonteCarlogeneratorsintheformof’partonshowers’,whichareessentialto obtainaccuratedescriptionsofthefinalstate. The development of methods of matching these parton shower terms to higher multiplicity [40] and higher order [41,42] matrix elements are breakthroughs without which much of the LHCprogrammewouldbeseriouslyhampered.Advancescontinue,andtheimportanceofthese developmentsislikelyonlytoincreaseascollidersextendtheenergyreachoverwhichtheSM canbeconfrontedwithdata. (b) Precision Higgs Physics Given the theoretical advances outlined above, the experiments can increasingly concentrate on making precise and detailed exclusive and differential measurements. For example, ATLAS and CMS have already moved into the era of precision Higgs physics, not only measuring inclusiveproperties,butalsodifferentialfiducialcrosssections.Themultiplicityanddistribution ofjetsaccompanyingtheHiggsareusedtoobtainseparatesensitivitytothevariousproduction mechanisms(e.g.betweengluonfusionandvectorbosonfusion)andisintrinsictotheselection of some types of event. Measuring the transverse momentum distribution of the Higgs boson 6 productionoffersamorerigourousprobeoftheSMthanmeasuringtheintegratedtotal.Several ofthesemeasurementshavealreadybeenmade(seeforexample[43,44]),andthenumber,reach andprecisionwillincreaseaslongastheLHCcontinuestoprovidedata. ...rsta ...r .o .y (c) Boost and jet substructure ...als ...oc iSninjceetsporfotdQuCctDiontakmeasyovexetresnodmuepwhtoerseevareorualn1d0t1h2ee1V0,9meVucrhegoifotnh,eanevdotlhuetieonnerogfythsecasluesbsintrvuocltvuerde .....ietyp .u oapfpthroeacjehtetsadkeesscrpiblaecdesabwoivteh.inJetthsuebpsterrutuctrubraetihvaesrinegcrimeaes,edanrdeleavgaanincecwanhebnethperejedtiscctaedleluiessinagbothvee .....blish theelectroweakscale,sinceparticleswithmassesaroundtheelectroweakscale(W,Z andHiggs ...ing bosonsandthetopquark)maynowbeproducedwithhighLorentzboosts,andthustheirdecay ....or .g products will be highly collimated and, in the case of hadronic decays, may be reconstructed ...P absacakgsrionugnledsjetca[n45b–e48s]u.pSpurcehssceodn,fibguutrtahteioynrseqhuaivree tthheesatduvdaynotafgtehethsautbcsotrmucbtiunraetoorfiajeltasnidn oortdheerr .....hil.T ..ra toidentifyandreconstructthedecayingmassiveparticle(see[49]forareview).Techniquesbased .n ontheseideashavebeenwidelyemployedinmeasurementsattheLHC(forexampleofthetop ...s. .R quarktransversemomentum[50]),andinsearchesbothfortheSMHiggsdecayingtob-quarks ... .S andprobesoftheSM(andpotentiallybeyond)closetothekinematiclimit. ..o .c .. ..A ..0 7. Flavour physics .0 ...00 .0 Omittedfromthediscussionsofar,becauseitdoesnotfitneatlyintotheprogressofincreasing ...00 energy scale I have been following, is flavour physics. The masses of the different flavours of . fundamentalfermionsintheSMspanahugerange,fromtheneutrinosataround10−1eVtothe topat1.7×1011 eV.ThereasonsforthisarenotcontainedwithintheSMitself.Inaddition,the mass eigenstates of the particles are not identical to their (flavour) eigenstates under the weak interaction, meaning that a unitary matrix with four free parameters is introduced in both the quarkandleptonsectors.Thisleadstothephenomenonof’mixing’-theflavourofquarksand leptons,whichisdefinedastheweakeigenstate,canchangeasthepropagate,mediatedbythe mass eigenstates. This matrix also encodes the possibility of the simultaneous violation of the ChargeandParitysymmetries,CPviolation. (a) Quarks Quark mixing and CP violation in the SM are described by the Cabbibo-Kobayashi-Masakwa (CKM) matrix. Measurements in e+e− collisions at the at the B-factories, Babar and Belle [51], showed that the CP violation observed in the quark sector is, at least to a very good approximation,consistentwiththemechanismallowedintheSM.Investigationsofquarkflavour mixingatLHCbcontinuetoprobetheSMandincreasetheprecisionontheelementsoftheCKM matrix. (b) Neutrinos Neutrinos were massless in the original SM, and the observation of neutrino mixing, which implies that they have non-zero mass, is the only fundamental change that has been imposed by data on the SM since its inception. Neutrino oscillations were first pointed to by the observeddeficitofelectron-neutrinoscomingfromtheSun[52,53],andweredirectlyobserved in atmospheric and Solar neutrino measurement by Super-Kamiokande [54] and SNO [55] respectively.ThematrixwhichisintroducedtodescribethemixingisknownasthePontecorvo- Maki-Nakagawa-Sakata (PMNS) matrix, and its elements are now being measured with increasingprecisionbyacceleratorandreactor-basedneutrinoexperiments[56–59].Itisknown that, unlike the CKM matrix, the off-diagonal elements are relatively large. That is, unlike the 7 quark case where the flavour and mass eigenstates are almost aligned, the neutrino flavour eigenstatesareanalmostmaximalmixtureofthemasseigenstates.Itisnotyetknownwhether CPviolationoccursintheneutrinosector-therelevantparameterofthePMNSmatrixhasnot ...rsta yetbeenmeasured. ....ro .y ...als ...oc 8. Conclusion .....ietyp .u Withasmallnumberoffundamentalobjectsandprinciples,theStandardModeldescribesand .b predictsanenormousvarietyofphysicalphenomena,overenergyscalesrangingfromzeroup ....lish to several 1012 eV and potentially far beyond. Some of the principles behind the theory trace ...ing their origins back to Maxwell’s equations for electromagnetism, and those equations remain ...o .r .g the classical form of the quantised electromagnetic force within the theory - QED. QED itself, . ..P as a gauge theory, is the template for the weak and strong forces, themselves based on larger, .h non-Abeliangaugesymmetries.Thepredictionthatascalarbosonwouldappearatsomescale ....il.T below 1012 eV, as a consequence of reconciling gauge symmetries and massive bosons, has ..ra .n been spectacularly vindicated, and extends the region of applicability of the Standard Model ...s. .R potentiallyuptoenergiesbeyondthereachofparticlecolliders. ... .S BeforegettingtoopleasedwithourselvesatthepowerandsubtletyoftheSM,(ordespairing ..o .c ofourabilitytoextendit)itisworthrememberingthatisfailsentirelytoincorporpateoneofthe .. ..A fundamentalforces.Gravityisdescribedbythegeneraltheoryofrelativity,andinthatcontextis ..0 .0 aconsequenceofthecurvatureofspace-timeratherthanaforcelikethoseintheSM,mediated ...00 bygaugebosons.Thisisaverysignificantfailureintheambitiontodescribenaturalphenomena ..00 inasingleframework.Worse,eveninpartnershipwithgeneralrelativity,therotationcurvesof ...0 galaxies,weaklensingoflight,andthelargescalestructureoftheuniversecannotbedescribed without introducing ’Dark Matter’, for which the SM does not contain a compelling candidate (thoughthepossibilityofstrongly-boundcompositeSMstatesisstilldiscussed,seeforexample [60]).ThelowlevelofCPviolationpossiblefromSMmechanismshasnotbeenreconciledwiththe grossviolationinherentinthefactthattheobservableuniverseseemstoconsistoverwhelmingly ofmatterratherthanantimatter.Andfinally,itisprobablyapparentfromtheprecedingsections thattheSMcontainsquitealotofparameterswithseeminglyarbitrary,butsuggestive,values. Theseincludesome,suchastheHiggsmass,thatlookunnaturally’finetuned’,totheextentthat itisverytemptingtothinkthattheyarefixedbysomeso-farunknownsymmetryorprinciple inherentinalargertheory,ofwhichtheSMisjustapart. Sothestory,ofwhichMaxwell’sworkwassuchaimportantcomponent,isnotover.Thereis moretobefoundbycontinuingtolookmoreandmorecloselyatnature.Wedon’tknowwhether any of the hints or inconclusive anomalies currently exercising particle physicists’ minds (g-2, variousbumpsandraredecaysattheLHC,forexample)willfade,orgrowandleadtoanswers tosomeoftheopenquestionsabove.Butwedoknowthatthereareunknownterritoriestobe explored,andimportantanswerstobefound. Acknowledgements. I’dliketothankAnatolyZayats,JohnEllis,RoyPike,andthestaffoftheRoyalSociety fororganisinganexcellentmeeting,andespeciallyforthechancetoseeMaxwell’soriginalmanuscript[61]. Fundingstatement. FundedbyUCLandSTFC. Conflictofinterests. Ihavenocompetinginterests. References 1. B.C.Odom,D.Hanneke,B.D’UrsoandG.Gabrielse,NewMeasurementoftheElectronMagnetic MomentUsingaOne-ElectronQuantumCyclotron.Phys.Rev.Lett.97(2006)030801[Phys.Rev. Lett.99(2007)039902]. 2. K.A.Oliveetal.[ParticleDataGroupCollaboration],ReviewofParticlePhysics.Chin.Phys.C 8 38(2014)090001. 3. G. F. Giudice, P. Paradisi and M. Passera, Testing new physics with the electron g-2 JHEP 1211 (2012)113[arXiv:1208.6583[hep-ph]]. ...rsta 4. J.Grangeetal.[Muong-2Collaboration],Muon(g-2)TechnicalDesignReport.arXiv:1501.06858 ...r .o [physics.ins-det]. .y 5. G.S.Bali,QCDforcesandheavyquarkboundstates.Phys.Rept.343(2001)1[hep-ph/0001312]. ...als 6. S.Aokietal.,Reviewoflatticeresultsconcerninglow-energyparticlephysics.Eur.Phys.J.C74(2014) ...oc 7. S28.9K0.[CarhXoiive:t13a1l.0[.8B5e5ll5e[Cheopll-albato]r]a.tion],Observationofaresonance-likestructureintheπ±ψ(cid:48) mass .....ietyp .u d[hisetpri-beuxt]i]o.ninexclusiveB→Kπ±ψ(cid:48)decays.Phys.Rev.Lett.100(2008)142001[arXiv:0708.1790 .....blish 8. K. Chilikin et al. [Belle Collaboration], Experimental constraints on the spin and parity of the ...ing Z(4430)+.Phys.Rev.D88(2013)7,074026[arXiv:1306.4894[hep-ex]]. ...o .r 9. R. Aaij et al. [LHCb Collaboration], Observation of the resonant character of the Z(4430)− state ..g Phys.Rev.Lett.112(2014)22,222002[arXiv:1404.1903[hep-ex]]. ...Ph 10.SRta.teAsainijΛet0baJl./[ψLKH−CpbDCeoclalaybs.oPrahtyios.nR],eOv.bLseertvt.a1ti1o5n(o2f0J1/5ψ)0p7R20es0o1n[aanrcXesivC:1o5n0s7is.0te3n4t1w4i[thhePpe-nexta]q].uark ......il.Tra 11.(1D9.7J3.)G13ro4s3s.andF.Wilczek,UltravioletBehaviorofNonabelianGaugeTheoriesPhys.Rev.Lett.30 .....ns.R 12. H. D. Politzer, Reliable Perturbative Results for Strong Interactions? Phys. Rev. Lett. 30 (1973) ... .S 1346. ..o .c 13. J.R.Ellis,M.K.GaillardandG.G.Ross,SearchforGluonsine+e-Annihilation.Nucl.Phys.B ....A 111(1976)253[Nucl.Phys.B130(1977)516]. ..0 14.HRig.hB-ErannedrgeileiskPehtyasl..L[TeAtt.SBSO86C(o19ll7a9b)o2r4a3ti.on], Evidence for Planar Events in e+ e- Annihilation at .....0000 .0 15. V.N.GribovandL.N.Lipatov,Sov.J.Nucl.Phys.15(1972)438[Yad.Fiz.15(1972)781]. ..0 . 16. V.N.GribovandL.N.Lipatov,Sov.J.Nucl.Phys.15(1972)675[Yad.Fiz.15(1972)1218]. 17. L.N.Lipatov,Sov.J.Nucl.Phys.20(1975)94[Yad.Fiz.20(1974)181]. 18. Y.L.Dokshitzer,Sov.Phys.JETP46(1977)641[Zh.Eksp.Teor.Fiz.73(1977)1216]. 19. G.AltarelliandG.Parisi,Nucl.Phys.B126(1977)298.doi:10.1016/0550-3213(77)90384-4 20. H.Abramowiczetal.[H1andZEUSCollaborations],Combinationofmeasurementsofinclusive deepinelastice±pscatteringcrosssectionsandQCDanalysisofHERAdata.Eur.Phys.J.C75(2015) 12,580[arXiv:1506.06042[hep-ex]]. 21. S. Schael et al. [ALEPH and DELPHI and L3 and OPAL and SLD and LEP Electroweak WorkingGroupandSLDElectroweakGroupandSLDHeavyFlavourGroupCollaborations], Precision electroweak measurements on the Z resonance. Phys. Rept. 427 (2006) 257 [hep- ex/0509008]. 22. F.Abeetal.[CDFCollaboration],Observationoftopquarkproductioninp¯pcollisionsPhys.Rev. Lett.74(1995)2626[hep-ex/9503002]. 23. S.Abachietal.[D0Collaboration],Phys.Rev.Lett.74(1995)2632[hep-ex/9503003]. 24. F.EnglertandR.Brout,BrokenSymmetryandtheMassofGaugeVectorMesons.Phys.Rev.Lett. 13(1964)321. 25. P.W.Higgs,Brokensymmetries,masslessparticlesandgaugefields.Phys.Lett.12(1964)132. 26. P.W.Higgs,BrokenSymmetriesandtheMassesofGaugeBosons.Phys.Rev.Lett.13(1964)508. 27. G.S.Guralnik,C.R.HagenandT.W.B.Kibble,GlobalConservationLawsandMasslessParticles. Phys.Rev.Lett.13(1964)585. 28. P. W. Higgs, Spontaneous Symmetry Breakdown without Massless Bosons Phys. Rev. 145 (1966) 1156. 29. T.W.B.Kibble,SymmetrybreakinginnonAbeliangaugetheoriesPhys.Rev.155(1967)1554. 30. S.L.Glashow,PartialSymmetriesofWeakInteractionsNucl.Phys.22(1961)579. 31. S.Weinberg,AModelofLeptonsPhys.Rev.Lett.19(1967)1264. 32. A. Salam, Weak and electromagnetic interactions. in Elementary particle physics: relativistic groups and analyticity, N. Svartholm, ed., p. 367. Almqvist & Wiskell, 1968, Proceedings of theeighthNobelsymposium. 33. G.’tHooftandM.J.G.Veltman,RegularizationandRenormalizationofGaugeFieldsNucl.Phys. B44(1972)189. 34. T.Aaltonenetal.[CDFandD0Collaborations],Combinationofthetop-quarkmassmeasurements fromtheTevatroncollider.Phys.Rev.D86(2012)092003[arXiv:1207.1069[hep-ex]]. 35. T.A.Aaltonenetal.[CDFandD0Collaborations],CombinationofCDFandD0W-BosonMass 9 Measurements.Phys.Rev.D88(2013)5,052018[arXiv:1307.7627[hep-ex]]. 36. G.Aadetal.[ATLASCollaboration],ObservationofanewparticleinthesearchfortheStandard ModelHiggsbosonwiththeATLASdetectorattheLHC.Phys.Lett.B716(2012)1[arXiv:1207.7214 ...rsta [hep-ex]]. ...r .o 37.thSe.CCMhaStrecxhpyearinmeetnatla.t[CthMeLSHCCo.lPlahbyosr.aLtieotnt.],BO7b1s6er(v2a0t1i2on)3o0f[aanrXewivb:1o2s0on7.7a2t3a5m[hasespo-efx1]2]5. GeVwith ....yals 38.i(n2G0p.1pA5)Ca1do9lel1it8sia0ol3n.[s[AaarTtXL√iAvs:S1=5a0n73d.a0nC7d5M889ST[CehVoelplwa-eibtxoh]r]ta.hteioAnTs]L,ACSomanbidneCdMMSeaEsxupreermimenenttosf.tPhehHysi.ggRseBv.oLsoenttM.1a1s4s .........ocietypu .b 39.[aArX. Bivu:1c1k0le1y.2e5t99al[.,hGepen-perha]l]-.purpose event generators for LHC physics. Phys. Rept. 504 (2011) 145 ....lish 40. S.Catani,F.Krauss,R.KuhnandB.R.Webber,QCDmatrixelements+partonshowersJHEP ...ing 0111(2001)063[hep-ph/0109231]. ....or .g 41. S.FrixioneandB.R.Webber,MatchingNLOQCDcomputationsandpartonshowersimulations . ..P JHEP0206(2002)029[hep-ph/0204244]. .h 42. K.Hamilton,P.Nason,E.ReandG.Zanderighi,NNLOPSsimulationofHiggsbosonproduction ....il.T JHEP1310(2013)222[arXiv:1309.0017[hep-ph]]. ..ra .n 43. G. Aad et al. [ATLAS Collaboration], Measurements√of fiducial and differential cross sections for ...s. Higgsbosonproductioninthediphotondecaychannelat s=8TeVwithATLASJHEP1409(2014) .R 112[arXiv:1407.4222[hep-ex]]. ....S 44. V.Khachatryanetal.[CMSCollaboration],Measurementofdifferentialandintegratedfiducialcross ...oc .. sectionsforHiggsbosonproductioninthefour-leptondecaychannelinppcollisionsatsqrt(s)=7and ..A 8TeV.arXiv:1512.08377[hep-ex]. ..0 .0 45. M. H. Seymour, Searches for new particles using cone and cluster jet algorithms: A Comparative ...00 study.Z.Phys.C62(1994)127. ..00 46. J.M.Butterworth,B.E.CoxandJ.R.Forshaw,WW scatteringattheCERNLHC.Phys.Rev.D ...0 65(2002)096014[hep-ph/0201098]. 47. J. M. Butterworth, A. R. Davison, M. Rubin and G. P. Salam, Jet substructure as a new Higgs searchchannelattheLHC.Phys.Rev.Lett.100(2008)242001[arXiv:0802.2470[hep-ph]]. 48. D. E. Kaplan, K. Rehermann, M. D. Schwartz and B. Tweedie, Top Tagging: A Method for Identifying Boosted Hadronically Decaying Top Quarks. Phys. Rev. Lett. 101 (2008) 142001 [arXiv:0806.0848[hep-ph]]. 49. A.Altheimeretal.,BoostedobjectsandjetsubstructureattheLHC.ReportofBOOST2012,heldat IFICValencia,23rd-27thofJuly2012Eur.Phys.J.C74(2014)3,2792[arXiv:1311.2708[hep-ex]]. 50. G.Aadetal.[ATLASCollaboration],Measurementofthedifferentialcross-sectionofhighlyboosted √ topquarksasafunctionoftheirtransversemomentumin s=8TeVproton-protoncollisionsusing theATLASdetector.arXiv:1510.03818[hep-ex]. 51. A. J. Bevan et al. [BaBar and Belle Collaborations], Eur. Phys. J. C 74 (2014) 3026 doi:10.1140/epjc/s10052-014-3026-9[arXiv:1406.6311[hep-ex]]. 52. B. T. Cleveland, T. Daily, R. Davis, Jr., J. R. Distel, K. Lande, C. K. Lee, P. S. Wildenhain andJ.Ullman,MeasurementofthesolarelectronneutrinofluxwiththeHomestakechlorinedetector. Astrophys.J.496(1998)505. 53. J.N.Bahcall,M.H.PinsonneaultandS.Basu,Solarmodels:Currentepochandtimedependences, neutrinos,andhelioseismologicalpropertiesAstrophys.J.555(2001)990[astro-ph/0010346]. 54. Y. Fukuda et al. [Super-Kamiokande Collaboration], Evidence for oscillation of atmospheric neutrinos.Phys.Rev.Lett.81(1998)1562[hep-ex/9807003]. 55. Q.R.Ahmadetal.[SNOCollaboration],Directevidenceforneutrinoflavortransformationfrom neutralcurrentinteractionsintheSudburyNeutrinoObservatoryPhys.Rev.Lett.89(2002)011301 [nucl-ex/0204008]. 56. S. Abe et al. [KamLAND Collaboration], Precision Measurement of Neutrino Oscillation Parameters with KamLAND Phys. Rev. Lett. 100 (2008) 221803 doi:10.1103/PhysRevLett.100.221803[arXiv:0801.4589[hep-ex]]. 57. P. Adamson et al. [MINOS Collaboration], Measurement of the neutrino mass splitting and flavormixingbyMINOSPhys.Rev.Lett.106(2011)181801doi:10.1103/PhysRevLett.106.181801 [arXiv:1103.0340[hep-ex]]. 58. F.P.Anetal.[DayaBayCollaboration],Observationofelectron-antineutrinodisappearanceatDaya BayPhys.Rev.Lett.108(2012)171803[arXiv:1203.1669[hep-ex]]. 59. K. Abe et al. [T2K Collaboration], Precise Measurement of the Neutrino Mixing Parameter θ23 10 from Muon Neutrino Disappearance in an Off-Axis Beam. Phys. Rev. Lett. 112 (2014) 18, 181801 [arXiv:1403.1532[hep-ex]]. 60. D.M.Jacobs,G.D.StarkmanandB.W.Lynn,MacroDarkMatterMon.Not.Roy.Astron.Soc. ...rsta 450(2015)4,3418[arXiv:1410.2236[astro-ph.CO]]. ...r .o 61.(1J.86C5.)M45a9x.well, A dynamical theory of the electromagnetic field Phil. Trans. Roy. Soc. Lond. 155 ....yals ...oc .....ietyp .u .b ....lish ...ing ...o .r .g . ..P .h ....il.T ..ra .n ...s. .R ... .S ..o .c .. ..A ..0 .0 ...00 .0 .0 ..0 .

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.