ebook img

The spectral energy distribution of the central parsecs of the nearest AGN PDF

21 Pages·2010·1.3 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The spectral energy distribution of the central parsecs of the nearest AGN

Mon.Not.R.Astron.Soc.402,724–744(2010) doi:10.1111/j.1365-2966.2009.15897.x The spectral energy distribution of the central parsecs of the nearest AGN (cid:2) M. A. Prieto,1 J. Reunanen,2 K. R. W. Tristram,3 N. Neumayer,4 J. A. Fernandez-Ontiveros,1 M. Orienti1 and K. Meisenheimer5 1IAC,38200LaLaguna,Tenerife,Spain 2TuorlaObservatory,UniversityofTurku,Va¨isa¨la¨ntie20,21500Piikkio¨,Finland 3MPIfR,AufdemHu¨gel,53121Endenich,Bonn,Germany 4ESO,Karl-Schwarzschild-Str.2,85478Garching,Germany 5MPIA,Ko¨nigstuhl17,69117Heidelberg,Germany D o w n Accepted2009October23.Received2009October16;inoriginalform2009July14 loa d e d fro m ABSTRACT h Spectral energy distributions (SEDs)of the centralfew tens ofparsec region ofsome of the ttp s nearest,mostwell-studied,activegalacticnuclei(AGN)arepresented.ThesegenuineAGN- ://a c coreSEDs,mostlyfromSeyfertgalaxies,arecharacterizedbytwomainfeatures:aninfrared a d (IR)bumpwiththemaximuminthe2–10μmrangeandanincreasingX-rayspectrumwith em frequencyinthe1to∼200keVregion.ThesedominantfeaturesarecommontoSeyferttype ic.o u 1 and 2 objects alike. In detail, type 1 AGN are clearly distinguished from type 2 by their p .c highspatialresolutionSEDs:type2AGNexhibitasharpdropshortwardsof2μm,withthe o m optical to UV region being fully absorbed; type 1s instead show a gentle 2μm drop ensued /m n byasecondary,partiallyabsorbedopticaltoUVemissionbump.Ontheassumptionthatthe ra s bulkofopticaltoUVphotonsgeneratedintheseAGNisreprocessedbydustandre-emitted /a intheIRinanisotropicmanner,theIRbumpluminosityrepresents(cid:2)70percentofthetotal rticle energyoutputintheseobjects,andthesecondenergeticallyimportantcontributionisthehigh -ab s energiesabove20keV. tra c GalaxiesselectedbytheirwarmIRcolours,i.e.presentingarelativelyflatfluxdistribution t/4 0 inthe12–60μmrange,haveoftenbeingclassifiedasAGN.Theresultsfromthesehighspatial 2 /2 resolution SEDs question this criterion as a general rule. It is found that the intrinsic shape /7 2 oftheinfraredSEDofanAGNandinferredbolometricluminositylargelydepartfromthose 4/1 1 derivedfromlargeaperturedata.AGNluminositiescanbeoverestimatedbyuptotwoorders 0 0 ofmagnitudeifrelyingonIRsatellitedata.WefindthesedifferencestobecriticalforAGN 19 2 luminosities below or about 1044ergs−1. Above this limit, AGN tend to dominate the light b y oftheirhostgalaxyregardlessoftheintegrationaperturesizeused.Althoughthenumberof g u e objectspresentedinthisworkissmall,wetentativelymarkthisluminosityasathresholdto s t o identifygalaxy-light-dominatedversusAGN-dominatedobjects. n 1 0 Key words: techniques: high angular resolution – galaxies: nuclei – galaxies: Seyfert – A p infrared:galaxies–radiocontinuum:galaxies–X-rays:galaxies. ril 2 0 1 9 ofthesephenomenainvolveradiationreprocessingfromaspectral 1 INTRODUCTION rangeintoanother.TheavailabilityoftheSEDofagalaxyallows Thestudyofthespectralenergydistributions(SEDs)overthewidest us to determine basic parameters such as its bolometric luminos- possiblespectralrangeisanoptimalwaytocharacterizetheproper- ity(e.g.Elvisetal.1994;Sanders&Mirabel1996;Vasudevan& tiesofgalaxiesingeneral.Coveringthewidestspectralrangeisthe Fabian2007),andviamodellingoftheSED,itsstarformationlevel, keytodifferentiatingphysicalphenomena,suchasdustemissionin massandage(e.g.Bruzual&Charlot2003;Rowan-Robinsonetal. theinfrared(IR),stellaremissionintheopticaltoultraviolet(UV) 2005;Daleetal.2007). and non-thermal processes in the X-rays and radio, which domi- TheconstructionofbonafideSEDsisnoteasyasitinvolvesdata nate at specific spectral ranges, and to interrelating them as most acquisitionfromdifferentrangesoftheelectromagneticspectrum usingverydifferenttelescopeinfrastructure.Thisagainintroduces afurthercomplicationastheachievedspatialresolution,andwith (cid:2)E-mail:[email protected] ittheaperturesizeused,varieswiththespectralrange.SEDsbased (cid:3)C 2010TheAuthors.Journalcompilation(cid:3)C 2010RAS SEDofnearbygalaxycores 725 ontheintegrationoftheoverallgalaxylightmaybeverydifferent EuropeanSouthObservatory(ESO)VeryLargeTelescope(VLT); fromthoseextracted fromonlya specificregion, e.g.the nuclear hencethisstudyreliesonSoutherntargets,allwell-knownobjects, region. In this specific case, the aperture size is quite important, mostlySeyfertgalaxies:CentaurusA,NGC1068,Circinus,NGC as different light sources, such as circumnuclear star formation, 1097, NGC 5506, NGC 7582, NGC 3783, NGC 1566 and NGC theactivenucleusandthesubjacentgalaxylight,coexistonsmall 7469.Forcomparisonpurposes,theSEDofquasar3C273isalso spatial scales and may contribute to the total nuclear output with included. comparableenergies(e.g.Genzeletal.1998;Reunanen,Prieto& The compiled SEDs make use of the highest spatial resolution Siebenmorgen2009). dataavailablewithcurrentinstrumentationacrosstheelectromag- InthespecificcaseofSEDsofAGN,itisoftenassumedthatthe neticspectrum.ThemainsourcesofdataincludeVLA-Aarrayand AGN light dominates the integrated light of the galaxy at almost Australia Telescope Compact Array (ATCA) data in radio, VLT any spectral range and for almost any aperture. This assumption diffraction-limitedimagesandVeryLargeTelescopeInterferometer becomes mandatory at certain spectral ranges, such as the high (VLTI)interferometryinthemid-IR,VLTadaptive-opticsimages energies,theextremeUVorthemid-to-far-IR,becauseofthespa- inthenear-infrared,andHST imagingandspectraintheoptical– D tialresolutionlimitationsimposedbytheavailableinstrumentation, ultraviolet.AlthoughX-raysandgammaraysdonotprovidesucha o w whichcurrentlyliesintherangeofseveralarcsecondstoarcminutes fineresolution,informationwhenavailableforthesegalaxiesisalso nlo atthesewavelengths.Inthemid-tofar-IRinparticular,theavailable includedintheSEDsontheassumptionthatabove10keVorso,we ad e data,mostlyfromIRsatellites,arelimitedtospatialresolutionsofa aresamplingtheAGNcoreregion.Mostofthedatausedcomefrom d fewarcsecondsatbest.Thus,theassociatedSEDsincludethecon- theChandraandInternationalGamma-RayAstrophysicsLabora- fro m tributionofthehostgalaxy,star-formingregions,dustemissionand tory(INTEGRAL)telescopes. h AGN,withthefirsttwocomponentsbeingmeasuredoverdifferent The novelty in the analysis is the spatial resolutions achieved ttp s spatialscalesinthegalaxydependingontheobjectdistanceandthe in the IR, with typical full width at half-maximum (FWHM) (cid:3) ://a spatialresolutionachievedatagivenIRwavelength. 0.2arcsecin1–5μmand<0.5arcsecin11–20μm.Theavailability ca d Inspectralrangeswherehighspatialresolution(HSR)isread- ofIRimagesatthesespatialresolutionsallowsustopinpointthe e m ily available, the importance, if not dominance, of circumnuclear true spatial location of the AGN – which happens not to have an ic starformationrelativetothatoftheAGNhasbecomeclearinthe optical counterpart in most of the type 2 galaxies studied – and .ou p UVtoopticalrange(e.g.Munoz-Marinetal.2007)orinthenear- extract its luminosity within aperture diameters of a few tens of .c o IR (Genzel et al. 1998). In the radio regime, the comparison of parsec.ThenewlycompiledSEDsarepresentedinSection2.Some m lowspatialresolutionandHSRmapsshowstheimportanceofthe majordifferencesaswellassimilaritiesbetweentheSEDsoftype /m n diffusecircumnuclearemissionandtheemissionfromthejetcom- 1andtype2AGNariseattheseresolutions.Thesearepresented ra s ponentswithrespecttothatofthecoreitself(e.g.Royetal.1994; and discussed in Sections 3, 4 and 5. The SEDs and the inferred /a Elmouttieetal.1998;Gallimore,Baum&O’Dea2004;Lal,Shastri nuclearluminositiesarefurthercomparedwiththoseextractedin rtic le &Gabuzda2004).Evenwithlow-resolutiondata,amajorconcern the mid-to-far-IR from large aperture data from IR satellites, and -a b sharedbymostworksistherelevanceofthehostgalaxycontribu- thedifferencesarediscussedinSection6. s tIiRo.nTtooothveerncuocmleearthiensteegmraitxeidngemefifsesciotsnifnrtormoduthceedUbVytpooooprtsicpaaltitaol traTlhwraovueglhenogutthtshiosfptahpeern,eHar0-I=R7b0rokamd-sb−a1nMdfiplct−e1rsisuusesdeda.rTehIebcaennd- tract/4 0 resolution,differentstrategiesorassumptionshavebeenfollowed (0.8μm),Jband(1.26μm),Hband(1.66μm),Kband(2.18μm), 2/2 bythecommunity.Inquasars,bytheirownnature,thedominance Lband(3.80μm)andMband(4.78μm). /7 2 of the AGN light over the integrated galaxy light at almost any 4/1 wavelengthisassumed;conversely,inlowerluminosityAGN,the 2 THE HIGH SPATIAL RESOLUTION SED: 100 contributionofdifferentcomponentsisassessedviamodellingof 1 DATA SOURCE 9 the integrated light (Edelson & Malkan 1986; Ward et al. 1987; 2 b Sandersetal.1988;Elvisetal.1994;Buchananetal.2006among ThissectiondescribesthedatausedinbuildingtheHSRSEDs.Each y g others). AGNisanalysedinturn,andthecompiledSEDisshowninFig.1. ue s Inthispaper,weattempttoprovideabestestimateoftheAGN ThedatausedintheSEDsarelistedperobjectinTables1–10.For t o light contribution on very nearby AGN by using very HSR data eachAGN,anupperlimittothecoresizedeterminedinthenear-IR n 1 over a wide range of the electromagnetic spectrum. Accordingly, withadaptiveopticsand/orinthemid-IRwithinterferometryisfirst 0 A SEDs of the central few hundred parsec region of some of the provided.ThedatasourcesusedinconstructingtherespectiveSEDs p nearestandbrightestAGNarecompiled.Theworkismotivatedby aredescribednext.Whenfoundintheliterature,abriefsummaryof ril 2 0 thecurrentpossibilityofobtainingsubarcsecresolutiondatainthe thenuclearvariabilitylevelsespeciallyintheIRisprovided.This 1 9 near-to-mid-IRofbrightAGNandthusatresolutionscomparable ismostlytoassesstherobustnessoftheSEDshapeandintegrated tothoseavailablewithradiointerferometryandtheHubbleSpace luminosities across the spectrum. Finally, as a by-product of the Telescope (HST) in the optical to UV wavelength range. This is analysis, an estimate of the extinction in the surrounding of the possible, thanks to the use of adaptive optics in the near-IR, the nucleus based on near-IR colours derived from the HSR, mostly diffractionlimitresolutionsprovidedby8–10mtelescopesinthe J −K,imagesisprovided.Thecolourimagesusedareshownin mid-IRaswellasinterferometryinthemid-IR. Fig.2.Thesearerelativeextinctionvalues,resultingaftercomparing The selection of targets is driven by the requirements imposed theaveragecolourintheimmediatesurroundingofthenucleuswith bytheuseofadaptiveopticsinthenear-IR,whichlimitstheob- thatatfurthergalactocentricregions,usuallywithinthecentralfew servationstotheavailabilityofhavingbrightpoint-liketargetswith hundred parsecs. These reference regions are selected from areas magnitudes V< 15mag in the field, and the current flux detec- presentinglowerextinctionasjudgedfromavisualinspectionofthe tionlimitsinmid-IRground-basedobservations.AGNinthenear colourimages.Thederivedextinctiondoesnotrefertothatinthe Universearesufficientlybrighttosatisfythesecriteria.Thenear-to lineofsightofthenucleus,whichcouldbemuchlarger–wedonot mid-IRhigh-resolutiondatausedinthisworkcomemostlyfromthe comparewiththenucleuscoloursbutwiththoseinitssurrounding. (cid:3)C 2010TheAuthors.Journalcompilation(cid:3)C 2010RAS,MNRAS402,724–744 726 M.A.Prietoetal. D o w n lo a d e d fro m h ttp s ://a c a d e m ic .o u p .c o m /m n ra s /a rtic le -a b s tra c t/4 0 2 /2 /7 2 4 /1 1 0 0 1 9 2 b y g u e s t o n 1 0 A p ril 2 0 1 9 Figure1. SEDsofthecentralparsec-scaledregionoftheAGNinthisstudy.Filledpointsrepresentthehighestspatialresolutiondataavailableforthese nuclei;thethinV-shapelineinthemid-IRregionshowninsomeSEDscorrespondstothespectrumofanunresolvedsourceasmeasuredbyVLTI/MIDI (correlatedflux).Crossesrefertolargeaperturedatainthemid-IR(mostlyfromIRASandISO)andthemillimetrewhenavailable.Thefrequencyrangeisthe sameinallplotsexceptforCenAand3C273whichextendsuptothegammarays.Thecontinuouslineinthe3C273plotistheSEDofthisobjectafter applyinganextinctionAv=15mag(seeSections3). (cid:3)C 2010TheAuthors.Journalcompilation(cid:3)C 2010RAS,MNRAS402,724–744 SEDofnearbygalaxycores 727 D o w n lo a d e d fro m h ttp s ://a c a d e m ic .o u p .c o m /m n ra s /a rtic le -a b s tra c t/4 0 2 /2 /7 2 4 /1 1 0 Figure1–continued 01 9 2 b Thesimplestapproachofconsideringaforegrounddustscreenis purposes. The AGN is unambiguously recognized in the near-IR y g used.TheextinctionlawpresentedinWitt,Thronson&Capuano images of all objects as the most outstanding source in the field ue (1992), for the UV to the near-IR, and that in Rieke & Lebofsky of 26 × 26arcsec2 covered by the VLT/NACO images. This is st o (1985),forthemid-IR,areused. especiallythecaseforthetype2sourceswheretheAGNreveals n 1 For some objects, the near-IR adaptive optics data used to infullrealmfrom2μmlongwards.Thecomparableresolutionof 0 A compile the SED are presented here for the first time. For com- the NACO-IR and the HST–optical images allows us to search p pleteness purposes, Table 11 is a list of all the adaptive optics fortheopticalcounterpartoftheIRnucleus,insomecasesusing ril 2 0 VLT/NAOS-CONICA (NACO) observations used in this work. accurate astrometry based on other point-like sources in the field 1 9 Thelistoffiltersanddatesofobservationsareprovided.Thenu- (e.g.Prietoetal.2004;Fernandez-Ontiverosetal.inpreparation). cleus of these AGN was in all cases bright enough to be used as In all the type 2 cases analysed, the counterpart optical emission a reference for the adaptive optics system to correct for the at- is found to vanish shortwards of 1μm. Accordingly, all the type mospheric turbulence. The optical nuclear source was used in all 2 SEDs show a data gap in the optical–UV region. In addition, caseswiththeexceptionofCentaurusAandNGC7582,forwhich alltheSEDsshowacommondatagapspanningtheextremeUV- the IR nucleus was used instead. The observation procedure and softX-raysregion,duetotheobservationalinaccessibilityofthis data reduction for all the objects presented here are the same as spectralrange,andthemid-IRtomillimetrerange,duetothelackof those discussed in detail in the references quoted in Table 11, dataatsubarcsecresolutionscales.Surprisingly,forsomeofthese we refer the interested reader to those references for further well-studied objects, neither radio data at subarcsec scales exist, details. e.g. Circinusgalaxy. Inthese cases,westillincludethe available There are five type 2, three type 1 and an intermediate type arcsecresolutionradiodataintheSED. 1/low-ionizationnuclearemission-lineregion(LINER)AGNinthe TheSEDsarefurthercomplementedwithavailabledatainthe sample, in addition to quasar 3C 273, included for comparative X-rays,whichextendupto100–200keVforallsources.Onlyfor (cid:3)C 2010TheAuthors.Journalcompilation(cid:3)C 2010RAS,MNRAS402,724–744 728 M.A.Prietoetal. Table1. SEDoftheCentaurusAcoreregion. Table2. SEDoftheCircinuscoreregion. Origin Hz Jy Origin Hz Jy COMPTEL5.1MeV 1.25×1021 1.78×10−8 INTEGRAL40–100keV 1.69×1019 5.5×10−7 COMPTEL1.7MeV 3.98×1020 1.0×10−7 INTEGRAL20–40keV 7.25×1018 1.5×10−6 COMPTEL0.86MeV 2.09×1020 3.75×10−7 INTEGRAL2–10keV 1.45×1018 8.9×10−7 INTEGRAL20–100keV 1.45×1019 2.4×10−6 ROSAT1.3keV 3.25×1017 4.0×10−6 INTEGRAL2–10keV 2.42×1018 8.8×10−6 NACO-J 2.30×1014 <0.0016 Chandra1keV 2.42×1017 6.2×10−5 NACO-H 1.76×1014 0.0048 WFPC2-F555W 5.40×1014 <6.4×10−8 NACO-K 1.36×1014 0.019 WFPC2-F814W 3.68×1014 7.0×10−6 NACO-2.42μm 1.24×1014 0.031 NACO-J 2.30×1014 0.0013 NACO-L 7.90×1013 0.38 NACO-H 1.76×1014 0.0045 NACO-M 6.70×1013 1.9 NACO-2.02μm 1.48×1014 0.030 MIDIcorr-8μm 4.00×1013 0.30 Do NACO-K 1.36×1014 0.031 MIDIcorr-9.6μm 3.10×1013 0.30 wn NACO-L 8.57×1013 0.20 MIDIcorr-11μm 2.50×1013 0.50 lo a MIDI-8μm 3.70×1013 0.60 MIDIcorr-12μm 2.00×1013 1.1 de MMIIDDII--1123μμmm 22..5300××11001133 11..13 MMIIDDII--89.μ6mμm 33..1700××11001133 62..08 d from MIDIcorre-8.3μm 3.60×1013 0.47 VISIR-11.88μm 2.50×1013 9.3 h MIDIcorre-9.3μm 3.20×1013 0.28 VISIR-18.72μm 1.60×1013 17.6 ttp s MMIIDDIIccoorrrree--1101..44μμmm 22..8683××11001133 00..2453 AATTCCAA--36ccmm 15..0000××1100190 00..005500 ://ac a MIDIcorre-12.6μm 2.30×1013 0.62 ATCA-13cm 2.30×109 0.070 de VISIR-11.88μm 2.56×1013 1.1 ATCA-20cm 1.50×109 0.12 m VISIR-18.72μm 1.70×1013 2.3 ========== ic.o VLBA-1997 2.22×1010 1.9 IRAS-12μm 2.50×1013 19.0 up VLBA-1997 8.40×109 1.7 IRAS-25μm 1.20×1013 68.0 .co VLBA-1999 8.4×109 2.32 IRAS-60μm 5.00×1012 249 m/m VLBA-1999 5.0×109 0.83 IRAS-100μm 3.00×1012 316 n VLBA-1999 2.2×109 1.03 ra ========== Note.DatasourcesandassociatedspatialresolutionsaregiveninSection s/a IRAS-12μm 2.50×1013 22.0 2.2.ThelargeaperturedataintheIR,shownwithcrossesintheSEDin rtic IRAS-25μm 1.20×1013 28.0 Fig.1,areaddedattheendofthetable. le-a IRAS-60μm 5.00×1012 2.1×102 bs IRAS-100μm 3.00×1012 4.1×102 tra ISO-170μm 1.76×1012 5.4×102 resolutionsallowforabetterseparationofthecoreemissionfrom ct/4 SCUBA-350μm 8.66×1011 7.7 0 SCUBA-450μm 6.67×1011 7.9 thejet.Thepeakvaluesreportedbytheauthorsareincludedinthe 2/2 SCUBA-750μm 4.07×1011 8.1 SED. /72 SCUBA-850μm 3.50×1011 8.1 In the millimetre range, peak values from Submillimeter 4/1 Common-User Bolometric Array (SCUBA) in the 350–850μm 10 Note.DatasourcesandassociatedspatialresolutionsaregiveninSection 0 rangefromLeeuwetal.(2002)areincludedintheSED.SCUBA 1 2.1.ThelargeaperturedataintheIR,shownwithcrossesintheSEDin 9 haspoorspatialresolution,FWHM∼10–15arcsec;however,we 2 Fig.1,areaddedattheendofthetable. b takethesemeasurementsasgenuinecorefluxesastheyfollowfairly y g well the trend defined by the higher resolution data at both radio ue CenAand3C273,theSEDsarefurtherextendedtothegamma s rays,thesebeingtheonlytwosofardetectedatthesehighenergies. atinodnmthiadt-ItRhewAaGveNleinsgtthhse.dTohmisincaonmtmligohnttsroeunrdceisinatshtreomngilliinmdeictrae- t on 1 range. 0 A In the mid-IR range, VLT/VLT Spectrometer and Imager for p 2.1 CentaurusA the Mid-Infrared (VISIR) diffraction-limited data, taken on 2006 ril 2 0 CentaurusAisthenearestradiogalaxyintheSouthernhemisphere. March,at 11.9and18.7μm,fromReunanen etal.(2009)arein- 1 9 Theadoptedscaleis1arcsec∼16pc(D=3.4Mpc;Ferrareseetal. cludedintheSED.Furthermid-IRdataarefromVLTI/Mid-Infrared 2007).Thenucleusofthisgalaxybeginstoshowupintheoptical InterferometricInstrument(MIDI)interferometricobservationsin longwards of 0.7μm (Marconi et al. 2000) and so far remains the8–12μmrangetakenon2005FebruaryandMaywithresolu- unresolveddowntoasizeof(cid:4)1pcFWHMinthe1–10μmrange tionsof30mas(Meisenheimeretal.2007).Thevisibility’sanalysis (fromVLTadaptiveopticsnear-IRimagingbyHaering-Neumayer indicatesthatatleast60percentoftheemissiondetectedbyMIDI etal.2006andVLTinterferometryinthemid-IRbyMeisenheimer comefromanunresolvednucleuswithasizeofFWHM<1pcat etal.2007). 10μm.ThisisalsoconfirmedbymorerecentMIDIobservations ThecurrentlycompiledSEDofCenAcoreisshowninFig.1 byBurtscheretal.(inpreparation).TheSEDincludestwosetsof (Table 1). The radio data are from Very Long Baseline Array MIDIfluxesmeasureddirectlyintheaveragespectrumfromboth (VLBA)quasi-simultaneousobservationscollectedin1997at22.2 periods:(1)thetotalintegratedfluxintheMIDIaperture(0.52× and8.4GHz(Marchepochwasselected)andin1999at8.4,5and 0.62arcsec2) and (2) the core fluxes measured on the correlated 2.2GHz,inallcaseswithresolutionofafewmilliarcsec(Tingay spectrum.At11.9μm,theMIDItotalfluxandtheVISIRnuclear &Murphy2001;Tingay,Preston&Jauncey2001).Thesespatial flux, both from comparable aperture sizes, differ by 15 per cent. (cid:3)C 2010TheAuthors.Journalcompilation(cid:3)C 2010RAS,MNRAS402,724–744 SEDofnearbygalaxycores 729 Table3. SEDoftheNGC1068coreregion. Table4. SEDoftheNGC1097coreregion. Origin Hz Jy Origin Hz Jy INTEGRAL40–100keV 1.69×1019 9.8×10−8 ASCA2–10keV 2.42×1018 8.5×10−8 INTEGRAL20–40keV 7.25×1018 1.3×10−7 ASCA0.5–4keV 2.42×1017 2.4×10−7 EXOSAT2–10keV 1.45×1018 3.7×10−7 WFPC2-F218W 1.40×1015 1.8×10−5 Chandra1keV 2.42×1017 1.5×10−7 WFPC-F555W 5.41×1014 8.8×10−5 NACO-J 2.30×1014 <0.0024 ACSWF-F814W 3.60×1014 0.00074 NACO-H 1.76×1014 0.0056 NACO-J 2.30×1014 0.0011 NACO-K 1.36×1014 0.056 NACO-H 1.76×1014 0.0027 NACO-2.42μm 1.24×1014 0.12 NACO-K 1.36×1014 0.0039 NACO-M 6.70×1013 1.5 NACO-L 7.90×1013 0.011 MIDIcorr-8μm 3.75×1013 1.9 VISIR-11.88μm 2.50×1013 0.025 MIDIcorr-9.6μm 3.1×1013 0.4 VISIR-18.72μm 1.60×1013 0.041 Do MIDIcorr-12μm 2.5×1013 1.2 VLA-B 1.50×1010 0.0056 wn MIDIcorr-13μm 2.3×1013 1.9 VLA-A 8.40×109 0.0031 lo a Subaru-8.72μm 3.4×1013 5.81 VLA-A 4.80×109 0.004 de SSuubbaarruu--91.06.938μμmm 32..19××11001133 43..0832 V=L=A=-=B====== 1.40×109 0.0012 d from Subaru-11.66μm 2.6×1013 10.2 IRAS-12μm 2.50×1013 3.0 h Subaru-12.33μm 2.4×1013 9.3 IRAS-25μm 1.20×1013 7.3 ttp s SKuebcakr-u2-51μ8.m5μm 11..2600××11001133 99..66 IIRRAASS--16000μμmm 35..0000××11001122 1.05×3.0102 ://ac a IRAM-1mm 2.30×1011 0.022 Spitzer-160μm 1.92×1012 1.5×102 de IRAM-3mm 1.15×1011 0.036 SCUBA-850μm 3.53×1011 1.4 m VLA-A 4.30×1010 0.013 ic.o VLA-A 2.25×1010 0.016 Notes.DatasourcesandspatialscalesaregiveninSection2.4.Thelarge up VLBA 8.40×109 0.0054 aperturedataintheIR,shownwithcrossesintheSEDinFig.1,areadded .co VLBA 5.00×109 0.0091 attheendofthetable. m/m VLBA 1.70×109 <0.0026 n ========== ra s IRAS-12μm 2.50×1013 40.0 /a IIRRAASS--2650μμmm 15..2000××11001132 1.88×5.0102 Table5. SEDoftheNGC5506coreregion. rticle-a IIRSOAS-1-71000μμmm 13..7060××11001122 23..89××110022 Origin Hz Jy bstra MKO-390μm 7.69×1011 30.0 INTEGRAL40–100keV 1.69×1019 2.2×10−7 ct/4 CTIO-540μm 5.55×1011 7.0 INTEGRAL20–40keV 7.25×1018 5.8×10−7 02 Napoetretsu.reDdataatasoinurthceesIRan,dshsopwatniawlistchalcersosasreesginivtehneiSnESDecitnioFnig2..31.,aTrheealdadrgede IENinTsEteGinRA0.L2–24–1k0eVkeV 15..4255××11001187 62..11××1100−−66 /2/724 attheendofthetable. WFPC2-V+R 5.00×1014 <2.9×10−5 /11 NACO-J 2.30×1014 0.013 0 0 NACO-H 1.76×1014 0.053 19 NACO-K 1.36×1014 0.080 2 b Thedifferenceisstillcompatiblewiththephotometryerrorswhich NACO-L 7.90×1013 0.29 y g inparticularmaybelargeintheMIDIspectrumphotometry. ISO-spec-6μm 5.00×1013 0.70 ue tcaeknTethnreeidnnaJet-a2,r-.H0IR2,Kμismanc.doTvLheerbseaednadwrseiatchnodmViLpnTlteh/meNenAnatCrerdOowwa-idbthaapnHtdiSvlTein/eWo-pfitrdieceesFfidileatletdar VVVTIIILMSSBIIMRRA---I1112189-s..987p782ecμμ-9mm.6μm 2183...57.30003××××111100001113933 0.0010...59422 st on 10 A Planetary Camera 2 (WFPC2) data in the I band (Marconi et al. p 2000).Shortwardsofthiswavelength,CenA’snucleusisunseen. VVLLBBAI-1-1999947 55..0000××110099 00..003340 ril 20 AnupperlimitderivedfromtheHST/WFPC2imageat0.5μmis VLBA-2000 5.00×109 0.042 19 includedintheSED. PTI-1990 2.30×109 0.087 Athighenergies,CenA’snucleusbecomesvisibleagain,aswell VLBA-1997 1.60×109 0.024 as its jet. The SED includes the 1keV nuclear flux extracted by VLBA-2000 1.60×109 0.046 Evansetal.(2004)fromChandraobservationsin2001andaverage ========== of the 100keV fluxes derived by Rothschild et al. (2006) from IRAS-12μm 2.50×1013 1.3 INTEGRAL observations collected in 2003–2004. In the gamma IRAS-25μm 1.20×1013 4.2 IRAS-60μm 5.00×1012 8.4 rays,theSEDincludesImagingComptonTelescope(COMPTEL) IRAS-100μm 3.00×1012 8.9 measurementsinthe1–30MeVrangetakenduringthe1991–1995 campaignbySteinleetal.(1998). Note.DatasourcesandcorrespondingspatialscalesaregiveninSection2.5. Forcomparativepurposes,Fig.1includeslargeaperturedata– ThelargeaperturedataintheIR,shownwithcrossesintheSEDinFig.1, identifiedwithcrosses–inthemid-to-far-IRregionselectedfrom areaddedattheendofthetable. InfraredSpaceObservatory(ISO;Stickeletal.2004,)andInfrared AstronomicalSatellite(IRAS;Sandersetal.2003).Forconsistency (cid:3)C 2010TheAuthors.Journalcompilation(cid:3)C 2010RAS,MNRAS402,724–744 730 M.A.Prietoetal. Table6. SEDoftheNGC7582coreregion. Table8. SEDoftheNGC3783coreregion. Origin Hz Jy Origin Hz Jy SAX20–100keV 1.45×1019 8.1×10−7 OSSE50–150keV 2.42×1019 2.9×10−7 XMM2–12keV 1.69×1018 1.4×10−6 INTEGRAL17–60keV 9.31×1018 1.3×10−6 ASCA0.5-2-keV 3.03×1017 1.46×10−7 XMM2–10keV 1.45×1018 3.9×10−6 WFPC2-F606W 5.00×1014 3.0×10−6 Einstein0.2–4keV 5.25×1017 7.9×10−6 NICMOS-F160W 1.88×1014 0.011 FUSE-1040A 3.00×1015 0.001 NACO-2.06μm 1.46×1014 0.018 STIS-1150A 2.70×1015 0.0016 NACO-L 7.89×1013 0.096 STIS-1346A 2.20×1015 0.0023 NACO-4.05μm 7.41×1013 0.11 STIS-1480A 2.00×1015 0.0025 TIMMI2-spec-8.5μm 3.53×1013 0.3 STIS-2279A 1.30×1015 0.0045 TIMMI2-spec-9μm 3.33×1013 0.2 STIS-2419A 1.20×1015 0.0056 TIMMI2-spec-9.6μm 3.13×1013 0.08 STIS-2640A 1.13×1015 0.0065 Do TIMMI2-spec-11μm 2.73×1013 0.2 STIS-2900A 1.00×1015 0.0075 wn TIMMI2-spec-12μm 2.50×1013 0.4 STIS-3100A 9.70×1014 0.0076 loa VISIR-11.88μm 2.52×1013 0.40 LCO-U 8.19×1014 0.0056 de VVLISAIR-A-18.72μm 18..6400××1100193 0.00.05659 AACCSS--FF554570MM 55..4485××11001144 00..00006606 d from VLA-A 5.00×109 0.0095 WFPC2-F814W 3.68×1014 0.0099 h ========== NACO-J 2.30×1014 0.023 ttp s IIRRAASS--1225μμmm 21..5200××11001133 27..34 NNAACCOO--KL 17..3960××11001143 00.0.1773 ://ac a IRAS-60μm 5.00×1012 5.2 VISIR-11.88μm 2.50×1013 0.54 de IRAS-100μm 3.00×1012 8.3 VISIR-18.72μm 1.60×1013 1.47 m VLA-A 8.40×109 0.0080 ic.o Note.DatasourcesandspatialscalesaregiveninSection2.6.Thelarge VLA-A 4.80×109 0.013 up aperturedataintheIR,shownwithcrossesintheSEDinFig.1,areadded VLA-A 1.40×109 0.023 .co attheendofthetable. ========== m /m IRAS-12μm 2.50×1013 0.84 n IRAS-25μm 1.20×1013 2.5 ra s IRAS-60μm 5.00×1012 3.3 /a IRAS-100μm 3.00×1012 4.9 rtic le Table7. SEDoftheNGC1566coreregion. Note.DatasourcesandcorrespondingspatialscalesaregiveninSection2.8. -ab Origin Hz Jy TarheealdadrgedeaaptethrteuerenddaotfatihnetthaeblIeR.,shownwithcrossesintheSEDinFig.1, strac t/4 SAX20–100keV 1.45×1019 5.6×10−7 02 Einstein2–4keV 5.25×1017 2.8×10−6 purposes,giventhepoorspatialresolutionoftheSCUBAdata,these /2/7 FOS-1300A 2.30×1015 5.6×10−5 2 FOS-1400A 2.10×1015 8.0×10−5 arealsolabelledwithcrossesintheSED. 4/1 FOS-1800A 1.67×1015 0.00016 CenAisastronglyvariablesourceathighenergies,whereflux 10 0 FOS-2100A 1.40×1015 0.00021 variationscouldbeuptoanorderofmagnitude(Bondetal.1996). 19 WFPC2-160BW 1.87×1015 0.00011 However,duringtheCOMPTELobservationsusedintheSEDthe 2 b WFPC2-F336W 8.92×1014 0.00038 observedvariabilityonthescalesoffewdaysisreportedtobeatthe y g WFPC2-F547M 5.48×1014 0.00050 2σlevelatmost(Steinleetal.1998).CombiningtheOrientedScin- ue WWNNAAFFCCPPOOCC22--JK--FF585154WW 5321....46330878××××1111000011114444 0000..00..0000000012571139 tgliuelmltaictiinoGonsaimStypm(e5ac0tRrkoaemyVeE–txe1prGeEreixVmp)eervniatmrTieeenlsetbs(ycOo4Sp0SepE(eE)r,GcCeRnOEtM.TN)P,oTthrEeeLpgoaarmntodmnEav-narerariy-- st on 10 A abilitymonitoringofthissourceintheIRwasfound.Thecompar- p NVAISCIRO--1L1.88μm 27..5900××11001133 00.0.005798 isonbetweentheVLT/VISIRdatausedinthisworkandequivalent ril 20 VISIR-18.72μm 1.60×1013 0.11 mid-IRdataobtained4yrapart,2002,byWhysong&Antonucci 19 ATCA-8.4GHz 8.40×109 0.0080 (2004) using Keck and Siebenmorgen, Krugel & Spoon (2004) PTI-2.3GHz 2.30×109 0.0050 usingESO/ThermalInfraredMultimodeInstrument(TIMMI2),in- PTI-1.7GHz 1.70×109 <0.006 dicatesadifferencewithVISIRinthe40–50percentrange.CenA’s ========== nucleus is the single source in this study whose HSR SED, from IRAS-12μm 2.50×1013 1.9 radio to millimetre to IR, can be fitted with a single synchrotron IRAS-25μm 1.20×1013 3.0 model (Prieto et al. 2007; see also end of Section 6.3). Thus, a IRAS-60μm 5.00×1012 22.0 fluxdifferenceofafactorof2intheIRisconsistentwithgenuine IRAS-100μm 3.00×1012 58.0 nuclearvariabilityandthedominanceofanon-thermalcomponent Spitzer-160μm 1.92×1012 1.0×102 intheIRspectralregionofthisnucleus. Note.DatasourcesandspatialscalesaregiveninSection2.7.Thelarge RelativeextinctionvaluesinthenuclearregionofCenAwere aperturedataintheIR,shownwithcrossesintheSEDinFig.1,areadded measured from VLT/NACO J − K (Fig. 2) and H − K colour attheendofthetable. maps.TheaveragereddestcoloursaroundthenucleusareJ −K∼ 1.5andJ−H∼1.5,andthebluestcolourswithin∼100pcdistance (cid:3)C 2010TheAuthors.Journalcompilation(cid:3)C 2010RAS,MNRAS402,724–744 SEDofnearbygalaxycores 731 Table9. SEDoftheNGC7469coreregion. Table10. SEDofthe3C273coreregion. Origin Hz Jy Origin Hz Jy INTEGRAL17–60keV 9.31×1018 5.1×10−7 1GeV 2.42×1023 1.4×10−11 XMM2–10keV 1.45×1018 2.9×10−6 300MeV 7.25×1022 8.8×10−11 ROSAT0.1–2.4keV 2.42×1017 9.1×10−6 100MeV 2.42×1022 4.8×10−10 WFPC2-F218W 1.36×1015 0.0027 3MeV 7.25×1020 5.6×10−8 ACS-F330W 8.92×1014 0.0031 1MeV 2.40×1020 1.8×10−7 WFPC2-F547M 5.47×1014 0.0029 500keV 1.21×1020 2.9×10−7 ACS-F550M 5.38×1014 0.0022 100keV 2.42×1019 1.1×10−6 ACS-F814W 3.75×1014 0.0042 50keV 1.21×1019 1.6×10−6 NACO-J 2.37×1014 0.0080 20keV 4.84×1018 3.3×10−6 NACO-H 1.81×1014 0.015 10keV 2.42×1018 4.2×10−6 NICMOS-F187N 1.60×1014 0.019 5keV 1.21×1018 5.9×10−6 Do NACO-K 1.38×1014 0.020 2keV 4.84×1017 8.7×10−6 wn NACO-L 7.89×1013 0.084 1keV 2.42×1017 1.4×10−5 lo a NACO-4.05μm 7.41×1013 0.096 0.5keV 1.21×1017 2.9×10−5 de VVIISSIIRR--1118..8782μμmm 21..5630××11001133 01..5237 00..21kkeeVV 42..8442××11001166 29..458××1100−−54 d from VLA-A 1.49×1010 0.011 1300A 2.31×1015 0.012 h VLA-A 8.40×109 0.015 2100A 1.43×1015 0.019 ttp s MVLEBRILIN 52..0300××110099 00..001124 3U000A 98..9597××11001144 00..002257 ://ac a VLBI 1.70×109 0.021 B 7.00×1014 0.027 de ========== V 5.50×1014 0.029 m IRAS-12μm 2.50×1013 1.6 R 4.43×1014 0.027 ic.o Spitzer-15μm 2.00×1013 1.5 I 3.37×1014 0.028 up Spitzer-20μm 1.50×1013 3.2 NACO-J 2.30×1014 0.032 .co IRAS-25μm 1.20×1013 6.0 NACO-H 1.76×1014 0.047 m/m Spitzer-30μm 9.99×1012 7.8 NACO-K 1.36×1014 0.068 n IRAS-60μm 5.00×1012 27.3 NACO-L 7.90×1013 0.17 ra s IRAS-100μm 3.00×1012 35.2 NACO-M 6.70×1013 0.17 /a Caltech-350μm 8.57×1011 2.23 VLBI-2mm 1.47×1011 2.2 rtic SCUBA-850μm 3.53×1011 0.19 VLBI-3mm 1.00×1011 8.0 le-a Note.DatasourcesandspatialscalesaregiveninSection2.9.Thelarge VVLLBBII 48..3600××11001100 76..8686 bstra aaptethrteuerenddaotfatihnetthaeblIeR.,shownwithcrossesintheSEDinFig.1,areadded VVLLBBAI 12..5200××11001100 49..9198 ct/40 2 VLBI 5.00×109 12.7 /2 ========== /7 fromthenucleusareJ−K=0.68andJ−H=1.04.Takingthese ISO-6.7μm 4.44×1013 0.19 24/1 asreferencecoloursfortheCenAstellarpopulation,theinferred ISO-14.3μm 2.00×1013 0.29 10 extinction around the nucleus is AV ∼ 5–7mag. By comparison, ISO-80μm 3.70×1012 1.29 01 9 theextinctioninferredfromthedepthofthesilicate9.6μmfeature ISO-100μm 2.90×1012 1.35 2 inthelineofsightofthenucleus–fromtheVLT/MIDI-correlated ISO-120μm 2.52×1012 1.55 by spectra–isafactor2–3larger,A ∼13–19mag(seeTable12). ISO-150μm 1.86×1012 1.11 gu v ISO-170μm 1.72×1012 1.29 es ISO-180μm 1.62×1012 1.06 t on 2.2 Circinus ISO-200μm 1.47×1012 1.09 1 0 A Circinus is the second closest AGN in the Southern hemisphere. Note.TheSEDfrom1GeVtotheI bandistakendirectly p The adopted scale is 1arcsec ∼ 19pc (D = 4.2Mpc; Freeman fromTurleretal.(1999).Furtherdataarecompiledinthis ril 2 etal.1977).Circinus’snucleusistheonlyoneinoursamplethat workandthesourcesaregiveninSection3forthisobject. 01 ThelargeaperturedataintheIR,shownwithcrossesinthe 9 is spatially resolved in the VLT/ NACO adaptive optics images SEDinFig.1,areaddedattheendofthetable. from2μmonwards.Thenucleusresolvesintoanelongated,∼2pc size, structure oriented perpendicular to the ionization-gas cone axis(Prietoetal.2004).ItsSEDiscompatiblewithdustemission reference are used in the SED. The beam sizes at the available at a characteristic temperature of 300K; this structure has thus frequencies are6×5.4arcsec2 at20cm,3.4×3.1arcsec2 at13 most of the characteristics of the putative nuclear torus (Prieto cm,1.4×1.3arcsec2at6cmand0.9×0.8arcsec2at3cm. et al. 2004). Further VLTI/MIDI interferometry in the 8–12μm Mid-IR nuclear fluxes are taken from VLT/VISIR diffraction- rangealsoresolvesthecentralemissionintoastructureofthesame limited images at 11.9 and 18.7μm (Reunanen et al. 2009). Fur- characteristics(Tristrametal.2007). thermid-IRdataaretakenfromVLTI/MIDIinterferometryspectra Circinus’sSEDisshowninFig.1(Table2).Thehighestspatial covering the 8–13μm range (Tristram et al. 2007). Two sets of resolutionradiodataavailableforthissource–intherangeofafew MIDI data are included in the SED: the correlated fluxes, which arcsecs only – are presented by Elmouttie et al. (1998). Because correspond to an unresolved source detected with a visibility of ofthispoorresolution,onlythecentralpeakvaluesgivenbythat 10percent,andthetotalfluxesthataremeasuredwithintheMIDI (cid:3)C 2010TheAuthors.Journalcompilation(cid:3)C 2010RAS,MNRAS402,724–744 732 M.A.Prietoetal. D o w n lo a d e d fro m h ttp s ://a c a d e m ic .o u p .c o m /m n ra s /a rtic le -a b s tra c t/4 0 2 /2 /7 2 4 /1 1 0 0 1 9 2 b y g u e s t o n 1 0 A p ril 2 0 1 9 Figure2. Near-IRcolourmapsofthegalaxiesinthisstudy.MostareJ −KorJ–narrow-bandKmapswhenavailable.Onlytheverycentral2–3arcsec radiusFoVisshown.ThesmallbaratthebottomofeachpanelindicatesthespatialresolutionofthemapsandinturntheupperlimitsizetotheAGNcorein theKband.Contoursareover-plottedonsomegalaxiestohelpvisualizethecolourmapstructure. (cid:3)C 2010TheAuthors.Journalcompilation(cid:3)C 2010RAS,MNRAS402,724–744 SEDofnearbygalaxycores 733 D o w n lo a d e d fro m h ttp s ://a c a d e m ic .o u p .c o m /m n ra s /a rtic le -a b s tra c t/4 0 2 /2 /7 2 4 /1 1 0 Figure2–continued 0 1 9 2 0.52×0.62arcsec2slit.Inthelattercase,onlyfluxesat8and9.6μm adaptiveopticsimagesbyPrietoetal.(2004).Shortwardsof1μm, by g areincluded.Forsakeofsimplicity,fluxmeasurementsatthelonger Circinus’s nucleus is undetected; an upper limit at 1μm derived u e MIDIwavelengthsarenotincludedastheyareinverygoodagree- fromtheNACOJ-bandimageisincludedintheSED. st o ment with the VISIR flux at 11.9μm within 5 per cent. Near-IR Atthehighenergies,theSEDincludestheROSAT1keVfluxafter n 1 nuclear fluxes, in the 1–5μm range, are taken from VLT/NACO correction for the hydrogen column density, derived by Contini, 0 A p ril 2 Table11. Galaxiesobservedwithadaptiveopticsinthenear-IRwithVLT/NACO. 01 9 Name Filters(observingdate) Reference CenA J,H,NB-2.02μm,L(2003March–May),K(2004March) Haering-Neumayeretal.(2006) Circinus J,K,NB-2.42μm,L,M(2003March–May) Prietoetal.(2004) NGC1068 K,M(2002November–December),J,H(2004January)J,NB-2.42μm(2005January) Hoenigetal.(2008) NGC7582 2.06μm(2005May–June),L,NB-4.05μm(2005December) Fernandez-Ontiverosetal.(inpreparation) NGC5506 J,K,L,M(2003June) Thiswork NGC1097 J,H,K(2002August),L(2005January) Prietoetal.(2005) NGC1566 K,L(2005January),J(2005November) Thiswork NGC3783 J,K,L(2005January) Thiswork NGC7469 J,H,K(2002November),L,NB-4.05μm(2005December) Thiswork 3C273 J,K,L,M(2003May) Thiswork Note.Galaxiessortedbydistance. (cid:3)C 2010TheAuthors.Journalcompilation(cid:3)C 2010RAS,MNRAS402,724–744

Description:
The spectral energy distribution of the central parsecs of the nearest AGN selected by their warm IR colours, i.e. presenting a relatively flat flux distribution Stickel M., Lemke D., Klaas U., Krause O., Egner S., 2004, A&A, 442, 39.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.