ebook img

The Smarandache Curves on H PDF

2016Β·0.63 MBΒ·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Smarandache Curves on H

Gazi University Journal of Science GU J Sci 29(1):69-77 (2016) 𝟐 The Smarandache Curves on 𝑯 𝟎 Murat SAVAS1 , Atakan Tugkan YAKUT2,ο‚ͺ, Tugba TAMIRCI1 1 Gazi University, Faculty of Sciences, Department of Mathematics, 06500 Teknikokullar, Ankara, Turkey 2 Nigde University, Faculty of Arts and Sciences, Department of Mathematics, 51350, Nigde, Turkey Received: 09/07/2015 Accepted: 29/12/2015 ABSTRACT In this study, we give special Smarandache curves according to the Sabban frame in hyperbolic space and new Smarandache partners in de Sitter space. The existence of duality between Smarandache curves in hyperbolic and de Sitter space is obtained. We also describe how we can depict picture of Smarandache partners in de Sitter space of a curve in hyperbolic space. Finally, two examples are given to illustrate our main results. Key words: Smarandache curves, de Sitter space, Sabban frame, Minkowski space. 1. INTRODUCTION special curves, such as Bertrand, Mannheim, involute, Regular curves have an important role in the theory of evolute, and pedal curves. In the light of the literature, in curves in differential geometry and relativity theory. In the [11] authors introduced a special curve by Frenet-Serret geometry of regular curves in Euclidean or Minkowskian frame vector fields in Minkowski space-time. The new spaces, it is well-known that one of the most important special curve, which is named Smarandache curve problem is the characterization and classification of these according to the Sabban frame in the Euclidean unit sphere, curves. In the theory of regular curves, there are some is defined by Turgut and Yilmaz in Minkowski space-time [11]. Smarandache curves in Euclidean or non-Euclidean ο‚ͺCorresponding author, e-mail: [email protected] 70 GU J Sci, 29(1):69-77 (2016)/ Murat SAVAS, Atakan Tugkan YAKUT, Tugba TAMIRCI spaces have been recently of particular interest for be orthogonal if 〈π‘₯,𝑦βŒͺ =0. Next, we say that an arbitrary 𝐿 researchers. In Euclidean differential geometry, curve 𝛼=𝛼(𝑠) in 𝐸3 can locally be spacelike, timelike, 1 Smarandache curves of a curve are defined to be or null(lightlike) if all of its velocity vectors 𝛼′(𝑠) are, combination of its position, tangent, and normal vectors. respectively, spacelike, timelike, or null for all π‘ πœ–Ξ™. If These curves have been also studied widely [1, 4, 6, 9, 11, ‖𝛼′(𝑠)β€– β‰ 0 for every π‘ πœ–Ξ™, then Ξ± is a regular curve in 𝐿 12]. Smarandache curves play an important role in 𝐸3. A spacelike(timelike) regular curve 𝛼 is 1 Smarandache geometry. They are the objects of parameterized by a pseudo-arc length parameter 𝑠 , which Smarandache geometry, i.e. a geometry which has at least is given by 𝛼:Ξ™βŠ‚β„β†’πΈ3, and then the tangent vector 1 one Smarandachely denied axiom [2]. An axiom is said to 𝛼′(𝑠) along 𝛼 has unit length, that is be Smarandachely denied if it behaves in at least two different ways within the same space. Smarandache βŒ©π›Όβ€²(𝑠),𝛼′(𝑠)βŒͺ𝐿 =1( βŒ©π›Όβ€²(𝑠),𝛼′(𝑠)βŒͺ𝐿 =βˆ’1) geometry has a significant role in the theory of relativity for all π‘ πœ–Ξ™. Let and parallel universes. Ozturk U., et al. studied Smarandache curves in hyperbolic space but they don’t π‘₯=(π‘₯ ,π‘₯ ,π‘₯ ), 𝑦=(𝑦 ,𝑦 ,𝑦 ), 𝑧=(𝑧 ,𝑧 ,𝑧 )πœ– 𝐸3. 1 2 3 1 2 3 1 2 3 1 give dual Smarandache partners of these curves in de Sitter The Lorentzian pseudo-vector cross product is defined as space [6]. We answer it for curves in hyperbolic space and follows: show the Smarandache partners curve of these curves in de π‘₯βˆ§π‘¦=(βˆ’π‘₯ 𝑦 +π‘₯ 𝑦 , π‘₯ 𝑦 βˆ’π‘₯ 𝑦 , π‘₯ 𝑦 βˆ’π‘₯ 𝑦 ) (1) Sitter space. We explain the Smarandache de Sitter duality 2 3 3 2 3 1 1 3 1 2 2 1 of curves in hyperbolic space. In this paper, we give the We remark that the following relations hold: Smarandache partner curves in de Sitter space according to the Sabban frame {𝛼,𝑑,πœ‰} of a curve in hyperbolic space. (i) 〈π‘₯βˆ§π‘¦,𝑧βŒͺ𝐿 =det (π‘₯ 𝑦 𝑧) We obtain the geodesic curvatures and the expressions for (ii) π‘₯∧(π‘¦βˆ§π‘§)=〈π‘₯,𝑦βŒͺ π‘§βˆ’βŒ©π‘₯,𝑧βŒͺ 𝑦 the Sabban frame’s vectors of special Smarandache curves 𝐿 𝐿 on de Sitter surface. In particular, we see that the timelike Let 𝛼:Ξ™βŠ‚β„β†’π»2 be a regular unit speed curve lying 0 π›Όπœ‰-Smarandache curve of a curve 𝛼 does not exist in de fully in 𝐻2. Then its position vector Ξ± is a timelike vector, 0 Sitter space. We give some examples of the Smarandache which implies that the tangent vector 𝑑=𝛼′ and normal curves in hyperbolic space and its dual Smarandache vector πœ‰ are unit spacelike vector for all π‘ πœ–Ξ™. We have the curves in de Sitter space. Furthermore, we give some orthonormal Sabban frame {𝛼(𝑠),𝑑(𝑠),πœ‰(𝑠)} along the examples of special hyperbolic and de Sitter Smarandache curve 𝛼, where πœ‰(𝑠)=𝛼(𝑠)βˆ§π‘‘(𝑠) is the unit spacelike curves, which are found in the study of Yakut et al. [12]. In vector. The corresponding Frenet formula of 𝛼, according her Master thesis [9], Tamirci also studied the curves in de to the Sabban frame, is given by Sitter and hyperbolic spaces using a similar framework. 𝛼′(𝑠)=𝑑(𝑠) 2. PRELIMINARIES {𝑑′(𝑠)=𝛼(𝑠)+πœ…π‘”(𝑠) πœ‰(𝑠) (2) In this section, we use the basic notions and results in πœ‰β€²(𝑠)=βˆ’πœ… (𝑠)𝑑(𝑠) 𝑔 Lorentzian geometry. For more detailed concepts, see [7,8]. Let ℝ3 be the 3-dimensional vector space equipped with the scalar product 〈 ,βŒͺ which is defined by where πœ… (𝑠)=det (𝛼(𝑠),𝑑(𝑠),𝑑′(𝑠)) is the geodesic 𝑔 〈π‘₯,𝑦βŒͺ =βˆ’π‘₯ 𝑦 +π‘₯ 𝑦 +π‘₯ 𝑦 . curvature of 𝛼 on 𝐻02 and 𝑠 is the arc length parameter 𝐿 1 1 2 2 3 3 of Ξ±. In particular, the following relations hold: The space 𝐸3=(ℝ3,〈 ,βŒͺ ) is a pseudo-Euclidean space, 1 𝐿 πœ‰=π›Όβˆ§π‘‘, βˆ’π›Ό=π‘‘βˆ§πœ‰, 𝑑=πœ‰βˆ§π›Ό (3) or Minkowski 3-space. The unit pseudo-sphere (de Sitter space) with index one 𝑆12 in 𝐸13 is given by Now we define a new curve 𝛽:Ξ™βŠ‚β„β†’π‘†12 to be a regular unit speed curve lying fully on 𝑆2 for all π‘ πœ–Ξ™ such 𝑆2 ={π‘₯πœ–πΈ3|〈π‘₯,π‘₯βŒͺ =1}. 1 1 1 𝐿 that its position vector 𝛽 is a unit spacelike vector The unit pseudo-hyperbolic space according to the combination of the position, tangent, and normal vectors of 𝛼. In this case 𝛽′=𝑑 may be a unit 𝐻2 ={π‘₯πœ–πΈ3|〈π‘₯,π‘₯βŒͺ =βˆ’1} 𝛽 0 1 𝐿 timelike or spacelike vector. has two connected components 𝐻02,+ and 𝐻02,βˆ’. Each of Definition 2.1. A unit speed regular curve 𝛽(𝑠̅(𝑠)) lying them can be taken as a model for the 2-dimensional fully in Minkowski 3-space, whose position vector is hyperbolic space 𝐻02. In this paper, we take 𝐻02,+=𝐻02. associated with Sabban frame vectors on another regular Recall that a nonzero vector π‘₯πœ–πΈ3 is spacelike if curve 𝛼(𝑠), is called a Smarandache curve[11]. 1 〈π‘₯,π‘₯βŒͺ >0, timelike if 〈π‘₯,π‘₯βŒͺ <0, and null (lightlike) if 𝐿 𝐿 In the light of this definition, if a regular unit speed curve 〈π‘₯,π‘₯βŒͺ =0. The norm (length) of a vector π‘₯πœ–πΈ3 is given 𝐿 1 𝛼:Ξ™βŠ‚β„β†’π»2 is lying fully on 𝐻2 for all π‘ πœ–Ξ™ and its by β€–π‘₯β€– =√|〈π‘₯,π‘₯βŒͺ | and two vectors π‘₯ and 𝑦 are said to 0 0 𝐿 𝐿 position vector 𝛼 is a unit timelike vector, then the GU J Sci, 29(1):69-77 (2016)/ Murat SAVAS, Atakan Tugkan YAKUT, Tugba TAMIRCI 71 Smarandache curve 𝛽=𝛽(𝑠̅(𝑠)) of the curve 𝛼 is a where regular unit speed curve lying fully in 𝑆2 or 𝐻2. In our work we are interested in curves lying in1 𝑆2 an0d so we 𝑑𝑠̅=|𝑐1βˆ’π‘2πœ…π‘”| (8) 1 𝑑𝑠 √2 have the following: By substituting (8) into (7) we obtain a simple form of Eq. a) The Smarandache curve 𝛽(𝑠̅(𝑠)) may be a spacelike 7 as follows, curve on 𝑆2 or, 1 𝑑 =πœ€π‘‘ (9) 𝛽 b) The Smarandache curve 𝛽(𝑠̅(𝑠)) may be a timelike curve on 𝑆2 for all π‘ πœ–Ξ™. whereπœ€=1 if 𝑐 βˆ’π‘ πœ… >0for all 𝑠 and πœ€=βˆ’1 if 1 1 2 𝑔 𝑐 βˆ’π‘ πœ… <0 for all 𝑠. It can be easily seen that the Let {𝛼,𝑑,πœ‰} and {𝛽,𝑑 ,πœ‰ } be the moving Sabban frames 1 2 𝑔 𝛽 𝛽 tangent vector 𝑑 is a unit spacelike vector. Taking the of 𝛼 and 𝛽, respectively. Then we have the following 𝛽 Lorentzian vector cross product of (4) with (9) we have definitions and theorems of Smarandache curves 𝛽=𝛽(𝑠̅(𝑠)). πœ‰ =π›½βˆ§π‘‘ 𝛽 𝛽 3. CURVES ON π‘―πŸ AND ITS SPACELIKE πœ€ 𝟎 = (𝑐 𝛼+𝑐 πœ‰) (10) SMARANDACHE PARTNERS ON π‘ΊπŸ √2 2 1 𝟏 It is easily seen that πœ‰ is a unit timelike vector. On the Let 𝛼 be a regular unit speed curve on 𝐻2. Then the 𝛽 0 other hand, by taking the derivative of the equation (9) with Smarandache partner curve of Ξ± is either in de Sitter or in respect to 𝑠, we find hyperbolic space. Ξ² is called de Sitter dual of Ξ± in hyperbolic space. In this section we obtain the spacelike 𝑑𝑑𝛽𝑑𝑠̅=πœ€(𝛼+πœ… πœ‰) (11) Smarandache partners in de Sitter space of a curve in 𝑑𝑠̅ 𝑑𝑠 𝑔 hyperbolic space. By substituting (8) into (11) we find Definition 3.1. Let 𝛼=𝛼(𝑠) be a unit speed regular curve lying fully on 𝐻2 with the moving Sabban frame {𝛼,𝑑,πœ‰}. 𝑑′ = √2πœ€ (𝛼+πœ… πœ‰). (12) The curve 𝛽:Ξ™βŠ‚0ℝ→𝑆2 of Ξ± defined by 𝛽 |𝑐1βˆ’π‘2πœ…π‘”| 𝑔 1 Consequently, from (4), (9), and (12), the geodesic 𝛽(𝑠̅(𝑠))=√12(𝑐1𝛼(𝑠)+𝑐2πœ‰(𝑠)) (4) curvature πœ…π‘”π›½ of the curve 𝛽=𝛽(𝑠̅(𝑠)) is explicitly is called the spacelike Ξ±πœ‰-Smarandache curve of Ξ± and fully obtained by lies on 𝑆12, where 𝑐1,𝑐2πœ–β„\{0} and βˆ’π‘12+𝑐22=2. πœ…π›½ =det (𝛽,𝑑 ,𝑑′)= 𝑐1πœ…π‘”βˆ’π‘2 (13) Theorem 3.1. Let 𝛼:Ξ™βŠ‚β„β†’π»2 be a unit speed regular 𝑔 𝛽 𝛽 |𝑐1βˆ’π‘2πœ…π‘”| 0 curve lying fully on 𝐻2 with the Sabban frame {𝛼,𝑑,πœ‰} Thus, the theorem is proved. In three theorems that follow, 0 and geodesic curvature πœ… . If 𝛽:Ξ™βŠ‚β„β†’π‘†2 is the in a similar way as in Theorem 3.1 we obtain the Sabban 𝑔 1 Ξ±πœ‰-Smarandache curve of Ξ± with the Sabban frame {𝛽,𝑑 ,πœ‰ } and the geodesic curvature πœ…π›½of a 𝛽 𝛽 𝑔 frame {𝛽,𝑑𝛽,πœ‰π›½} then the relationships between the spacelike Smarandache curve. We omit the proofs of Sabban frame of 𝛼 and its Ξ±πœ‰-Smarandache curve are Theorems 3.2, 3.3, and 3.4, since they are analogous to the given by proof of Theorem 3.1. 𝛽 𝑐1 0 𝑐2 𝛼 Definition 3.2. Let 𝛼=𝛼(𝑠) be a regular unit speed curve √2 √2 lying fully on 𝐻2. Then the spacelike 𝛼𝑑-Smarandache [𝑑𝛽]=[0 πœ€ 0][𝑑] (5) curve 𝛽:Ξ™βŠ‚β„β†’0𝑆2 of Ξ± defined by πœ‰π›½ 𝑐2πœ€ 0 𝑐1πœ€ πœ‰ 1 √2 √2 𝛽(𝑠̅(𝑠))= 1 (𝑐 𝛼(𝑠)+𝑐 𝑑(𝑠)) (14) where πœ€=Β±1 and its geodesic curvature πœ…π›½ is given by √2 1 2 𝑔 where 𝑐 ,𝑐 πœ–β„\{0} and βˆ’π‘2+𝑐2=2. 1 2 1 2 πœ…π‘”π›½ =|𝑐𝑐11πœ…βˆ’π‘”π‘2βˆ’πœ…π‘π‘”2|. (6) Theorem 3.2. Let 𝛼:Ξ™βŠ‚β„β†’π»02 be a regular unit speed curve lying fully on 𝐻2 with the Sabban frame {𝛼,𝑑,πœ‰} 0 Proof. Differentiating the equation (4) with respect to 𝑠 and geodesic curvature πœ… . If 𝛽:Ξ™βŠ‚β„β†’π‘†2 is the 𝑔 1 and considering (2), we obtain spacelike 𝛼𝑑-Smarandache curve of Ξ±, then its frame 𝑑𝛽𝑑𝑠̅ 1 {𝛽,𝑑 ,πœ‰ } is given by = (𝑐 βˆ’π‘ πœ… )𝑑. 𝛽 𝛽 𝑑𝑠̅𝑑𝑠 √2 1 2 𝑔 This can be rewritten as 𝑑𝑠̅ 1 𝑑 = (𝑐 βˆ’π‘ πœ… )𝑑 (7) 𝛽𝑑𝑠 √2 1 2 𝑔 72 GU J Sci, 29(1):69-77 (2016)/ Murat SAVAS, Atakan Tugkan YAKUT, Tugba TAMIRCI 𝑐1 𝑐2 0 Theorem 3.4. Let 𝛼:Ξ™βŠ‚β„β†’π»2 be a regular unit speed √2 √2 curve lying fully on 𝐻2 with th0e Sabban frame {𝛼,𝑑,πœ‰} 𝛽 𝑐2 𝑐1 𝑐2πœ…π‘” 𝛼 0 and geodesic curvature πœ… . If 𝛽:Ξ™βŠ‚β„β†’π‘†2 is the [𝑑𝛽]= βˆšπ‘22πœ…π‘”2βˆ’2 βˆšπ‘22πœ…π‘”2βˆ’2 βˆšπ‘22πœ…π‘”2βˆ’2 [𝑑] (15) 𝑔 1 πœ‰π›½ βˆ’π‘22πœ…π‘” βˆ’π‘1𝑐2πœ…π‘” βˆ’2 πœ‰ 𝛼gi𝑑vπœ‰e-nS mbya randache curve of 𝛼, then its frame {𝛽,𝑑𝛽,πœ‰π›½} is [√2(𝑐22πœ…π‘”2βˆ’2) √2(𝑐22πœ…π‘”2βˆ’2) √2(𝑐22πœ…π‘”2βˆ’2)] The geodesic curvature πœ…π‘”π›½ of the curve Ξ² is given by 𝑐1 𝑐2 𝑐3 πœ…π‘”π›½ =(𝑐22πœ…π‘”21βˆ’2)5⁄2(𝑐22πœ…π‘”πœ†1βˆ’π‘1𝑐2πœ…π‘”πœ†2βˆ’2πœ†3) (16) [πœ‰π‘‘π›½π›½π›½]= βˆ’π‘22πœ…π‘”βˆ’π‘3βˆšβˆšπ‘(2𝐴3βˆ’π‘1+𝑐3πœ…π‘”) 𝑐2𝑐𝑐13βˆ’βˆ’βˆšβˆšπ‘π‘π΄331πœ…π‘2π‘”πœ…π‘” 𝑐1(𝑐1βˆ’π‘βˆšβˆš2𝑐3πœ…π΄3πœ…π‘”π‘”)βˆ’π‘22 Γ—[π›Όπœ‰π‘‘] (23) where 𝑐22πœ…π‘”2>2 and [ √3𝐴 √3𝐴 √3𝐴 ] where πœ† =βˆ’π‘3πœ… πœ…β€² +𝑐 (𝑐2πœ…2βˆ’2) 1 2 𝑔 𝑔 1 2 𝑔 {πœ† =βˆ’π‘ 𝑐2πœ… πœ…β€² +(𝑐 βˆ’π‘ πœ…2)(𝑐2πœ…2βˆ’2) (17) 𝐴=(𝑐 βˆ’π‘ πœ… )2βˆ’π‘2+𝑐2πœ…2 , (𝑐 βˆ’π‘ πœ… )2>𝑐2βˆ’ 2 1 2 𝑔 𝑔 2 2 𝑔 2 𝑔 1 3 𝑔 2 2 𝑔 1 3 𝑔 2 πœ†3=βˆ’π‘23πœ…π‘”2πœ…π‘”β€² +(𝑐1πœ…π‘”+𝑐2πœ…π‘”β€²)(𝑐22πœ…π‘”2βˆ’2) 𝑐22πœ…π‘”2 and the Smarandache curve Ξ² is a spacelike curve. Furthermore, the geodesic curvature πœ…π›½ of curve 𝛽 is Definition 3.3. Let 𝛼:Ξ™βŠ‚β„β†’π»2 be a regular unit speed 𝑔 0 given by curve lying fully on 𝐻2. Then the spacelike 0 π‘‘πœ‰-Smarandache curve 𝛽:Ξ™βŠ‚β„β†’π‘†12 of 𝛼 defined by πœ…π›½ =((𝑐2πœ… +𝑐2πœ… βˆ’π‘ 𝑐 )πœ† +(βˆ’π‘ 𝑐 πœ… +𝑐 𝑐 )πœ† + 𝑔 2 𝑔 3 𝑔 1 3 1 1 2 𝑔 2 3 2 1 𝛽(𝑠̅(𝑠))=√2(𝑐1𝑑(𝑠)+𝑐2πœ‰(𝑠)) (18) (𝑐12βˆ’π‘1𝑐3πœ…π‘”βˆ’π‘22)πœ†3)Γ—(((𝑐1βˆ’π‘3πœ…π‘”)2βˆ’π‘22+ where 𝑐1,𝑐2πœ–β„\{0} and 𝑐12+𝑐22 =2. 𝑐2πœ…2)5⁄2)βˆ’1 (24) Theorem 3.3. Let 𝛼:Ξ™βŠ‚β„β†’π»2 be a regular unit speed 2 𝑔 0 curve lying fully on 𝐻2 with the Sabban frame {𝛼,𝑑,πœ‰} 0 where and geodesic curvature πœ… . If 𝛽:Ξ™βŠ‚β„β†’π‘†2 is the 𝑔 1 spacelike π‘‘πœ‰-Smarandache curve of 𝛼, then its frame πœ†1=𝑐2(𝑐3πœ…π‘”β€²(𝑐1βˆ’π‘3πœ…π‘”)βˆ’π‘22πœ…π‘”πœ…π‘”β€²) {𝛽,𝑑𝛽,πœ‰π›½} is given by +(𝑐1βˆ’π‘3πœ…π‘”)((𝑐1βˆ’π‘3πœ…π‘”)2βˆ’π‘22+𝑐22πœ…π‘”2) 0 𝑐1 𝑐2 πœ†2=(𝑐1βˆ’π‘3πœ…π‘”)(𝑐3πœ…π‘”β€²(𝑐1βˆ’π‘3πœ…π‘”)βˆ’π‘22πœ…π‘”πœ…π‘”β€²) 𝛽 𝑐1 βˆ’π‘βˆš22πœ…π‘” π‘βˆš1πœ…2𝑔 𝛼 +(𝑐2βˆ’π‘3πœ…π‘”β€²βˆ’π‘2πœ…π‘”2)((𝑐1βˆ’π‘3πœ…π‘”)2βˆ’π‘22+𝑐22πœ…π‘”2) (25) [𝑑𝛽]= √2πœ…π‘”2βˆ’π‘12 √2πœ…π‘”2βˆ’π‘12 √2πœ…π‘”2βˆ’π‘12 [𝑑] (19) πœ†3=𝑐2πœ…π‘”(𝑐3πœ…π‘”β€²(𝑐1βˆ’π‘3πœ…π‘”)βˆ’π‘22πœ…π‘”πœ…π‘”β€²) πœ‰π›½ βˆ’2πœ…π‘” 𝑐1𝑐2 βˆ’π‘12 πœ‰ { +(πœ…π‘”(𝑐1βˆ’π‘3πœ…π‘”)+𝑐2πœ…π‘”β€²)((𝑐1βˆ’π‘3πœ…π‘”)2βˆ’π‘22+𝑐22πœ…π‘”2) [√2(2πœ…π‘”2βˆ’π‘12) √2(2πœ…π‘”2βˆ’π‘12) √2(2πœ…π‘”2βˆ’π‘12)] Example 3.1. Let us consider a regular unit speed curve Ξ± on 𝐻2 defined by he geodesic curvatureπœ…π›½ of the curve Ξ² is given by 0 𝑔 πœ…π›½ = 1 (2πœ… πœ† +𝑐 𝑐 πœ† βˆ’π‘2πœ† ) (20) 𝛼(𝑠)=((π‘ βˆ’1)2+1, (π‘ βˆ’1)2, π‘ βˆ’1). 𝑔 (2πœ…π‘”2βˆ’π‘12)5⁄2 𝑔 1 1 2 2 1 3 2 2 Then the orthonormal Sabban frame {𝛼(𝑠),𝑑(𝑠),πœ‰(𝑠)} of where 𝑐2<2πœ…2 and 1 𝑔 Ξ± can be calculated as follows: πœ†1=βˆ’2𝑐1πœ…π‘”πœ…π‘”β€² βˆ’π‘2πœ…π‘”(2πœ…π‘”2βˆ’π‘12) 𝛼(𝑠)=((π‘ βˆ’1)2+1, (π‘ βˆ’1)2, π‘ βˆ’1) {πœ†2=2𝑐2πœ…π‘”2πœ…π‘”β€² +(𝑐1βˆ’π‘2πœ…π‘”β€² βˆ’π‘1πœ…π‘”2)(2πœ…π‘”2βˆ’π‘12) (21) 2 2 πœ† =βˆ’2𝑐 πœ…2πœ…β€² +(βˆ’π‘ πœ…2+𝑐 πœ…β€²)(2πœ…2βˆ’π‘2) 𝑑(𝑠)=(π‘ βˆ’1, π‘ βˆ’1, 1) 3 1 𝑔 𝑔 2 𝑔 1 𝑔 𝑔 1 πœ‰(𝑠)=((π‘ βˆ’1)2, (π‘ βˆ’1)2βˆ’1, π‘ βˆ’1) { 2 2 Definition 3.4. Let 𝛼:Ξ™βŠ‚β„β†’π»2 be a regular unit speed curve lying fully on 𝐻2. 0 Then the spacelike The geodesic curvature of 𝛼 is βˆ’1. In terms of the 0 definitions, we obtain the spacelike Smarandache curves π›Όπ‘‘πœ‰-Smarandache curve 𝛽:Ξ™βŠ‚β„β†’π‘†2 of 𝛼 defined by 1 on 𝑆2 according to the Sabban frame on 𝐻2. 1 0 1 𝛽(𝑠̅(𝑠))= (𝑐 𝛼(𝑠)+𝑐 𝑑(𝑠)+𝑐 πœ‰(𝑠)) (22) √3 1 2 3 First, when we take 𝑐1=1 and 𝑐2=√3, then the π›Όπœ‰-Smarandache curve is spacelike and given by where 𝑐 ,𝑐 ,𝑐 πœ–β„\{0} and βˆ’π‘2+𝑐2+𝑐2=3. 1 2 3 1 2 3 GU J Sci, 29(1):69-77 (2016)/ Murat SAVAS, Atakan Tugkan YAKUT, Tugba TAMIRCI 73 1 1 1 𝛽 𝛼 1 1 1 1+√3 [𝑑𝛽]=[2 1 βˆ’2][𝑑] 𝛽(𝑠̅(𝑠))=√2(( 2 )(π‘ βˆ’1)2+1, πœ‰π›½ 3 1 1 πœ‰ 2 2 1+√3 ( )(π‘ βˆ’1)2βˆ’βˆš3, (π‘ βˆ’1)(1+√3)) and its geodesic curvature πœ…π›½ is βˆ’1. 2 𝑔 We give a curve 𝛼 in hyperbolic space and its and the Sabban frame of the spacelike π›Όπœ‰-Smarandache Smarandache partners in de Sitter space in Figure 1. curve is given by 4. CURVES IN HYPERBOLIC SPACE AND DUAL 1 √3 𝛽 0 𝛼 √2 √2 TIMELIKE SMARANDACHE PARTNERS [𝑑𝛽]= 0 1 0 [𝑑] πœ‰ √3 1 πœ‰ In this section we obtain the timelike Smarandache partners 𝛽 0 [√2 √2] in de Sitter space of a curve in hyperbolic space. and its geodesic curvature πœ…π›½ is βˆ’1. Theorem 4.1. Let 𝛼:Ξ™βŠ‚β„β†’π»2 be a regular unit speed 𝑔 0 curve lying fully on 𝐻2 . Then the timelike 0 Second, when we take 𝑐1=1 and 𝑐2=√3, then the π›Όπœ‰-Smarandache curve 𝛽:Ξ™βŠ‚β„β†’π‘†12 of 𝛼 does not 𝛼𝑑-Smarandache curve is a spacelike and given by exist. 1 (π‘ βˆ’1)2 Proof. Assume that 𝛼:Ξ™βŠ‚β„β†’π»2 be a regular unit speed 𝛽(𝑠̅(𝑠))= ( +√3(π‘ βˆ’1)+1, 0 √2 2 curve lying fully on 𝐻2. Then the timelike 0 (π‘ βˆ’1)2 +√3(π‘ βˆ’1),(π‘ βˆ’1+√3)) π›Όπœ‰-Smarandache curve 𝛽:Ξ™βŠ‚β„β†’π‘†12 of 𝛼 is defined by 2 1 𝛽(𝑠̅(𝑠))= (𝑐 𝛼(𝑠)+𝑐 πœ‰(𝑠)) (26) and the Sabban frame of the spacelike 𝛼𝑑-Smarandache √2 1 2 curve is given by 𝑐 ,𝑐 πœ–β„\{0}, βˆ’π‘2+𝑐2 =2. Differentiating (26) with 1 2 1 2 1 √3 respect to 𝑠 and using (2), we obtain 𝛽 0 𝛼 √2 √2 𝑑𝛽𝑑𝑠̅ 1 [πœ‰π‘‘π›½π›½]= √33 √13 βˆ’βˆ’βˆšβˆš32 [πœ‰π‘‘] 𝛽′(𝑠)=𝑑𝑠̅𝑑𝑠=√2(𝑐1βˆ’π‘2πœ…π‘”)𝑑 [√2 √2 ] 𝑑𝑠̅ 1 𝑑 = (𝑐 βˆ’π‘ πœ… )𝑑 and its geodesic curvature πœ…π‘”π›½ is βˆ’1. 𝛽𝑑𝑠 √2 1 2 𝑔 Third, when we take 𝑐 =1 and 𝑐 =1, then the where 1 2 π‘‘πœ‰-Smarandache curve is a spacelike curve and given by 𝛽(𝑠̅(𝑠))= 1 ((π‘ βˆ’1)2+π‘ βˆ’1, (π‘ βˆ’1)2+π‘ βˆ’2, 𝑠) 𝑑𝑑𝑠𝑠̅=βˆšβˆ’(𝑐1βˆ’π‘22πœ…π‘”)2 √2 2 2 which is a contradiction. and the Sabban frame of the spacalike π‘‘πœ‰-Smarandache curve is given by In the corollaries which follow, in a similar way as in the 1 1 previous section, we obtain the Sabban frame {𝛽,𝑑𝛽,πœ‰π›½} 𝛽 0 𝛼 [𝑑𝛽]=[ 1 √12 βˆ’βˆš21][𝑑] aSnmda ra ndthaec heg ceuordvees. iWc ec oumrvita ttuhree p roπœ…o𝑔𝛽fs ooff T heao retimmse l4i.k2e, πœ‰π›½ √2 1 βˆ’ 1 πœ‰ 4.3, and 4.4. √2 √2 and its geodesic curvature πœ…π›½ is βˆ’1. Definition 4.1. Let 𝛼:Ξ™βŠ‚β„β†’π»02 be a regular unit speed 𝑔 curve lying fully on 𝐻2. Then, the timelike 0 Finally, when we take 𝑐1=√3, 𝑐2=√3 and 𝑐3=√3, 𝛼𝑑-Smarandache curve 𝛽:Ξ™βŠ‚β„β†’π‘†12 of 𝛼 is defined by 1 then the π›Όπ‘‘πœ‰-Smarandache curve is a spacelike curve and 𝛽(𝑠̅(𝑠))= (𝑐 𝛼(𝑠)+𝑐 𝑑(𝑠)) given by √2 1 2 where 𝑐 ,𝑐 πœ–β„\{0}, and βˆ’π‘2+𝑐2 =2. 𝛽(𝑠̅(𝑠))=((π‘ βˆ’1)2+𝑠,(π‘ βˆ’1)2+π‘ βˆ’2,2π‘ βˆ’1) 1 2 1 2 and the Sabban frame of the spacelike π›Όπ‘‘πœ‰-Smarandache curve is given by 74 GU J Sci, 29(1):69-77 (2016)/ Murat SAVAS, Atakan Tugkan YAKUT, Tugba TAMIRCI Corollary 4.1. Let 𝛼:Ξ™βŠ‚β„β†’π»2 be a regular unit speed πœ† =𝑐3πœ… πœ…β€² +𝑐 (2βˆ’π‘2πœ…2) 0 1 2 𝑔 𝑔 1 2 𝑔 curve lying fully on 𝐻2 with the Sabban frame {𝛼,𝑑,πœ‰} {πœ† =𝑐 𝑐2πœ… πœ…β€² +(𝑐 βˆ’π‘ πœ…2)(2βˆ’π‘2πœ…2) 0 2 1 2 𝑔 𝑔 2 2 𝑔 2 𝑔 and the geodesic curvature πœ…π‘”. If 𝛽:Ξ™βŠ‚β„β†’π‘†12 is the πœ† =𝑐3πœ…2πœ…β€² +(𝑐 πœ… +𝑐 πœ…β€²)(2βˆ’π‘2πœ…2). 3 2 𝑔 𝑔 1 𝑔 2 𝑔 2 𝑔 timelike 𝛼𝑑-Smarandache curve of 𝛼, then its frame {𝛽,𝑑 ,πœ‰ } is given by 𝛽 𝛽 𝑐1 𝑐2 0 Definition 4.2. Let 𝛼:Ξ™βŠ‚β„β†’π»02 be a regular unit √2 √2 𝛽 𝑐2 𝑐1 𝑐2πœ…π‘” 𝛼 speed curve lying fully on 𝐻02. Then, the timelike [𝑑𝛽]= √2βˆ’π‘22πœ…π‘”2 √2βˆ’π‘22πœ…π‘”2 √2βˆ’π‘22πœ…π‘”2 [𝑑] π‘‘πœ‰-Smarandache curve 𝛽:Ξ™βŠ‚β„β†’π‘†12 of 𝛼 is defined by πœ‰π›½ βˆ’π‘22πœ…π‘” βˆ’π‘1𝑐2πœ…π‘” βˆ’2 πœ‰ 1 [√2(2βˆ’π‘22πœ…π‘”2) √2(2βˆ’π‘22πœ…π‘”2) √2(2βˆ’π‘22πœ…π‘”2)] 𝛽(𝑠̅(𝑠))=√2(𝑐1𝑑(𝑠)+𝑐2πœ‰(𝑠)), and the corresponding geodesic curvature πœ…π›½ is given by 𝑔 where 𝑐 ,𝑐 πœ–β„\{0}, and 𝑐2+𝑐2 =2. 1 2 1 2 πœ…π›½ = 1 (𝑐2πœ… πœ† βˆ’π‘ 𝑐 πœ… πœ† βˆ’2πœ† ) 𝑔 (2βˆ’π‘22πœ…π‘”2)5⁄2 2 𝑔 1 1 2 𝑔 2 3 where βˆ’π‘2+𝑐2=2 with 𝑐 ,𝑐 πœ–β„\{0}, 𝑐2πœ…2 <2 and 1 2 1 2 2 𝑔 𝛼 is a unit speed curve o n 𝐻02 (black line) 𝛽 is a unit speed spacelike curve on 𝑆2 (red line) 1 π›Όπœ‰-Smarandache curve 𝛼𝑑-Smarandache curve π‘‘πœ‰-Smarandache curve π›Όπ‘‘πœ‰-Smarandache curve Figure 1. Spacelike Smarandache partner curves of a curve 𝛼 on 𝐻2 0 GU J Sci, 29(1):69-77 (2016)/ Murat SAVAS, Atakan Tugkan YAKUT, Tugba TAMIRCI 75 𝛽 Corollary 4.2. Let 𝛼:Ξ™βŠ‚β„β†’π»2 be a regular unit speed [𝑑𝛽] 0 πœ‰ 𝛽 curve lying fully on 𝐻2 with the Sabban frame {𝛼,𝑑,πœ‰} 0 𝑐 𝑐 𝑐 1 2 3 and geodesic curvature πœ…π‘” . If 𝛽:Ξ™βŠ‚β„β†’π‘†12 is the βˆšπ‘3 𝑐 βˆ’βˆš3𝑐 πœ… π‘βˆšπœ…3 𝛼 2 1 3 𝑔 2 𝑔 timelike π‘‘πœ‰-Smarandache curve of 𝛼, then its frame = βˆšπ΄βˆ— βˆšπ΄βˆ— βˆšπ΄βˆ— [𝑑] {𝛽,𝑑𝛽,πœ‰π›½} is given by βˆ’π‘22πœ…π‘”βˆ’π‘3(βˆ’π‘1+𝑐3πœ…π‘”) 𝑐2𝑐3βˆ’π‘1𝑐2πœ…π‘” 𝑐1(𝑐1βˆ’π‘3πœ…π‘”)βˆ’π‘22 πœ‰ [ √3π΄βˆ— √3π΄βˆ— √3π΄βˆ— ] 0 𝑐1 𝑐2 where √2 √2 𝛽 𝑐1 βˆ’π‘2πœ…π‘” 𝑐1πœ…π‘” 𝛼 π΄βˆ—=𝑐2βˆ’(𝑐 βˆ’π‘ πœ… )2βˆ’π‘2πœ…2, (𝑐 βˆ’π‘ πœ… )2<𝑐2βˆ’π‘2πœ…2 2 1 3 𝑔 2 𝑔 1 3 𝑔 2 2 𝑔 [πœ‰π‘‘π›½π›½]= βˆšπ‘βˆ’122βˆ’πœ…2π‘”πœ…π‘”2 βˆšπ‘π‘121βˆ’π‘22πœ…π‘”2 βˆšπ‘1βˆ’2βˆ’π‘122πœ…π‘”2 [πœ‰π‘‘] a nd the corresponding geodesic curvature πœ…π‘”π›½ is given by [√2(𝑐12βˆ’2πœ…π‘”2) √2(𝑐12βˆ’2πœ…π‘”2) √2(𝑐12βˆ’2πœ…π‘”2)] (𝑐2πœ… +𝑐2πœ… βˆ’π‘ 𝑐 )πœ† +(βˆ’π‘ 𝑐 πœ… +𝑐 𝑐 )πœ† πœ…π›½=( 2 𝑔 3 𝑔 1 3 1 1 2 𝑔 2 3 2) 𝑔 +(𝑐12βˆ’π‘1𝑐3πœ…π‘”βˆ’π‘22)πœ†3 and the corresponding geodesic curvature πœ…π‘”π›½ is given by Γ—((𝑐22βˆ’(𝑐1βˆ’π‘3πœ…π‘”)2βˆ’π‘22πœ…π‘”2)5⁄2)βˆ’1 πœ…π›½ = 1 (2πœ… πœ† +𝑐 𝑐 πœ† +𝑐2πœ† ) 𝑔 (𝑐12βˆ’2πœ…π‘”2)5⁄2 𝑔 1 1 2 2 1 3 where 𝑐 ,𝑐 ,𝑐 πœ–β„\{0}, βˆ’π‘2+𝑐2+𝑐2=3 and 1 2 3 1 2 3 where 𝑐1,𝑐2πœ–β„\{0}, 𝑐12+𝑐22 =2, 𝑐12 >2πœ…π‘”2 and πœ† =𝑐 (βˆ’π‘ πœ…β€²(𝑐 βˆ’π‘ πœ… )+𝑐2πœ… πœ…β€²) 1 2 3 𝑔 1 3 𝑔 2 𝑔 𝑔 +(𝑐 βˆ’π‘ πœ… )(𝑐2βˆ’(𝑐 βˆ’π‘ πœ… )2βˆ’π‘2πœ…2) πœ† =2𝑐 πœ… πœ…β€² βˆ’π‘ πœ… (𝑐2βˆ’2πœ…2) 1 3 𝑔 2 1 3 𝑔 2 𝑔 1 1 𝑔 𝑔 2 𝑔 1 𝑔 {πœ† =βˆ’2𝑐 πœ…2πœ…β€² +(𝑐 βˆ’π‘ πœ…β€² βˆ’π‘ πœ…2)(𝑐2βˆ’2πœ…2) πœ†2=(𝑐1βˆ’π‘3πœ…π‘”)(βˆ’π‘3πœ…π‘”β€²(𝑐1βˆ’π‘3πœ…π‘”)+𝑐22πœ…π‘”πœ…π‘”β€²) 2 2 𝑔 𝑔 1 2 𝑔 1 𝑔 1 𝑔 πœ†3=2𝑐1πœ…π‘”2πœ…π‘”β€² +(𝑐1πœ…π‘”β€²βˆ’π‘2πœ…π‘”2)(𝑐12βˆ’2πœ…π‘”2). +(𝑐2βˆ’π‘3πœ…π‘”β€²βˆ’π‘2πœ…π‘”2)(𝑐22βˆ’(𝑐1βˆ’π‘3πœ…π‘”)2βˆ’π‘22πœ…π‘”2) πœ†3=𝑐2πœ…π‘”(βˆ’π‘3πœ…π‘”β€²(𝑐1βˆ’π‘3πœ…π‘”)+𝑐22πœ…π‘”πœ…π‘”β€²) Definition 4.3. Let 𝛼:Ξ™βŠ‚β„β†’π»02 be a regular unit speed { +(𝑐2πœ…π‘”β€² +πœ…π‘”(𝑐1βˆ’π‘3πœ…π‘”))(𝑐22βˆ’(𝑐1βˆ’π‘3πœ…π‘”)2βˆ’π‘22πœ…π‘”2) curve lying fully on 𝐻2. Then π›Όπ‘‘πœ‰-Smarandache curve 0 𝛽:Ξ™βŠ‚β„β†’π‘†12 of 𝛼 is defined by Example 4.1. Let us consider a regular unit speed curve 𝛼 on 𝐻2 defined by 0 1 𝛽(𝑠̅(𝑠))=√3(𝑐1𝛼(𝑠)+𝑐2𝑑(𝑠)+𝑐3πœ‰(𝑠)) 𝛼(𝑠)=(cosh𝑠,sinh𝑠,0). 𝑐 ,𝑐 ,𝑐 πœ–β„\{0}, βˆ’π‘2+𝑐2+𝑐2 =3. Then the orthonormal Sabban frame {𝛼,𝑑,πœ‰} of the curve 1 2 3 1 2 3 𝛼 and the orthonormal Sabban frame {𝛽,𝑑 ,πœ‰ } of the 𝛽 𝛽 Corollary 4.3. Let 𝛼:Ξ™βŠ‚β„β†’π»02 be a regular unit speed curve 𝛽 and the geodesic curvature πœ…π›½ of a timelike 𝑔 curve lying fully on 𝐻2 with the Sabban frame {𝛼,𝑑,πœ‰} 0 Smarandache curve can be calculated as in the previous and geodesic curvature πœ… . If 𝛽:Ξ™βŠ‚β„β†’π‘†2 is the 𝑔 1 example. The curve 𝛼 and its Smarandache partners are timelike π›Όπ‘‘πœ‰-Smarandache curve of 𝛼, then its frame given in Figure 2. {𝛽,𝑑𝛽,πœ‰π›½} is given by 76 GU J Sci, 29(1):69-77 (2016)/ Murat SAVAS, Atakan Tugkan YAKUT, Tugba TAMIRCI 𝛼 is a unit speed curve on 𝐻2 (black line) 0 𝛽 is a unit speed timelike curve on 𝑆12 (red line) 𝛼𝑑-Smarandache curve π›Όπœ‰-Smarandache curve is undefined π‘‘πœ‰-Smarandache curve π›Όπ‘‘πœ‰-Smarandache curve Figure 2. Timelike Smarandache partner curves of a curve 𝛼 on 𝐻2 0 GU J Sci, 29(1):69-77 (2016)/ Murat SAVAS, Atakan Tugkan YAKUT, Tugba TAMIRCI 77 CONFLICT OF INTEREST No conflict of interest was declared by the authors. REFERENCES [1] Ali, A. T., β€œSpecial Smarandache Curves in the Euclidean Space”, International Journal of Mathematical Combinatorics, Vol.2, 30-36, (2010). [2] Ashbacher, C., Smarandache geometries, Smarandache Notions Journal, Vol.8(13), 212-215, (1997). [3] Asil, V., Korpinar, T. and Bas, S., β€œInextensible flows of timelike curves with Sabban frame in 𝑆12”, Siauliai Math. Semin., Vol.7(15), 5-12, (2012). [4] Cetin, M., Tuncer, Y. and Karacan, M. K., β€œSmarandache Curves According to Bishop Frame in Euclidean 3-Space”, Gen. Math. Notes, Vol.20(2), 50-66, (2014). [5] Izumiya, S., Pei, D. H., Sano, T. and Torii, E., β€œEvolutes of hyperbolic plane curves”, Acta Math. Sinica (English Series), Vol.20(3), 543-550, (2004). [6] Koc Ozturk, E. B., Ozturk, U., Ilarslan, K. and Nesovic, E., β€œOn Pseudohyperbolical Smarandache Curves in Minkowski 3-Space”, Int. J. of Math. and Math. Sci., 7, (2013). [7] O’Neill, B., Semi-Riemannian Geometry with Applications to Relativity, Academic Press, San Diego, London, (1983). [8] Sato, T., β€œPseudo-spherical evolutes of curves on a spacelike surface in three dimensional Lorentz-Minkowski space”, J. Geom. Vol.103(2), 319-331, (2012). [9] Tamirci, T., β€œCurves on surface in three dimensional Lorentz-Minkowski space”, Master Thesis, Niğde University Graduate Scholl Of Natural and Applied Sciences, Niğde, (2014). [10] Taskopru, K. and Tosun, M., β€œSmarandache Curves on 𝑆2”, Bol. Soc. Paran. Mat. (3s.) Vol. 32(1), 51-59, (2014). [11] Turgut M. and Yilmaz S., β€œSmarandache Curves in Minkowski Space-time”, International J. Math. Combin., Vol.3, 51-55, (2008). [12] Yakut, A., Savas, M. and Tamirci T., β€œThe Smarandache Curves on 𝑆2 and Its Duality on 𝐻2”, 1 0 Journal of Applied Mathematics, 12, (2014).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.