ebook img

The search for mathematical roots, 1870-1940: logics, set theories and the foundations of mathematics from Cantor through Russell to Godel PDF

705 Pages·2000·3.35 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The search for mathematical roots, 1870-1940: logics, set theories and the foundations of mathematics from Cantor through Russell to Godel

The Search for Mathematical Roots, 1870(cid:1)1940 Τηισ παγε ιντεντιοναλλψ λεφτ blank The Search for Mathematical Roots, 1870(cid:1)1940 LOGICS, SET THEORIES AND THE FOUNDATIONS OF MATHEMATICS FROM CANTOR THROUGH ¨ RUSSELL TO GODEL I. GRATTAN-GUINNESS PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD Copyright(cid:1)2000byPrincetonUniversityPress PublishedbyPrincetonUniversityPress,41WilliamStreet, Princeton,NewJersey08540 IntheUnitedKingdom:PrincetonUniversityPress,3MarketPlace, Woodstock,Oxfordshire,OX201SY AllRightsReserved LibraryofCongressCataloging-in-PublicationData Grattan-Guinness,I. Thesearchformathematicalroots,1870(cid:1)1940:logics,settheoriesandthefoundations ofmathematicsfromCantorthroughRusselltoG¨odel(cid:1)I.Grattan-Guinness. p. cm. Includesbibliographicalreferencesandindex. ISBN0-691-05857-1Žalk.paper. (cid:2)ISBN0-691-05858-XŽpbk.:alk.paper. 1.Arithmetic(cid:2)Foundations(cid:2)History(cid:2)19thcentury.2. Arithmetic(cid:2)Foundations(cid:2)History(cid:2)20thcentury.3.Settheory(cid:2)History(cid:2)19thcentury.4. Settheory(cid:2)History(cid:2)20thcentury.5.Logic,Symbolicandmathematical(cid:2)History(cid:2)19th century.6.Logic,Symbolicandmathematical(cid:2)History(cid:2)20thcentury.I.Title. QA248.G6842000 510--dc21 00-036694 ThisbookhasbeencomposedinTimesRoman Thepaperusedinthispublicationmeetstheminimumrequirementsof ANSI(cid:1)NISOZ39.48-1992ŽR1997.ŽPermanenceofPaper. www.pup.princeton.edu PrintedintheUnitedStatesofAmerica 10987654321 Disclaimer: Some images in the original version of this book are not available for inclusion in the eBook. C O N T E N T S CHAPTER1 Explanations 1.1 Sallies 3 1.2 Scopeandlimitsofthebook 3 1.2.1 Anoutlinehistory 3 1.2.2 Mathematicalaspects 4 1.2.3 Historicalpresentation 6 1.2.4 Otherlogics,mathematicsandphilosophies 7 1.3 Citations,terminologyandnotations 9 1.3.1 Referencesandthebibliography 9 1.3.2 Translations,quotationsandnotations 10 1.4 Permissionsandacknowledgements 11 CHAPTER2 Preludes: Algebraic Logic and Mathematical Analysis up to 1870 2.1 Planofthechapter 14 2.2 ‘Logique’andalgebrasinFrenchmathematics 14 2.2.1 The‘logique’andclarityof‘id´eologie’ 14 2.2.2 Lagrange’salgebraicphilosophy 15 2.2.3 Themanysensesof‘analysis’ 17 2.2.4 Two Lagrangianalgebras:functionalequations anddifferentialoperators 17 2.2.5 Autonomyforthenewalgebras 19 2.3 SomeEnglishalgebraistsandlogicians 20 2.3.1 ACambridgere(cid:2)i(cid:2)al:the‘AnalyticalSociety’,Lacroix, andtheprofessingofalgebras 20 2.3.2 Thead(cid:2)ocacyofalgebrasbyBabbage,HerschelandPeacock 20 2.3.3 AnOxfordmo(cid:2)ement:Whatelyandtheprofessingoflogic 22 2.4 ALondonpioneer:DeMorganonalgebrasandlogic 25 2.4.1 Summaryofhislife 25 2.4.2 DeMorgan’sphilosophiesofalgebra 25 2.4.3 DeMorgan’slogicalcareer 26 2.4.4 DeMorgan’scontributionstothefoundationsoflogic 27 2.4.5 Beyondthesyllogism 29 2.4.6 Contretempso(cid:2)er‘thequantificationofthepredicate’ 30 2.4.7 Thelogicoftwo-placerelations,1860 32 2.4.8 Analogiesbetweenlogicandmathematics 35 2.4.9 DeMorgan’stheoryofcollections 36 2.5 ALincolnoutsider:Booleonlogicasappliedmathematics 37 2.5.1 Summaryofhiscareer 37 2.5.2 Boole’s‘generalmethodinanalysis’,1844 39 2.5.3 Themathematicalanalysisoflogic,1847:‘electi(cid:2)esymbols’andlaws 40 2.5.4 ‘Nothing’andthe‘Uni(cid:2)erse’ 42 2.5.5 Propositions,expansiontheorems,andsolutions 43 vi CONTENTS 2.5.6 Thelawsofthought, 1854:modifiedprinciplesandextendedmethods 46 2.5.7 Boole’snewtheoryofpropositions 49 2.5.8 ThecharacterofBoole’ssystem 50 2.5.9 Boole’ssearchformathematicalroots 53 2.6 Thesemi-followersofBoole 54 2.6.1 SomeinitialreactionstoBoole’stheory 54 2.6.2 ThereformulationbyJe(cid:2)ons 56 2.6.3 Je(cid:2)ons(cid:2)ersusBoole 59 2.6.4 FollowersofBooleand(cid:1)orJe(cid:2)ons 60 2.7 Cauchy,Weierstrassandtheriseofmathematicalanalysis 63 2.7.1 Differenttraditionsinthecalculus 63 2.7.2 Cauchyandthe EcolePolytechnique 64 2.7.3 ThegradualadoptionandadaptationofCauchy’snewtradition 67 2.7.4 TherefinementsofWeierstrassandhisfollowers 68 2.8 Judgementandsupplement 70 2.8.1 Mathematicalanalysis(cid:2)ersusalgebraiclogic 70 2.8.2 TheplacesofKantandBolzano 71 CHAPTER3 Cantor: Mathematics as Mengenlehre 3.1 Prefaces 75 3.1.1 Planofthechapter 75 3.1.2 Cantor’scareer 75 3.2 Thelaunchingofthe Mengenlehre,1870(cid:1)1883 79 3.2.1 Riemann’sthesis:therealmofdiscontinuousfunctions 79 3.2.2 Heineontrigonometricseriesandtherealline,1870(cid:1)1872 81 3.2.3 Cantor’sextensionofHeine’sfindings,1870(cid:1)1872 83 3.2.4 Dedekindonirrationalnumbers,1872 85 3.2.5 Cantoronlineandplane,1874(cid:1)1877 88 3.2.6 Infinitenumbersandthetopologyoflinearsets,1878(cid:1)1883 89 3.2.7 TheGrundlagen, 1883:theconstructionofnumber-classes 92 3.2.8 TheGrundlagen:thedefinitionofcontinuity 95 3.2.9 ThesuccessortotheGrundlagen, 1884 96 3.3 Cantor’s Actamathematicaphase,1883(cid:1)1885 97 3.3.1 Mittag-LefflerandtheFrenchtranslations,1883 97 3.3.2 Unpublishedandpublished‘communications’,1884(cid:1)1885 98 3.3.3 Order-typesandpartialderi(cid:2)ati(cid:2)esinthe‘communications’ 100 3.3.4 CommentatorsonCantor,1883(cid:1)1885 102 3.4 Theextensionofthe Mengenlehre,1886(cid:1)1897 103 3.4.1 Dedekind’sde(cid:2)elopingsettheory,1888 103 3.4.2 Dedekind’schainsofintegers 105 3.4.3 Dedekind’sphilosophyofarithmetic 107 3.4.4 Cantor’sphilosophyoftheinfinite,1886(cid:1)1888 109 3.4.5 Cantor’snewdefinitionsofnumbers 110 3.4.6 Cardinalexponentiation:Cantor’sdiagonalargument,1891 110 3.4.7 Transfinitecardinalarithmeticandsimplyorderedsets,1895 112 3.4.8 Transfiniteordinalarithmeticandwell-orderedsets,1897 114 3.5 OpenandhiddenquestionsinCantor’s Mengenlehre 114 3.5.1 Well-orderingandtheaxiomsofchoice 114 vii CONTENTS 3.5.2 WhatwasCantor’s‘Cantor’scontinuumproblem’? 116 3.5.3 ‘‘Paradoxes’’andtheabsoluteinfinite 117 3.6 Cantor’sphilosophyofmathematics 119 3.6.1 Amixedposition 119 3.6.2 (No)logicandmetamathematics 120 3.6.3 Thesupposedimpossibilityofinfinitesimals 121 3.6.4 AcontrastwithKronecker 122 3.7 Concludingcomments:thecharacterofCantor’sachievements 124 CHAPTER4 Parallel Processes in Set Theory, Logics and Axiomatics, 1870s(cid:1)1900s 4.1 Plansforthechapter 126 4.2 ThesplittingandsellingofCantor’s Mengenlehre 126 4.2.1 Nationalandinternationalsupport 126 4.2.2 Frenchinitiati(cid:2)es,especiallyfromBorel 127 4.2.3 Couturatoutliningtheinfinite,1896 129 4.2.4 Germaninitiati(cid:2)esfromKlein 130 4.2.5 GermanproofsoftheSchro¨der-Bernsteintheorem 132 4.2.6 PublicityfromHilbert,1900 134 4.2.7 Integralequationsandfunctionalanalysis 135 4.2.8 Kempeon‘mathematicalform’ 137 4.2.9 Kempe(cid:2)who? 139 4.3 Americanalgebraiclogic:Peirceandhisfollowers 140 4.3.1 Peirce,publishedandunpublished 141 4.3.2 InfluencesonPeirce’slogic:father’salgebras 142 4.3.3 Peirce’sfirstphase:Booleanlogicandthecategories,1867(cid:1)1868 144 4.3.4 Peirce’s(cid:2)irtuosotheoryofrelati(cid:2)es,1870 145 4.3.5 Peirce’ssecondphase,1880:thepropositionalcalculus 147 4.3.6 Peirce’ssecondphase,1881:finiteandinfinite 149 4.3.7 Peirce’sstudents,1883:duality,and‘Quantifying’aproposition 150 4.3.8 Peirceon‘icons’andtheorderof‘quantifiers’,1885 153 4.3.9 ThePeirceansinthe1890s 154 4.4 Germanalgebraiclogic:fromtheGrassmannstoSchr¨oder 156 4.4.1 TheGrassmannsonduality 156 4.4.2 Schro¨der’sGrassmannianphase 159 4.4.3 Schro¨der’sPeircean‘lectures’onlogic 161 4.4.4 Schro¨der’sfirst(cid:2)olume,1890 161 4.4.5 Partofthesecond(cid:2)olume,1891 167 4.4.6 Schro¨der’sthird(cid:2)olume,1895:the‘logicofrelati(cid:2)es’ 170 4.4.7 PeirceonandagainstSchro¨derinThemonist,1896(cid:1)1897 172 4.4.8 Schro¨deronCantorianthemes,1898 174 4.4.9 ThereceptionandpublicationofSchro¨derinthe1900s 175 4.5 Frege:arithmeticaslogic 177 4.5.1 FregeandFrege(cid:3) 177 4.5.2 The‘concept-script’calculusofFrege’s‘purethought’,1879 179 4.5.3 Frege’sargumentsforlogicisingarithmetic,1884 183 4.5.4 Kerry’sconceptionofFregeanconceptsinthemid1880s 187 4.5.5 Importantnewdistinctionsintheearly1890s 187 4.5.6 The‘fundamentallaws’oflogicisedarithmetic,1893 191 viii CONTENTS 4.5.7 Frege’sreactionstoothersinthelater1890s 194 4.5.8 More‘fundamentallaws’ofarithmetic,1903 195 4.5.9 Frege,KorseltandThomaeonthefoundationsofarithmetic 197 4.6 Husserl:logicasphenomenology 199 4.6.1 AfollowerofWeierstrassandCantor 199 4.6.2 Thephenomenological‘philosophyofarithmetic’,1891 201 4.6.3 Re(cid:2)iewsbyFregeandothers 203 4.6.4 Husserl’s‘logicalin(cid:2)estigations’,1900(cid:1)1901 204 4.6.5 Husserl’searlytalksinGo¨ttingen,1901 206 4.7 Hilbert:earlyproofandmodeltheory,1899(cid:1)1905 207 4.7.1 Hilbert’sgrowingconcernwithaxiomatics 207 4.7.2 Hilbert’sdifferentaxiomsystemsforEuclideangeometry,1899(cid:1)1902 208 4.7.3 FromGermancompletenesstoAmericanmodeltheory 209 4.7.4 Frege,HilbertandKorseltonthefoundationsofgeometries 212 4.7.5 Hilbert’slogicandprooftheory,1904(cid:1)1905 213 4.7.6 Zermelo’slogicandsettheory,1904(cid:1)1909 216 CHAPTER5 Peano: the Formulary of Mathematics 5.1 Prefaces 219 5.1.1 Planofthechapter 219 5.1.2 Peano’scareer 219 5.2 Formalisingmathematicalanalysis 221 5.2.1 Impro(cid:2)ingGenocchi,1884 221 5.2.2 De(cid:2)elopingGrassmann’s‘geometricalcalculus’,1888 223 5.2.3 Thelogisticofarithmetic,1889 225 5.2.4 Thelogisticofgeometry,1889 229 5.2.5 Thelogisticofanalysis,1890 230 5.2.6 Bettazzionmagnitudes,1890 232 5.3 The Ri(cid:2)ista:Peanoandhisschool,1890(cid:1)1895 232 5.3.1 The‘societyofmathematicians’ 232 5.3.2 ‘Mathematicallogic’,1891 234 5.3.3 De(cid:2)elopingarithmetic,1891 235 5.3.4 Infinitesimalsandlimits,1892(cid:1)1895 236 5.3.5 Notationsandtheirrange,1894 237 5.3.6 Peanoondefinitionbyequi(cid:2)alenceclasses 239 5.3.7 Burali-Forti’stextbook,1894 240 5.3.8 Burali-Forti’sresearch,1896(cid:1)1897 241 5.4 The Formulaireandthe Ri(cid:2)ista,1895(cid:1)1900 242 5.4.1 Thefirsteditionofthe Formulaire,1895 242 5.4.2 Towardsthesecondeditionofthe Formulaire,1897 244 5.4.3 Peanoontheeliminabilityof‘the’ 246 5.4.4 Frege(cid:2)ersusPeanoonlogicanddefinitions 247 5.4.5 Schro¨der’ssteamships(cid:2)ersusPeano’ssailingboats 249 5.4.6 Newpresentationsofarithmetic,1898 251 5.4.7 Padoaonclasshood,1899 253 5.4.8 Peano’snewlogicalsummary,1900 254 5.5 PeanistsinParis,August1900 255 5.5.1 AnItalianFridaymorning 255 ix CONTENTS 5.5.2 Peanoondefinitions 256 5.5.3 Burali-Fortiondefinitionsofnumbers 257 5.5.4 Padoaondefinabilityandindependence 259 5.5.5 Pierionthelogicofgeometry 261 5.6 Concludingcomments:thecharacterofPeano’sachievements 262 5.6.1 Peano’slittledictionary,1901 262 5.6.2 Partlygraspedopportunities 264 5.6.3 Logicwithoutrelations 266 CHAPTER6 Russell’s Way In: From Certainty to Paradoxes, 1895(cid:1)1903 6.1 Prefaces 268 6.1.1 Plansfortwochapters 268 6.1.2 Principalsources 269 6.1.3 RussellasaCambridgeundergraduate,1891(cid:1)1894 271 6.1.4 Cambridgephilosophyinthe1890s 273 6.2 Three philosophical phases in the foundation of mathematics, 1895(cid:1)1899 274 6.2.1 Russell’sidealistaxiomaticgeometries 275 6.2.2 Theimportanceofaxiomsandrelations 276 6.2.3 Apairof pasdedeux withParis:CouturatandPoincar´eongeometries 278 6.2.4 TheemergenceofWhitehead,1898 280 6.2.5 TheimpactofG.E.Moore,1899 282 6.2.6 Threeattemptedbooks,1898(cid:1)1899 283 6.2.7 Russell’sprogresswithCantor’sMengenlehre, 1896(cid:1)1899 285 6.3 Fromneo-Hegelianismtowards‘Principles’,1899(cid:1)1901 286 6.3.1 Changingrelations 286 6.3.2 Spaceandtime,absolutely 288 6.3.3 ‘PrinciplesofMathematics’,1899(cid:1)1900 288 6.4 ThefirstimpactofPeano 290 6.4.1 The ParisCongressofPhilosophy,August1900: Schro¨der (cid:2)ersusPeanoon‘the’ 290 6.4.2 Annotatingandpopularisingintheautumn 291 6.4.3 DatingtheoriginsofRussell’slogicism 292 6.4.4 Draftingthelogicofrelations,October1900 296 6.4.5 Part3of Theprinciples, No(cid:2)ember1900:quantityandmagnitude 298 6.4.6 Part4,No(cid:2)ember1900:orderandordinals 299 6.4.7 Part5,No(cid:2)ember1900:thetransfiniteandthecontinuous 300 6.4.8 Part6,December1900:geometriesinspace 301 6.4.9 Whiteheadon‘thealgebraofsymboliclogic’,1900 302 6.5 Convolutingtowardslogicism,1900(cid:1)1901 303 6.5.1 Logicismasgeneralisedmetageometry,January1901 303 6.5.2 ThefirstpaperforPeano,February1901:relationsandnumbers 305 6.5.3 CardinalarithmeticwithWhiteheadandRussell,June1901 307 6.5.4 ThesecondpaperforPeano,March(cid:1)August1901:settheorywithseries 308 6.6 From‘fallacy’to‘contradiction’,1900(cid:1)1901 310 6.6.1 RussellonCantor’s‘fallacy’,No(cid:2)ember1900 310 6.6.2 Russell’sswitchtoa‘contradiction’ 311

Description:
While many books have been written about Bertrand Russell's philosophy and some on his logic, I. Grattan-Guinness has written the first comprehensive history of the mathematical background, content, and impact of the mathematical logic and philosophy of mathematics that Russell developed with A. N.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.