UUnniivveerrssiittyy ooff SSoouutthh CCaarroolliinnaa SScchhoollaarr CCoommmmoonnss Theses and Dissertations 1-1-2013 TThhee SSccooppee ooff tthhee BBiiss--UUrreeaa MMaaccrrooccyyccllee AAsssseemmbbllyy MMoottiiff Michael F. Geer University of South Carolina Follow this and additional works at: https://scholarcommons.sc.edu/etd Part of the Chemistry Commons RReeccoommmmeennddeedd CCiittaattiioonn Geer, M. F.(2013). The Scope of the Bis-Urea Macrocycle Assembly Motif. (Doctoral dissertation). Retrieved from https://scholarcommons.sc.edu/etd/2390 This Open Access Dissertation is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. THE SCOPE OF THE BIS-UREA MACROCYCLE ASEMBLY MOTIF by Michael F. Geer Bachelor of Science Clarion University of Pennsylvania, 2008 Submitted in Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy in Chemistry College of Arts and Sciences University of South Carolina 2013 Accepted by: Linda S. Shimizu, Major Professor Brian Benicewicz, Chairman, Examining Committee Stanley Angel, Committee Member Christopher Williams, Committee Member Lacy Ford, Vice Provost and Dean of Graduate Studies ©Copyright by Michael F Geer, 2013 All Rights Reserved ii DEDICATION This work is dedicated to my wife Dee and my three children, Schuyler, Devon and Alexis, without whose unwavering support this could not have been possible. iii ACKNOWLEDGEMENTS I would like to take the opportunity to thank all those who contributed and helped me in my path to this thesis. First to Dr. Linda Shimizu whose leadership and teaching helped me to become the scientist I am today. Also, whose patience and compassion proved invaluable during my growth. Also, to the Shimizu group members who proved to be great friends and peers, including Yeuwen, Sandipan, and Kinkini, who’s involved debates I will miss. To Weiwei and Sahan who have proven to be good friend I wish all the luck with their futures. I would also like to thank the University of South Carolina’s Dean’s Dissertation Fellowship and the NSF (CHE-1012298, CHE-0718171 and CHE-1048629 (computational center)) for their financial support. I would like to thank my Family, my mom and dad who have been great support and inspiration to strive to be great at all I do. Finally and most importantly to my wife and children who have sacrificed a lot to allow me to follow my dream and allow me the time I needed to be successful. iv ABSTRACT From the formation of rock candy crystals, to the functionality of DNA in the cell, to the cosmic dust throughout the universe, supramolecular chemistry has a great impact and importance in the world around us. In this thesis, we explore the supramolecular interactions and self-assembly of bis-urea macrocyclic systems and investigate how their structure and assembly influences bulk properties and functionality. Specifically, in chapter one, we review the factors that guide, limit, and define supramolecular structures from the atomic to the centimeter scale. In chapter two, we investigate the incorporation of benzophenone, a well known triplet sensitizer, within a bis-urea macrocycle and its effects on the photophysical properties. Bis-urea macrocycles consist of two urea groups and two C-shaped spacers. We observe upon self-assembly that the benzophenone bis-urea macrocycle generates a host with an unusually stable radical, which was detected by Electron Paramagnetic Resonance spectroscopy (EPR). The host crystals are porous structures that are able to absorb guests including alkenes and aromatics in the interior channel. UV-irradiation of the benzophenone macrocycle in oxygenated solvents resulted in the generation of singlet oxygen. Solid complexes of the host and 2-methyl-2-butene or cumene facilitated selective oxidation of the guest in good conversion when irradiated under an oxygen atmosphere. v In chapter three, we investigate the synthesis and assembly of macrocyclic systems that employ expanded aryl spacers. Incorporation of 2,7-dimethyl naphthalene resulted in a macrocycle that had a unique “bowl shaped monomer with an unusual parallel urea conformation that disrupted the typical urea self-assembly. The incorporation of 1,3-dimethyl and 4-bromo-1,3-dimethyl naphthalene spacers showed the formation of macrocycles that display favorable conformations for the assembly into columnar structures. The bromo analog shows a propensity for halogen bonding interactions. Finally, in chapter four, we explore the co-crystallization of a pyridyl bis-urea macrocycle with halogenated compounds in order to examine the ability of this macrocycle to act as a Lewis base in the formation of halogen bonds. The macrocycle was co-crystallized with a series of halogen bond donors. X-ray quality crystals were obtained by slow evaporation of the host with iodopentafluoro benzene and diiodotetrafluoro ethane from methylene chloride solutions. The crystal structures of these complexes show very strong halogen bonds with R-X•••B distances from 2.179- 2.745 Å that are of an average only 78 % of the sum of the Van der Waals radii for iodine and oxygen. These halogen bonds were also analyzed through DFT calculations, and we estimate the association energies to be 7.381 kcal mol-1 for iodopentafluoro benzene and 10.331 kcal mol-1 for diodotetrafluoro ethane. These results suggest that the pyridyl hosts will be a strong organizing motif for co-crystallizing electrophilic halides. In the future, we plan to explore the application of this motif for organizing molecules with important optical and electronic properties. vi TABLE OF CONTENTS DEDICATION ......................................................................................................................... ii ACKNOWLEDGEMENTS ................................................................................................... iii ABSTRACT.............................................................................................................................. v LIST OF TABLES ..................................................................................................................xi LIST OF FIGURES ............................................................................................................... xii LIST OF SCHEMES .......................................................................................................... xviii CHAPTER 1. SUPRAMOLECULAR CHEMISTRY: ASSEMBLY AND SELF- ORGANIZATION.................................................................................................................... 1 1.1. Abstract ...................................................................................................................... 1 1.2. Introduction ................................................................................................................. 2 1.3. Key Players in Self-assembly .................................................................................... 4 1.4. Assembly in Solution to Yield Discrete Structures ................................................ 12 1.5. Summary and Conclusions ....................................................................................... 24 1.6. References ................................................................................................................. 27 CHAPTER 2. SELF-ASSEMBLED BENZOPHENONE BIS-UREA MACROCYCLES FACILITATE SELECTIVE OXIDATIONS BY SINGLET OXYGEN ..................................................................................................... 40 2.1. Abstract ..................................................................................................................... 40 2.2. Background ............................................................................................................... 41 vii 2.3. Structural Analysis of Host 2.1 ................................................................................ 46 2.4. Photophysical Characterization of Host 2.1 ............................................................ 47 2.5. Production of Singlet Oxygen .................................................................................. 55 2.6. Absorption of Small Molecules by Host 2.1 Crystals ............................................ 56 2.7. Oxidation of Host 2.1•Guest Complexes ................................................................ 61 2.8. EPR Experiments ...................................................................................................... 67 2.9. Future Work .............................................................................................................. 74 2.10. Conclusions ............................................................................................................. 78 2.11. Experimental ........................................................................................................... 80 2.12. References ............................................................................................................... 94 CHAPTER 3. SYNTHESIS, CHARACTERIZATION AND CRYSTAL ENGINEERING OF NAPHTHALENE BIS-UREA MACROCYCLES. ................105 3.1. Abstract ...................................................................................................................105 3.2. Background .............................................................................................................106 3.3. Analysis of the bis-Urea Building Block and Design of New Macrocycles ............................................................................................................112 3.4. Synthesis of 2,7-Dimethyl Naphthalene bis-Urea Macrocycle (3.12) .......................................................................................................................115 3.5. Crystal Structure Characterization of 2,7-Dimethyl Naphthalene Bis-Urea Macrocycle (3.12) ...................................................................................116 3.6. Synthesis of 1,3-Dimethyl Naphthalene Bis-Urea Macrocycle (3.13) .......................................................................................................................120 3.7. Crystal Structure Characterization of 1,3-Dimethyl Naphthalene Bis-Urea Macrocycle [C H N O ] (3.13). ..........................................................122 38 46 6 2 3.8. Synthesis of 4-Bromo-1,3-Dimethyl Naphthalene Bis-Urea Macrocycle (3.14) ...................................................................................................125 3.9. Crystal Structure Characterization of 4-Bromo-1,3-Dimethyl Naphthalene Bis-Urea Macrocycle (3.14) .............................................................126 viii 3.10. Conclusions ...........................................................................................................129 3.11. Summary and Future Work ..................................................................................129 3.12. Experimental .........................................................................................................131 3.13. References .............................................................................................................152 CHAPTER 4. CO-CRYSTALLIZATION THROUGH HALOGEN BONDING WITH PYRIDYL BIS-UREA MACROCYCLE....................................156 4.1. Abstract ...................................................................................................................156 4.2. Background .............................................................................................................157 4.3. Design of Experiments ...........................................................................................165 4.4. Examining the Pyridyl Bis-Urea Macrocycle by Computational Methods ...................................................................................................................167 4.5. Evaluation of the Oxygen Lone Pair in the Pytidyl Bis-Urea Macrocycle (4.2) as a Halogen Bond Acceptor ....................................................168 4.6. Ionic Salts of the Pyridyl Bis-Urea Macrocycle. ..................................................174 4.7. Computational Examination of the Halogen Bonds .............................................178 4.8. Solid-to-Solid Transformations and Analyzing the Uptake of Ethylene Glycol ......................................................................................................184 4.9. Future Work ............................................................................................................186 4.10. Summary and Conclusions ...................................................................................188 4.11. Experimental .........................................................................................................189 4.12. References .............................................................................................................201 BIBLIOGRAPHY ................................................................................................................205 ix
Description: