ebook img

The school dropout problem in major cities of New York State: Buffalo PDF

324 Pages·1963·13.782 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The school dropout problem in major cities of New York State: Buffalo

ThermoelectricEnergyConversion BasicConceptsandDeviceApplications RelatedTitles PrintISBN:978-3-527-33784-2 Briand,D.,Yeatman,E.,Roundy,S.(eds.) AdobePDFISBN:978-3-527-69022-0 MicroEnergyHarvesting WOLobookPDFISBN:978-3-527-69023-7 2015 eMobiISBN:978-3-527-69024-4 PrintISBN:978-3-527-31902-2 ePubISBN:978-3-527-69025-1 eMobiISBN:978-3-527-67291-2 ePubISBN:978-3-527-67292-9 Magdassi,S.,Kamyshny,A., AdobePDFISBN:978-3-527-67293-6 Shacham-Diamand,Y.(eds.) ISBN:978-3-527-67294-3 Nanomaterialsfor2Dand3DPrinting 2017 Klauk,H.(ed.) PrintISBN:978-3-527-33819-1 OrganicElectronicsII WOLobookPDFISBN:978-3-527-68579-0 MoreMaterialsandApplications ePubISBN:978-3-527-68580-6 2012 AdobePDFISBN:978-3-527-68582-0 PrintISBN:978-3-527-32647-1 eMobiISBN:978-3-527-68584-4 ISBN:978-3-527-64021-8 ePubISBN:978-3-527-64022-5 Subramanian,V.(ed.) AdobePDFISBN:978-3-527-64023-2 2Dand3DPrinting-basedFabrication eMobiISBN:978-3-527-64024-9 2016 PrintISBN:978-3-527-33826-9 Eibl,O.,Nielsch,K.,Peranio,N.,Völklein, WOLobookPDFISBN:978-3-527-68602-5 F.(eds.) ePubISBN:978-3-527-68603-2 ThermoelectricBi2Te3Nanomaterials eMobiISBN:978-3-527-68604-9 2015 AdobePDFISBN:978-3-527-68605-6 PrintISBN:978-3-527-33489-6 ISBN:978-3-527-67260-8 Anders,J.,Korvink,J.G.(eds.) eMobiISBN:978-3-527-67261-5 MicroandNanoScaleNMR ePubISBN:978-3-527-67262-2 TechnologiesandSystems AdobePDFISBN:978-3-527-67263-9 2018 PrintISBN:978-3-527-34056-9 Brand,O.,Dufour,I.,Heinrich,S.M., WOLobookPDFISBN:978-3-527-69728-1 Josse,F.(eds.) ePubISBN:978-3-527-69733-5 ResonantMEMS AdobePDFISBN:978-3-527-69734-2 Fundamentals,Implementation,and eMobiISBN:978-3-527-69735-9 Application 2015 Cicoira,F.,Santato,C.(eds.) PrintISBN:978-3-527-33545-9 OrganicElectronics ISBN:978-3-527-67633-0 EmergingConceptsandTechnologies eMobiISBN:978-3-527-67634-7 2013 ePubISBN:978-3-527-67635-4 PrintISBN:978-3-527-41131-3 AdobePDFISBN:978-3-527-67636-1 ISBN:978-3-527-65096-5 eMobiISBN:978-3-527-65097-2 Caironi,M.,Noh,Y.(eds.) ePubISBN:978-3-527-65098-9 LargeAreaandFlexibleElectronics AdobePDFISBN:978-3-527-65099-6 2015 PrintISBN:978-3-527-33639-5 Lin,Y.,Lan,J.,Liu,Y.,Nan,C.(eds.) ISBN:978-3-527-67997-3 OxideThermoelectricMaterials eMobiISBN:978-3-527-67998-0 FromBasicPrinciplestoApplications ePubISBN:978-3-527-67999-7 2017 AdobePDFISBN:978-3-527-68000-9 PrintISBN:978-3-527-34197-9 AdobePDFISBN:978-3-527-80752-9 Sun,Y.,Liu,X.(eds.) eMobiISBN:978-3-527-80753-6 Micro-andNanomanipulationTools ePubISBN:978-3-527-80754-3 2015 WOLobookPDFISBN:978-3-527-80755-0 Thermoelectric Energy Conversion BasicConceptsandDeviceApplications Editedby DianaDávilaPineda AlirezaRezania Editors AllbookspublishedbyWiley-VCHare carefullyproduced.Nevertheless,authors, Dr.DianaDávilaPineda editors,andpublisherdonotwarrantthe IBMResearch–ZurichLab informationcontainedinthesebooks, Science&TechnologyDepartment includingthisbook,tobefreeoferrors. Säumerstrasse4 Readersareadvisedtokeepinmindthat 8803Rüschlikon statements,data,illustrations,procedural Switzerland detailsorotheritemsmayinadvertently beinaccurate. Dr.AlirezaRezania LibraryofCongressCardNo.: AalborgUniversity appliedfor DepartmentofEnergyTechnology Pontoppidanstraede101 9220Aalborg BritishLibraryCataloguing-in-Publication Denmark Data Acataloguerecordforthisbookis availablefromtheBritishLibrary. Bibliographicinformationpublishedby theDeutscheNationalbibliothek TheDeutscheNationalbibliothek liststhispublicationintheDeutsche Nationalbibliografie;detailedbibliographic dataareavailableontheInternetat <http://dnb.d-nb.de>. ©2017Wiley-VCHVerlagGmbH&Co. KGaA,Boschstr.12,69469Weinheim, Germany Allrightsreserved(includingthoseof translationintootherlanguages).No partofthisbookmaybereproducedin anyform–byphotoprinting,microfilm, oranyothermeans–nortransmitted ortranslatedintoamachinelanguage withoutwrittenpermissionfromthe publishers.Registerednames,trademarks, etc.usedinthisbook,evenwhennot specificallymarkedassuch,arenottobe consideredunprotectedbylaw. PrintISBN: 978-3-527-34071-2 ePDFISBN: 978-3-527-69814-1 ePubISBN: 978-3-527-69813-4 MobiISBN: 978-3-527-69812-7 oBookISBN: 978-3-527-69811-0 CoverDesign SchulzGrafik-Design, Fußgönheim,Germany Typesetting SPiGlobal,Chennai,India PrintingandBinding Printedonacid-freepaper v Contents AbouttheEditors xiii SeriesEditors’Preface xv ListofContributors xvii 1 UtilizingPhaseSeparationReactionsforEnhancementofthe ThermoelectricEfficiencyinIV–VIAlloys 1 YanivGelbstein 1.1 Introduction 1 1.2 IV–VIAlloysforWasteHeatThermoelectricApplications 2 1.3 ThermodynamicallyDrivenPhaseSeparationReactions 6 1.4 SelectedIV–VISystemswithEnhancedThermoelectricProperties FollowingPhaseSeparationReactions 9 1.5 ConcludingRemarks 11 References 11 2 NanostructuredMaterials:EnhancingtheThermoelectric Performance 15 NgoVanNongandLeThanhHung 2.1 Introduction 15 2.2 ApproachesforImprovingZT 16 2.3 RecentProgressinDevelopingBulkThermoelectricMaterials 18 2.4 BulkNanostructuredThermoelectricMaterials 20 2.4.1 Bi Te -BasedNanocomposites 20 2 3 2.4.2 PbTe-BasedNanostructuredMaterials 21 2.4.3 Half-HeuslerAlloys 22 2.4.4 NanostructuredSkutteruditeMaterials 24 2.4.5 NanostructuredOxideMaterials 26 2.4.5.1 p-TypeOxides 26 2.4.5.2 n-TypeOxides 28 2.5 OutlookandChallenges 28 Acknowledgement 29 References 29 vi Contents 3 OrganicThermoelectricMaterials 37 SimoneFabiano,IoannisPetsagkourakis,GuillaumeFleury,Georges HadziioannouandXavierCrispin 3.1 Introduction 37 3.2 SeebeckCoefficientandElectronicStructure 41 3.3 SeebeckCoefficientandChargeCarrierMobility 44 3.4 OptimizationoftheFigureofMerit 45 3.5 N-DopingofConjugatedPolymers 46 3.6 ElasticThermoelectricPolymers 48 3.7 Conclusions 48 Acknowledgments 50 References 50 4 SiliconforThermoelectricEnergyHarvesting Applications 55 DarioNarducci,LucaBelsitoandAlexMorata 4.1 Introduction 55 4.1.1 SiliconasaThermoelectricMaterial 55 4.1.2 CurrentUsesofSiliconinTEGs 56 4.2 BulkandThin-FilmSilicon 57 4.2.1 Single-CrystallineandPolycrystallineSilicon 57 4.2.2 DegenerateandPhase-SegregatedSilicon 60 4.3 NanostructuredSilicon:PhysicsofNanowiresandNanolayers 63 4.3.1 Introduction 63 4.3.2 ElectricalTransportinNanostructuredThermoelectricMaterials 63 4.3.3 PhononTransportinNanostructuredThermoelectricMaterials 66 4.4 Bottom-UpNanowires 66 4.4.1 PreparationStrategies 66 4.4.2 ChemicalVaporDeposition(CVD) 67 4.4.3 MolecularBeamEpitaxy(MBE) 68 4.4.4 LaserAblation 68 4.4.5 Solution-BasedTechniques 69 4.4.6 CatalystMaterials 69 4.4.7 CatalystDepositionMethods 70 4.5 MaterialPropertiesandThermoelectricEfficiency 71 4.6 Top-DownNanowires 71 4.6.1 PreparationStrategies 71 4.6.2 MaterialPropertiesandThermoelectricEfficiency 75 4.7 ApplicationsofBulkandThin-FilmSiliconandSiGeAlloystoEnergy Harvesting 77 4.8 ApplicationsofNanostructuredSilicontoEnergyHarvesting 79 4.8.1 Bottom-UpNanowires 79 4.8.2 Top-DownNanowires 80 4.9 SummaryandOutlook 83 Acknowledgments 84 References 84 Contents vii 5 TechniquesforCharacterizingThermoelectricMaterials: MethodsandtheChallengeofConsistency 93 Hans-FridtjofPernau 5.1 Introduction–HittingtheTarget 93 5.2 ThermalTransportinGasesandSolid-StateMaterials 94 5.3 TheCombinedParameterZT-Value 97 5.3.1 ElectricalConductivity 98 5.3.2 SeebeckCoefficient 101 5.3.3 ThermalConductivity 103 5.4 Summary 107 Acknowledgments 107 References 107 6 PreparationandCharacterizationofTE Interfaces/Junctions 111 GaoMinandMatthewPhillips 6.1 Introduction 111 6.2 EffectsofElectricalandThermalContactResistances 111 6.3 PreparationofThermoelectricInterfaces 114 6.4 CharacterizationofContactResistanceUsingScanning Probe 117 6.5 CharacterizationofThermalContactUsingInfrared Microscope 121 6.6 Summary 123 Acknowledgments 124 References 124 7 ThermoelectricModules:PowerOutput,Efficiency,and Characterization 127 JorgeGarcía-Cañadas 7.1 Introduction 127 7.1.1 MovingfromMaterialstoaDevice 127 7.1.2 DifferencesinCharacterization 128 7.1.3 ChapterSummary 130 7.2 TheGoverningEquations 130 7.2.1 ParticleFluxesandtheContinuityEquation 130 7.2.2 EnergyFluxesandtheHeatEquation 132 7.3 PowerOutputandEfficiency 136 7.3.1 PowerOutput 137 7.3.2 Efficiency 139 7.4 CharacterizationofDevices 142 7.4.1 ThermalContacts 142 7.4.2 AdditionalConsiderations 143 7.4.3 ConstantHeatInputandConstantΔT 144 References 145 viii Contents 8 IntegrationofHeatExchangerswithThermoelectric Modules 147 AlirezaRezania 8.1 Introduction 147 8.2 HeatExchangerDesign–ConsiderationinTEGSystems 148 8.3 ColdSideHeatExchangerforTEGMaximumPerformance 150 8.4 CoolingTechnologiesandDesignChallenges 154 8.5 MicrochannelHeatExchanger 156 8.6 CoupledandComprehensiveSimulationofTEGSystem 157 8.6.1 GoverningEquations 157 8.6.2 EffectofHeatExchangerInlet/OutletPlenumsonTEGTemperature Distribution 158 8.6.3 ModifiedChannelConfiguration 162 8.6.4 Flat-PlateHeatExchangerversusCross-CutHeatExchanger 164 8.6.5 EffectofChannelHydraulicDiameter 167 8.7 Power–EfficiencyMap 168 8.8 SectionDesignOptimizationinTEGSystem 169 8.9 Conclusion 170 Acknowledgment 170 Nomenclature 170 References 172 9 PowerElectronicConvertersandTheirControl inThermoelectricApplications 177 ErikSchaltzandElenaA.Man 9.1 Introduction 177 9.2 BuildingBlocksofPowerElectronics 177 9.3 PowerElectronicTopologies 179 9.3.1 BuckConverter 180 9.3.1.1 On-state 181 9.3.1.2 Off-state 181 9.3.1.3 Averaging 181 9.3.2 BoostConverter 182 9.3.3 Non-InvertingBuckBoostConverter 183 9.3.4 FlybackConverter 184 9.4 ElectricalEquivalentCircuitModelsforThermoelectric Modules 185 9.5 MaximumPowerPointOperationandTracking 186 9.5.1 MPPT-Methods 187 9.5.1.1 PerturbandObserve 187 9.5.1.2 IncrementalConductance 189 9.5.1.3 FractionalOpenCircuitVoltage 189 9.6 CaseStudy 191 9.6.1 Specifications 192 9.6.2 Requirements 193 9.6.3 DesignofPassiveComponents 193 9.6.4 TransferFunctions 194 Contents ix 9.6.5 DesignofCurrentController 196 9.6.6 MPPTImplementation 196 9.6.7 DesignofVoltageController 198 9.7 Conclusion 201 References 201 10 ThermoelectricEnergyHarvestingforPoweringWearable Electronics 205 LucaFranciosoandChiaraDePascali 10.1 Introduction 205 10.2 HumanBodyasHeatSourceforWearableTEGs 205 10.3 TEGDesignforWearableApplications:ThermalandElectrical Considerations 208 10.4 FlexibleTEGs:DepositionMethodsandThermalFlowDesign Approach 212 10.4.1 DepositionMethods 212 10.4.1.1 ScreenPrinting 213 10.4.1.2 InkjetPrinting 213 10.4.1.3 Molding 213 10.4.1.4 Lithography 214 10.4.1.5 VacuumDepositionTechniques 214 10.4.1.6 ThermalEvaporation 214 10.4.1.7 Sputtering 215 10.4.1.8 MolecularBeamEpitaxy(MBE) 215 10.4.1.9 MetalOrganicChemicalVaporDeposition(MOCVD) 216 10.4.1.10 ElectrochemicalDeposition 216 10.4.1.11 Vapor–Liquid–Solid(VLS)Growth 216 10.4.2 HeatFlowDirectionDesignApproachinWearableTEG 217 10.5 TEGIntegrationinWearableDevices 218 10.6 StrategiesforPerformanceEnhancementsandOrganic Materials 221 10.6.1 OrganicThermoelectricMaterials 223 References 225 11 ThermoelectricModulesasEfficientHeatFluxSensors 233 GennadiGromov 11.1 Introduction 233 11.1.1 ApplicationsofHeatFluxSensors 233 11.1.2 UnitsofHeatFluxandCharacteristicsofSensors 234 11.1.3 ModernHeatFluxSensors 235 11.1.4 ThermoelectricHeatFluxSensors 236 11.2 ApplicationsofThermoelectricModules 238 11.3 ParametersofThermoelectricHeatFluxSensors 240 11.3.1 IntegralSensitivityS 240 a 11.3.2 SensitivityS 241 e 11.3.3 ThermalResistanceR 241 T 11.3.4 NoiseLevel 241 x Contents 11.3.5 SensitivityThreshold 241 11.3.6 Noise-EquivalentPowerNEP 242 11.3.7 DetectivityD* 242 11.3.8 TimeConstant𝜏 243 11.4 Self-CalibrationMethodofThermoelectricHeatFluxSensors 243 11.4.1 Sensitivity 243 11.4.1.1 Method 243 11.4.1.2 Examples 245 11.4.2 ValuesofNEPandD* 247 11.5 SensorPerformanceandThermoelectricModuleDesign 247 11.5.1 DependenceonPhysicalProperties 248 11.5.2 DesignParameters 248 11.6 FeaturesofThermoelectricHeatFluxSensorDesign 249 11.7 OptimizationofSensorsDesign 250 11.7.1 PropertiesofThermoelectricMaterial 251 11.7.2 ParametersofThermoelectricModule 251 11.7.2.1 PelletsForm-Factor 251 11.7.2.2 ThermoelementHeight 252 11.7.2.3 DimensionsofSensors 254 11.7.2.4 PelletsNumber 254 11.7.3 FeaturesofRealDesign 255 11.8 ExperimentalFamilyofHeatFluxSensors 257 11.8.1 HTX–HeatFluxandTemperatureSensors(HT–HeatFluxand Temperature) 257 11.8.2 HFX–HeatFluxSensorswithoutTemperature(HF–Heat Flux) 257 11.8.3 HRX-IRRadiationHeatFluxSensors(HR–HeatFlux Radiation) 257 11.9 InvestigationofSensorsPerformance 259 11.9.1 GeneralProvisions 259 11.9.2 CalibrationofSensorSensitivity 259 11.9.3 SensitivityTemperatureDependence 261 11.9.4 ThermalResistance 263 11.9.5 TypicalTemperatureDependenceoftheSeebeckCoefficient 264 11.9.6 Conclusions 264 11.10 HeatFluxSensorsattheMarket 265 11.11 ExamplesofApplications 268 11.11.1 Microcalorimetry:EvaporationofWaterDrop 268 11.11.2 MeasurementofHeatFluxesinSoil 269 11.11.3 ThermoelectricIceSensor 269 11.11.4 LaserPowerMeters 274 References 278 12 Photovoltaic–ThermoelectricHybridEnergy Conversion 283 NingWang 12.1 BackgroundandTheory 283

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.