ebook img

The roles of superficial amygdala and auditory cortex in music-evoked fear and joy PDF

13 Pages·2013·1.35 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The roles of superficial amygdala and auditory cortex in music-evoked fear and joy

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/authorsrights Author's personal copy NeuroImage81(2013)49–60 ContentslistsavailableatSciVerseScienceDirect NeuroImage journal homepage: www.elsevier.com/locate/ynimg The roles of superficial amygdala and auditory cortex in music-evoked fear and joy Stefan Koelscha,b,c,⁎,1, Stavros Skourasa,b,c,1, Thomas Fritzd, Perfecto Herrerae, Corinna Bonhaged, Mats B. Küssnerf,g, Arthur M. Jacobsa,c aClusterLanguagesofEmotion,FreieUniversitätBerlin,Germany bUniversityofSussex,Falmer,UK cDahlemInstituteforNeuroimagingofEmotion,Berlin-Dahlem,Germany dMaxPlanckInstituteforHumanCognitiveandBrainScience,Leipzig,Germany eUniversitatPompeuFabra,Barcelona,Spain fKing'sCollegeLondon,UK gGoldsmiths,UniversityofLondon,UK a r t i c l e i n f o a b s t r a c t Articlehistory: Thisstudyinvestigatesneuralcorrelatesofmusic-evokedfearandjoywithfMRI.Studiesonneuralcorrelates Accepted2May2013 ofmusic-evokedfeararescant,andthereareonlyafewstudiesonneuralcorrelatesofjoyingeneral.Eigh- Availableonline17May2013 teenindividualslistenedtoexcerptsoffear-evoking,joy-evoking,aswellasneutralmusicandratedtheir ownemotionalstateintermsofvalence,arousal,fear,andjoy.ResultsshowthatBOLDsignalintensityin- Keywords: creasedduringjoy,anddecreasedduringfear(comparedtotheneutralcondition)inbilateralauditorycortex Emotion (AC)andbilateralsuperficialamygdala(SF).Intherightprimarysomatosensorycortex(area3b)BOLDsig- Music nalsincreasedduringexposuretofear-evokingmusic.Whileemotion-specificactivityinACincreasedwith Fear Joy increasingdurationofeachtrial,SFrespondedphasicallyinthebeginningofthestimulus,andthenSFactiv- fMRI itydeclined.PsychophysiologicalInteraction(PPI)analysisrevealedextensiveemotion-specificfunctional Auditorycortex connectivityofACwithinsula,cingulatecortex,aswellaswithvisual,andparietalattentionalstructures. Superficialamygdala Thesefindingsshowthattheauditorycortexfunctionsasacentralhubofanaffective-attentionalnetwork that is more extensive than previously believed. PPI analyses also showed functional connectivity of SF withACduringthejoycondition,takentoreflectthatSFissensitivetosocialsignalswithpositivevalence. Duringfearmusic,SFshowedfunctionalconnectivitywithvisualcortexandarea7ofthesuperiorparietal lobule,takentoreflectincreasedvisualalertnessandaninvoluntaryshiftofattentionduringtheperception ofauditorysignalsofdanger. ©2013ElsevierInc.Allrightsreserved. Introduction Messiah(“AndHeShallPurify”),Mozart'sIdomeneo,thethunderstorm portrayedinBeethoven'ssixthsymphony,Berlioz'Songed'unenuitdu Of all emotions, fear is the one that has been investigated most Sabbat,Herrmann'smusicforPsycho,andPenderecki'sPolymorphia. intensely in affective neuroscience over the last decades. However, Nevertheless,onlytwopreviousfunctionalneuroimagingstudies there is scarcity of functional neuroimaging studies on fear with haveinvestigatedbrainresponsestofear-evokingmusic.Oneofthese music,andneuralcorrelatesofmusic-evokedfearhavethusremained studiesexploredhowfearmusiccanenhancefeelingsoffearevoked elusive. This stands in gross contrast to a long musical tradition of byimages(Baumgartneretal.,2006),butthatstudydidnotpresent usingmusicalmeanstoevokefearinthelistener.Theearliesttheoreti- fearmusicalone,thusleavingopenthequestionastowhichactivation caltreatiseonsuchmeansistheAffektenlehre(“theoryofaffects”)of patternswouldbeevokedbyfearfulmusicalone(i.e.,withoutnegative theBaroque,whichprescribedmusicalmethodsandfiguresforimitat- visualimages).Theotherstudyinvestigatedhowmusicevokingfearor ing,orportraying(andthus,accordingtotheAffektenlehre,summoning) joycanchangetheperceptionofneutralfilmclips(Eldaretal.,2007). emotions, including fear (Mattheson, 1739/1999). Among countless Thelatterstudyalsoinvestigatedbrainresponsesevokedbythefear well-known examples of fear-evoking (Western) music are Handel's musicalone(withoutfilmclips),comparedtoabaselinecondition,in selectedregionsofinterest(amygdala,anteriorhippocampalformation, prefrontal cortex, and auditory cortex). However, no effects of fear ⁎ Correspondingauthorat:FreieUniversitätBerlin,ClusterLanguagesofEmotion, musicwereobservedwithoutfilm-clips(noreffectsofjoyorneutral HabelschwerdterAllee45,14195Berlin,Germany.Fax:+493083852887. musicwithoutfilm-clips),neitherintheamygdala,norinthehippo- E-mailaddress:[email protected](S.Koelsch). 1 Thefirsttwoauthorscontributedequallytothiswork. campusortheprefrontalcortex.Inaddition,astudybyLerneretal. 1053-8119/$–seefrontmatter©2013ElsevierInc.Allrightsreserved. http://dx.doi.org/10.1016/j.neuroimage.2013.05.008 Author's personal copy 50 S.Koelschetal./NeuroImage81(2013)49–60 (2009)showedthatlisteningtofear-evokingmusicwithclosedeyes music. Similarly, musical and acoustical parameters such as tempo (compared to listening with open eyes), evoked greater activation andpitchvariationcanwellbematchedbetweenjoyandfearmusic. thanopeneyesintheamygdala/anteriorhippocampalformationand Moreover,joyfulmusicwaschosentoreplicateresultsofpreviousstudies. anterior temporal poles (this effect of eyes open/closed was not ob- Althoughonlyafewpreviousfunctionalneuroimagingstudiesspecifically servedwhenlisteningtoneutralmusic).Maineffectsoffearcompared used“happy”(Bratticoetal.,2011;Brownetal.,2004;Mitterschiffthaler toneutralmusicwerenotreportedinthatstudy.Finally,arecentstudy etal.,2007)or“joyful”(Koelschetal.,2006;Muelleretal.,2011)music, byTrostetal.(2012)reportedbrainactivationsduetomusic-evoked these studies, along with other studies investigating musical frissons “tension”(characterizedbyfeelingsofhigharousalandlowvalence), (BloodandZatorre,2001;Salimpooretal.,2011),ormusicevokingemo- underwhichtheauthorsalsosubsumed“feelingsofanxietyandsus- tionalresponseswithpositivevalenceandhigharousal(Trostetal.,2012) penseinducedbyscarymusic”(brainactivationsincludedbilateralsupe- indicateanumberofrelativelyconsistentfeatures,namelystrongerBOLD riortemporalgyrus,rightparahippocampalgyrus,motorandpremotor signalintensity(a)intheauditorycortex(Bratticoetal.,2011;Koelschet areas,cerebellum,rightcaudatenucleus,andprecuneus).Notably,the al.,2006;Mitterschiffthaleretal.,2007;Muelleretal.,2011;Trostetal., conceptof“tension”alsoincludesemotionalphenomenanotrelatedto 2012),(b)theventralstriatum(BloodandZatorre,2001;Brownetal., fear,suchasemotionalreactionstounexpectedmusicalevents(Huron, 2004;Koelschetal.,2006;MenonandLevitin,2005;Mitterschiffthaler 2006),and,therefore,Trostetal.(2012)arguedthatitisnotclearwheth- et al., 2007; Trost et al., 2012), (c) the anterior insula (Blood and ertheobservedbrainactivationswereduetofearresponses,ortomore Zatorre,2001;Brownetal.,2004;Koelschetal.,2006),and(d)the generalfeelingsoftensionandunease.Thus,therearenofunctionalneu- anterior cingulate cortex (Blood and Zatorre, 2001; Janata, 2009; roimagingdataavailablethatwouldallowustodrawconclusionsabout Mitterschiffthaleretal.,2007).Moreover,(e)severalstudiesonmusic- neuralcorrelatesofmusic-evokedfear. evokedemotionsshowedsignalchangesintheanteriorhippocampal Withregardtolesionstudies,Gosselinetal.(2005)showedim- formation in response to stimuli with positive emotional valence pairedrecognitionofscarymusicinepilepticpatientsfollowinguni- (e.g., Blood and Zatorre, 2001; Mueller et al., 2011; Trost et al., lateral medial temporal lobe excision (including the amygdala). In 2012).Basedonthesefindings,wehypothesizedincreasedBOLDsig- thatstudy,bothpatientswithleftorrightmedialtemporalloberesec- nalsinresponsetojoystimuli(comparedtoneutralorfearstimuli)in tions showed impaired recognition of scary, but not happy or sad, the auditory cortex, ventral striatum, insula, ACC, and hippocampal music. Corroborating this finding, data from a patient with bilateral formation. damagerestrictedtotheamygdalashowedaselectiveimpairmentin Anotheraspectofourstudywastheinvestigationofthetemporal therecognitionofscaryandsadmusic(Gosselinetal.,2007),indicating dynamicsofemotionacrosstime.Toourknowledge,onlytwoprevi- thattherecognitionoffearexpressedbymusicinvolvestheamygdala. ousfunctionalneuroimagingstudieshaveinvestigatedthetemporal Thesefindingsarereminiscentoffindingsreportingsimilarimpairment dynamics of neural correlates of emotion (for habituation-effects fortherecognitionoffearfulfaces(reviewedinPeretz,2010),suggesting across an experimental session see Mutschleret al., 2010). A study thatscarymusicandfearfulfacesareprocessed,atleastinpart,bycom- bySalimpooretal.(2011)reportedthatBOLDsignalintensityincreased moncerebralstructures.Supportingthisassumption,patientswithuni- (a)inthedorsalstriatumduringtheanticipationofamusic-evokedfris- lateralanteromedialtemporallobeexcisionwerefoundtobeimpaired son,and(b)intheventralstriatumduringtheexperienceofthefrisson intherecognitionofbothscarymusicandfearfulfaces(Gosselinetal., (notably,additionalPETdatashowedthatthesesignalincreaseswere 2011),withresultsinbothtasksbeingcorrelated.Thissuggestedamul- relatedtodopaminergicsynapticactivityinthesestructures).Another timodalrepresentationoffearwithintheamygdala(althoughrecog- study (Koelsch et al.,2006),in which stimuli of60s were split into nition of fearful faces was preserved in some patients, while their two 30-second halves, showed that significant signal differences be- recognitionofscarymusicwasimpaired).However,duetothesize tweenpleasantandunpleasantmusicweremostpronouncedduring ofthelesionsinthereportedstudies,itremainsunclearwhichnuclei thesecondhalfofthetrials.Thestructureswithsuchtemporaldynam- oftheamygdaloidcomplexplayedaroleinthereportedfindings. ics of activation included the auditory cortex, inferior fronto-lateral Functionalneuroimagingstudiesonfearevokedbyvisualstimuli, areas(area45andtheposteriorpartoftheinferiorfrontalsulcus),an- recall/imagery,orauditory(butnotmusical)stimulihavealsoimplicat- teriorinsula,theamygdaloidcomplex(probablybasolateralamygdala), edtheamygdaloidcomplex(LeDoux,2000),inparticularthebasolateral hippocampalformation,temporalpoles,andparahippocampalcortex amygdala(BL),aswellasarangeoffunctionallyconnectedstructuresin (asimilartrendwasobservedintheventralstriatum). fearresponses(e.g.,Phanetal.,2002).Suchstructuresincludetheaudi- Particularcarewastakenwithregardtotheacousticparameters torycortexinauditoryfearconditioningparadigms(LeDoux,2000),as ofourstimuli:numerousacousticalfeaturesofthestimuliweremea- wellasalargearrayofbothcorticalandsubcorticalstructures,suchas sured, which allowed us (1) to match joy, fear, and neutral stimuli cingulate and insular cortex, hippocampus, parahippocampal cortex, withregardtonumerousacousticalparameters(e.g.,pitchvariation, orbitofrontalcortex,dorsolateralprefrontalcortex,striate(visual)cor- tempo,intensity,and spectralflux),and (2) tointroduceacoustical tex,basalganglia,cerebellum,aswellasbrainstemregionssuchasthe factorsthatdifferedbetweenconditionsasregressorsofnointerest periaqueductalgray(Royetal.,2009;Steinetal.,2007;Williamsetal., intheanalysisoffMRIdata.Providedthatnocrucialacousticalfeatures 2006). weremissed,thisenabledustoinvestigatetheroleoftheauditorycortex Basedonthereportedfindings,weaimedtoinvestigatetheroleof with regard to its emotion-specific interfacing with limbic/paralimbic the amygdaloid complex and the auditory cortex, including their structures. Previous work has implicated auditory association cortex functionalconnections,forfearevokedbymusic.Theculturalpractice (auditoryparabelt),aswellasitsconnectionswiththelateralamygdala, of using music to evoke fear makes music an important means to infearconditioning(LeDoux,2000).However,auditoryparabeltregions investigate neural circuits underlying fear (Eerola and Vuoskoski, projecttonumerouslimbic/paralimbicstructures(suchasorbitofrontal 2011),inadditiontothevastnumberofstudiesusingvisualstimuli cortex, insula, and cingulate cortex; e.g. Petrides and Pandya, 1988; toinvestigateneuralcorrelatesoffear.Besidesfearstimuli,thepresent Smileyetal.,2007;Yukie,1995),andtheroleoftheseauditoryprojec- studyalsousedjoyfulandneutralmusic.Joywaschosenaspositive tionsforemotionalprocesses,andthustherolethattheauditorycortex emotionbecause,ontheonehand,bothjoyandfearareconsideredas playsforemotionalprocesses,islargelyunknown. “basic emotions” (Ekman, 1999), and both the expression of joy as wellasoffearinWesternmusiccanberecognizeduniversally(Fritz Summaryofhypotheses etal.,2009).Ontheotherhand,otherthan,e.g.peacefulmusic(which isalsoperceivedaspositive,e.g.Vieillardetal.,2008),arousallevels Motivatedbythereportedfindings,wetestedwhethermusic-evoked evokedbyjoymusiccanwellbematchedwiththoseevokedbyfear fear,ascomparedtoneutralorjoystimuli,wouldelicitsignalchangesin Author's personal copy S.Koelschetal./NeuroImage81(2013)49–60 51 thebasolateralnucleusoftheamygdaloidcomplex.Forjoy,ascompared triggerinstrumentsamplesfromahighqualitynaturalinstrumentli- toneutralorfear,weexpectedstrongerBOLDsignalintensityintheven- brary (X-Sample Chamber Ensemble, Winkler & Stahl GbR, Detmold, tralstriatum,auditorycortex,hippocampalformation,insula,andcingu- Germany)andfromtheAbletonInstrumentlibrary(AbletonAG,Berlin, latecortex.Finally,toexploreneuralnetworksunderlyingjoyandfear, Germany).Stimuliwerethenrenderedaswav-filesusingAbletonLive. weperformedaPsychophysiologicalInteraction(PPI)analysisusingthe UsingPraat(version5.0.29;Boersma,2002),allexcerpts(joy,fear,and peak voxels indicated by the contrast analysis between conditions as neutral)wereeditedsothattheyallhadthesamelength(30s),1.5s seed voxels. More specifically, we were interested in emotion-specific fade-in/fade-outramps,andthesameRMSpower. functionalconnectivitybetweenamygdaloidcomplexandauditorycor- Importantly,joyandfearstimuliwerechosensuchthateachjoyful tex,betweenauditorycortexandinsula,aswellasbetweenauditorycor- excerpthadafearfulcounterpartthatmatchedwithregardtotempo texandcingulatecortex. (beatsperminute),meanfundamentalfrequency,variationoffunda- mentalfrequency,pitchcentroidvalue,spectralcomplexity,andspec- Materialsandmethods tral flux. This was confirmed by an acoustic analysis of the stimuli using‘Essentia’,anin-houselibraryforextractingaudioandmusicfea- Participants turesfromaudiofiles(http://mtg.upf.edu/technologies/essentia).The Essentia software was also used to specify acoustical differences be- 18individuals(aged20–31years,M=23.78,SD=3.54,9females) tween stimuli withregard to other acousticalfactors:177 acoustical took part in the experiment. All participants had normal hearing descriptorswereextractedframe-by-frame(framelength=21.5ms, (as assessed with standard pure tone audiometry) and were right- 50%overlap),averagedalongtheentiredurationofthefile,andthen handed(accordingtoself-report).Noneoftheparticipantswasapro- compared between conditions (joy, neutral, fear) using one-way fessionalmusician,noramusicstudent.Sevenparticipantshadnofor- ANOVAs. Bonferroni-corrected significance-level was 0.05/177= malmusicaltraining,eightparticipantshadoncereceivedmusiclessons 0.00028 (lowering this thresholdfor one-sided tests,i.e.0.00056, (mean duration of formal training was 2.81years, SD=2.36, instru- didnotchangeanyoftheresults).Theextractedfeaturesrepresent ments were: flute, drums, piano, violin, guitar and melodica) but had acousticandmusicalfeaturesusedinmusicinformationretrieval, notplayedtheirinstrumentsforseveralyears(M=8.83,SD=7.52), i.e.,differentcombinationsofthemareusedforpredictivemodels and three participants had learned a musical instrument that they ofmusicallyrelevantcategorizationssuchasgenredetection,instrument were still playing (mean duration of formal training was 12.5years, detection,keyandmodedetection,oremotionalexpression.Although SD=3.5,instrumentswere:guitar,violin,pianoandelectricbass).Ex- thesefeatureshavemostlybeenvalidatedinmachine-learningcontexts clusioncriteriawereleft-handedness,professionalmusicianship,past (Huqetal.,2010;Kimetal.,2010;Laurier,2011),itispossiblethatthey diagnosisofaneurologicalorpsychiatricdisorder,ascoreof≥13on alsoplayaroleforhumanauditoryperception.Inaddition,manyofthe Beck's Depression Inventory (BDI; Beck et al., 1993), excessive con- usedparametershavebeenvalidatedinperceptualexperiments,suchas sumption of alcohol orcaffeineduringthe24hpriortotesting, and featuresrelatedtospectralcomplexity,F0,andF0variations(Agrawalet poorsleepduringthepreviousnight.Allsubjectsgavewritteninformed al., 2012; Alluri et al., 2012; Coutinho and Dibben, 2012; Juslin and consent. The study was conducted according to the Declaration of Laukka,2003;Kumaretal.,2012),sensorydissonance (Coutinho and HelsinkiandapprovedbytheethicscommitteeoftheSchoolofLifeSci- Dibben,2012;Koelschetal.,2006;PlompandLevelt,1965;Vassilakis encesandthePsychologyDepartmentoftheUniversityofSussex. andKendall,2010),spectralflux(CoutinhoandDibben,2012;Menon et al., 2002), spectral centroid (Coutinho and Dibben, 2012), spectral Stimuliandprocedure crest (Laurier, 2011), temporal modulation frequencies (Kumar et al., 2012),keystrength(Allurietal.,2012;Krumhansl,1990),andpulseclar- Musicalstimuliwereselectedtoevoke(a)feelingsofjoy,(b)feelings ity(Allurietal.,2012).Significanteffectsofconditionwereindicatedfor of fear, or(c)neitherjoy norfear (henceforth referred to asneutral thefollowingacousticfactors(withF-valuesinparentheses,degreesof stimuli).Thereweren=8stimulipercategory(thecompletelistof freedom: 2, 21): (a) Mean (72.3) and variance (13.8) of F0 salience joyandfearstimuliisprovidedinSupplementaryTableS1).Joystimuli (thismeasureishighestforsingletones,intermediateforchords,and hadbeenusedinpreviousstudies(e.g.,Fritzetal.,2009;Koelschetal., lowestfornoises;notethatmeanF0andvarianceofF0didnotdifferbe- 2010a,2011;Muelleretal.,2011)andconsistedofCD-recordedpieces tweenjoy,fear,andneutralstimuli).ThemeanF0saliencewashighest fromvariousepochsandstyles(classicalmusic,Irishjigs,jazz,reggae, forneutral,intermediateforjoy,andlowestforfearstimuli(pb.0001 SouthAmericanandBalkanmusic).Fear-evokingmusicalstimuliwere inallpairwisecomparisons).Thisreflectsthatbothjoyandfear(but excerptsfromsoundtracksofsuspensemoviesandvideogames.Toin- notneutral)stimulicontainednumerousharmonies,andthatfear(but crease the fear-evoking effect of the fear stimuli, their relatively high not joy) stimuli contained numerous percussive sounds, as well as acoustic roughness (see also next paragraph) was further increased: hissingandwhooshingnoises.(b)Mean(41.3)andvariance(28.0)of from each fear excerpt, two copies were obtained and pitch-shifted, sensorydissonance.Sensorydissonancewaslowestforneutral,interme- one copy was shifted one semitone higher, the other copy a tritone diateforjoy,andhighestforfearstimuli.Meansensorydissonancedif- lower(seealsoFritzetal.,2009;Koelschetal.,2006).Then,allthreever- feredsignificantly between joy and neutral (pb.0001), between fear sionsofoneexcerpt(originalpitch,onesemitonehigher,andatritone and neutral (pb.0001), and between joy and fear stimuli (pb.05). lower) were rendered as a single wav-file (pitch-shift and rendering (c)Meanchordstrength(25.2)andkeystrength(14.7);thesefactors was performed using Ableton Live, version 8.0.4, Ableton AG, Berlin, measurehow stronglya sound resembles thesoundofa chord,and Germany). Neutral stimuli were sequences of isochronous tones, for howclearlythesoundsofastimuluscanbeattributedtoakey.Chord which the pitch classes were randomly selected from a pentatonic strength was higher for joy compared to fear stimuli (pb.0001), as scale.ThesetonesequencesweregeneratedusingtheMIDI(musicalin- wellasforjoycomparedtoneutralstimuli(pb.0006),whereasfear strument digital interface) toolbox for Matlab (Eerola and Toiviainen, and neutral stimuli did not differ significantly from each other. Key 2004).Importantly,foreachjoy–fearstimuluspair(seebelow),aneutral strengthwashigherforjoycomparedtofearstimuli(pb.0001),and controlstimuluswasgeneratedthatmatchedjoyandfearstimuliwith forneutralcomparedtofearstimuli(p=.01);joyandneutralstimuli regardtotempo,F0 range(i.e.,rangeof thefundamental frequency), didnotdiffersignificantlyfromeachother(p>.15).(d)Mean(30.0) and instrumentation (using the two main instruments or instrument and variance (16.4) of spectral flux (a measure of spectral variation groupsoftherespectivejoy-fearpair).Tocreatestimulithatsounded withinsounds),mean(30.0)spectralcrest(ameasureoftheinhomoge- likemusicalcompositionsplayedwithrealinstruments(similartothe neity,ornoisiness,ofthespectrum)andmean(10.6)spectralcomplexity joy andfear stimuli),the tonesfrom the MIDIsequenceswere setto (whichcorrelateswiththeamountofdifferenttimbresthatarepresent Author's personal copy 52 S.Koelschetal./NeuroImage81(2013)49–60 inapiece).Meanspectralflux,spectralcrest,andspectralcomplexity USA)withintegratedeye-trackerthatallowedustoguaranteethatpartic- werelowestforneutralstimuli(withsignificantdifferencesbetween ipantsopenedandclosedtheireyesaccordingtotheinstruction. neutralandjoy,aswellasbetweenneutralandfearstimuli,pb.05in eachtest),anddidnotdiffersignificantlybetweenjoyandfearstimuli MRscanning (p>.2ineachtest). PriortotheMRIsession,participantswerepresentedwithshort Scanningwasperformedwitha3TSiemensMagnetomTrioTim.Prior (12s)versionsofeachstimulustoobtainfamiliarityratings:Partici- tothefunctionalMRmeasurements,ahigh-resolution(1×1×1mm) pants rated their familiarity with each piece on a four-point scale T1-weightedanatomicalreferenceimagewasacquiredfromeachpartic- (rangingfrom“TomyknowledgeIhaveneverheardthispiecebefore”, ipantusingarapidacquisitiongradientecho(MP-RAGE)sequence.Con- to“Iknowthispiece,andIknowwhocomposedorperformedit”).Par- tinuousEchoPlanarImaging(EPI)wasusedwithaTEof30msandaTR ticipantswerethentrainedontheratingprocedure,using12slongex- of2000ms.Slice-acquisitionwasinterleavedwithintheTRinterval.The cerptsofmusicalpiecesthatdidnotbelongtothestimulussetusedin matrix acquired was 64×64 voxels with a field of view of 192mm, thefMRIscanningsession. resultinginanin-planeresolutionof3mm.Slicethicknesswas3mm During the fMRI scanning session, stimuli were presented in a withaninterslicegapof0.6mm(37slices,wholebraincoverage).The pseudo-randomordersothatnomorethantwostimuliofeachstim- acquisitionwindowwastiltedatanangleof30°relativetotheAC-PC ulus category (joy, fear, neutral) followed each other. Participants lineinordertominimizesusceptibilityartifactsintheorbitofrontalcortex were asked to listen to the musical stimuli with their eyes closed (Deichmannetal.,2002,2003;Weiskopfetal.,2007).Giventheduration (see also Lerner et al., 2009). Each musical stimulus was followed ofourstimuli(30s),acontinuousscanningdesignwasrequiredtoper- byanintervalof2sinwhichabeeptoneof350Hzand1sduration form the PPI analysis (so that enough data points were available for signaledparticipantstoopentheireyesandtocommencetherating meaningfulcorrelationestimations,seebelow). procedure. During the rating procedure, participants indicated how theyfeltattheendofeachexcerptwithregardtovalence(‘pleasantness’), Dataanalysis ‘arousal’,‘joy’and‘fear’.Thatis,participantsprovidedratingsabouthow theyfelt,andnotaboutwhichemotioneachstimuluswassupposedto FMRIdatawereprocessedusingLIPSIA2.1(Lohmannetal.,2001). express(GabrielsonandJuslin,2003;JuslinandVästfjäll,2008).Ratings Data were corrected for slicetime acquisition and normalized into were obtainedwith 6-pointLikertscales (ranging from “not atall” to MNI-space-registeredimageswithisotropicvoxelsof3cubicmillime- “verymuch”).Thetimeintervalfortheratingprocedurewas12sand ters.Atemporalhighpassfilterwithacutofffrequencyof1/90Hzwas eachratingperiodwasfollowedbya4srestperiod(duringwhichpartic- appliedtoremovelowfrequencydriftsinthefMRItimeseries,anda ipantsclosedtheireyesagain),amountingtoatotallengthof48spertrial spatialsmoothingwasperformedusinga3DGaussiankernelandafil- (seeFig.1).TheentirestimulussetwaspresentedtwiceduringthefMRI tersizeof6mmFWHM. scanning session. Musical stimuli were presented using Presentation AmixedeffectsblockdesignGLManalysiswasemployed(Friston (version13.0,Neurobehavioralsystems,Albany,CA,USA)viaMRIcom- etal.,2007).Valenceratings,arousalratings,familiarityratings,psy- patibleheadphones(underwhichparticipantsworeearplugs).Instruc- choacousticparametersthatdifferedsignificantlybetweenconditions tionsandratingscreensweredeliveredthroughMRIcompatibleliquid (seeStimuliandprocedure),andrealignmentparameterswereinclud- crystal display goggles (Resonance Technology Inc., Northridge, CA, edinthedesignmatrixascovariatesofnointerest(Johnstoneetal., 2006).Then,one-samplet-testswerecalculatedvoxel-wiseforthecon- trastbetweenfearvs.joy,andcorrectedformultiplecomparisonsby theuseofcluster-sizeandcluster-valuethresholdsobtainedbyMonte Carlosimulationswithasignificancelevelofpb0.05(Lohmannetal., 2008).Thesignificantclustersidentifiedinthisanalysiswereusedas regionsofinterest(ROIs)tocomparetheaveragesignalintensity(aver- agedacrossallvoxelsineachcluster)withinthoseclustersbetween fearandneutral,aswellasbetweenjoyandneutral.Inaddition,toex- plorethetemporalnatureofthesignificantdifferencesinactivitybe- tweenfearandjoy,foreachpeakvoxelofeachsignificantcluster,the timecourseofactivitywasdeterminedbycomputingthevoxelintensity separatelyforeachscan(i.e.,withatemporalresolutionof2s)andfor eachcondition. Temporalinteractionanalysis Toinvestigatepossibleinteractionsbetweenemotionandtimewe splitthedatafromeachtrialintofirsthalf(seconds1to15)andsec- ond half (seconds 16 to 30), and calculated a statistical parametric mapbasedontheinteractionbetweenemotion(twolevels:joy,fear) andtime(twolevels:firsthalf,secondhalf).Afirst-levelinteractioncon- trastwascalculatedforeachsubject,andthecontrastimageswerethen usedforvoxel-wiseone-samplet-testsatthesecondlevel(correctedfor multiplecomparisonsbytheuseofcluster-sizeandcluster-valuethresh- oldsobtainedby Monte Carlo simulationswith asignificancelevelof pb.0.05)toidentifyclustersofvoxelsforwhichtheemotion×timein- teractionwassignificantlydifferentfromzero. Fig.1.Experimentaldesign.Ineachtrial,amusicstimuluswaspresentedfor30s. Musicstimuliwerepseudorandomlyeitherajoy,afear,oraneutralstimulus.Partici- PPIanalysis pantslistenedtothemusicwiththeireyesclosed.Then,abeeptonesignaledtoopen The timecourses of activity at the peak voxels identified in the theeyesandtocommencetheratingprocedure.Fourratings(feltvalence,arousal,joy, contrastjoyvs.fear,averagedtogetherwiththetimecoursesfromad- andfear)wereobtainedin12s,followedbya4spause(duringwhichparticipants closedtheireyesagain).Trialdurationwas48s,theexperimentcomprisedof48trials. jacentvoxels,wereusedasseedsforPsychophysiologicalInteraction Author's personal copy S.Koelschetal./NeuroImage81(2013)49–60 53 (PPI)analysestoidentifytargetregionsforwhichthecovariationof beinginbetween.Althoughthedegreeofexperiencedfearwasrelatively activity between seed and target regions was significantly different moderate(4.02onascalefrom1to6),fearratingsdifferedsignificantly between experimental conditions. At the first level, contrasts were betweenfearandneutralstimuli(t(15)=17.71,pb0.0001),fearand calculated for each subject based on the interaction term between joy stimuli (t(15)=33.16, pb0.0001), and between joy and neutral emotion (joy vs. fear) and each seed voxel's timecourse of activity stimuli (t(15)=9.93, pb0.0001). Average familiarity ratings were (Fristonetal.,1997).Foreachseedvoxel,thecontrastimagesfrom highestforjoystimuli,lowestforneutralstimuli,withratingsforfear allsubjectswereusedinvoxel-wiseone-samplet-testsatthesecond stimuli being in between. Familiarity ratings differed significantly be- level(correctedfor multiplecomparisonsby theuse of cluster-size tween joy and fear stimuli (t(7)=3.659, pb0.05), fear and neutral and cluster-value thresholds obtained by Monte Carlo simulations stimuli (t(7)=4.41, pb0.01), and between joy and neutral stimuli with a significance level of pb.0.05) to identify clusters of voxels (t(7)=5.06,pb0.0005).Duetothedifferencesinthebehavioralratings forwhichthepsychophysiologicalinteractioneffectwassignificant. betweenstimuluscategorieswithregardtovalence,arousal,andfamil- iarity, each participant's valence, arousal, and familiarity ratings were used in the fMRI data analysis as regressors of no interest (see Data Results analysis). Therefore, these variables (valence, arousal, and familiarity) didnotcontributetothefMRIresultspresentedinthefollowing. Behavioraldata Behavioral data are summarized in Fig. 2 and Table 1. Valence fMRIdata (pleasantness) ratings were lower for fear than for joy stimuli (t(15)=42.29,pb0.0001),higherforjoythanforneutralstimuli GLManalysis (t(15)=16.10, pb0.0001), and did not differ significantly between Thestatisticalparametricmaps(SPMs)ofthecontrastjoy>fear neutralandfearstimuli(t(15)=−1.94,p=.072).Arousalratingswere (correctedformultiplecomparisons,pb.05)revealedsignificantBOLD higher for fear than for neutral stimuli (t(15)=11.84, pb0.0001), signaldifferencesintheauditorycortex(AC)bilaterally,andinthesu- higherforjoythanforneutralstimuli(t(15)=12.26,pb0.0001),and perficial amygdala (SF) bilaterally (see also Table 2 and Fig. 3a). The didnotdifferbetweenjoyandfearstimuli(t(15)=.94,p=.36).Joyrat- activationoftheACcoveredauditorycore,belt,andparabeltregionsbi- ingswerelowestforfearstimuli,andhighestforjoystimuli,withratings laterally.Thevoxelswithmaximumz-valueswerelocatedalongHeschl's forneutralstimulibeinginbetween.Joyratingsdifferedsignificantlybe- gyrus (HG), with the peak voxel in the left AC being located on the tweenfearandneutralstimuli(t(15)=9.03,pb0.0001),fearandjoy postero-lateral rim of HG (30% TE 1.2 according to Morosan et al., stimuli(t(15)=32.32,pb0.0001),andbetweenjoyandneutralstimuli 2001),andthepeakvoxelintherightACbeinglocatedmoremedially (t(15)=16.73,pb0.0001).Correspondingly,fearratingswerehighest onHG(90%TE1.0accordingtoMorosanetal.,2001).Inbothleftand forfearstimuli,lowestforjoystimuli,withratingsforneutralstimuli rightamygdala,thepeakvoxelwaslocatedinSF(left:80%probability, Fig.2.Behavioralratingsofparticipantsonthefouremotionscalesusedinthepresentstudy:(a)valence,(b)arousal,(c)joy,and(d)fear.Rangeofscaleswas1to6.Ratingsare depictedseparatelyforeachstimuluscategory(fear,neutral,joy).Notethatjoystimuliwereratedasmorepleasantthanfearandneutralstimuli(valence/pleasantnessratingsfor fearandneutralstimulididnotdifferfromeachother).Alsonotethatarousalratingsofjoyandfearstimulididnotdifferfromeachother,andthatbothjoyandfearstimuliwere ratedasmorearousingthanneutralstimuli. Author's personal copy 54 S.Koelschetal./NeuroImage81(2013)49–60 Table1 (andasimilartrendisobservableintherightSF).Differencesbetween Descriptivestatisticsofbehavioraldata(mean,withstandarddeviationinparentheses). conditions emerged several seconds after stimulus onset, were most Rangeofvalence,arousal,joy,andfearscaleswas1to6,rangeofthefamiliarityscale pronouncedataround10s,andvanishedtowardstheendofthestimuli was1to4.Forstatisticaltestsseemaintext. (seenextparagraphforstatisticalanalysis).IntherightS1,allcondi- Fear Neutral Joy tionsevoked aninitial signal decrease, followed bya signal increase Valence 2.43(0.20) 2.69(0.48) 4.84(0.21) (whichwasstrongestforfearstimuli),andadeclineofsignalintensity Arousal 3.97(0.21) 3.03(0.22) 4.05(0.21) towardstheendofthestimuli. Joyfulness 1.62(0.16) 2.40(0.29) 4.83(0.42) Fearfulness 4.02(0.23) 2.22(0.30) 1.31(0.17) Temporalinteractionanalysis Familiarity 1.44(0.11) 1.17(0.10) 2.01(0.42) Tostatisticallytestthetemporaldynamicsobservedinthetime- lines,andtofurtherexplorethetemporaldynamicsofdifferencesbe- right:90%probabilityaccordingtothecytoarchitectonicprobabilitymap tweenconditionsinotherstructures(seeIntroduction), atemporal byAmuntsetal.,2005).ThesignaldifferencesinSFextendedbilaterally interactionanalysiswascomputedwithfactorsemotion(twolevels: intothehippocampal-amygdaloidtransitionarea(HATA,Amuntsetal., joyandfear)andtime(twolevels:firsthalfandsecondhalfofeach 2005).Theoppositecontrast(fear>joy)showedsignaldifferencesin stimulus,seeMaterialsandmethods).Results(correctedformultiple theanteriorbankoftherightpostcentralgyrus(area3boftheprimary comparisons,pb.05)arelistedinTable3andsummarizedinFig.3b. somatosensorycortex,S1,thepeakvoxelwaslocatedwith80%probabil- SignificantinteractionswereobservedintheACbilaterally,andinthe ityinthisareaaccordingtoGeyeretal.,1999).Contrastswiththeneutral leftSF.Thisconfirmstheobservationsbasedonthetimelinesthatdif- conditiondidnotyieldanyadditionalactivations(seealsoTable2and ferencesintheACweremorepronouncedduringthesecondhalf,and nextsection),exceptactivationsinthevisualcortexforbothjoy>neutral intheSFduringthefirsthalfoftrials.Moreover,accordingtothehy- (leftV1,MNI-coordinate:−1,−82,−5;leftV4:−33,−82,−14;right potheses(seeIntroduction),significantemotion×timeinteractions V2:32,−99,3)andfear>neutral(leftV2,MNI-coordinate:−8,−95, wereobservedbilaterally(a)intheposteriorportionoftheinferior 25;rightV2:23,−93,26). frontalsulcus(IFS),(b)theanteriorpartofBroca'sarea(BA45/46), and (c) in the ventral pallidum/ventral striatum (see also Fig. 3b). ROIanalysis These interactions were due to more pronounced differences be- Tospecifywhethertheobserveddifferencesbetweenfearandjoy tweenconditionsinthesecondcomparedtothefirsthalf.Nointerac- wereduetosignalincreaseordecreasecomparedtotheneutralcon- tions were observed in the hippocampus, parahippocampal gyrus, trolcondition,ROIanalyseswereconductedforthesignificantclus- temporalpoles,norintheRolandicoperculum. tersidentifiedintheGLManalysis(AC,SF,S1),comparingthemean signalintensityofthevoxelsineachclusterbetweenfearandneutral, PPIanalysis aswellasbetweenjoyandneutral.Resultsoftheseanalyses(corrected Finally,weconductedaPsychophysiologicalInteraction(PPI)analy- formultiplecomparisons,pb.05)showedthat,comparedtotheneu- sis(fordetailsseeMaterialsandmethods).Seedregionswerethepeak tralcondition,therewasstrongersignalintensityduringjoyandweak- voxels(aswellasthedirectlyadjacentvoxels)identifiedintheGLM ersignalintensityduringfearintheACbilaterallyaswellasintheleftSF analysisinthedirectcontrastbetweenfearandjoystimuli.Resultsof (seealsoTable2).IntherightSF,signalintensitywasweakerduring thisanalysis(correctedformultiplecomparisons,pb0.05),arelisted fearcomparedtoneutral(withnodifferencebetweenjoyandneutral). inTable4andsummarizedinFig.3c. IntherightS1,signalintensitywasstrongerduringfearcomparedto Both left and right AC showed stronger functional connectivity neutral(joyandneutraldidnotdifferfromeachother). duringjoy(comparedtofear)withbothipsilateralandcontralateral AC.Inspecific,theleftposterior-lateralauditorybeltshowedstronger Timelines functional connectivity during joy with both left and right primary Toexplorethetemporaldynamicsoftheobserveddifferences,the auditorycortex(left:80%,right:100%probabilityforTE1.0according signalintensityofthepeakvoxelofeachsignificantcluster(AC,SF,S1) toMorosanetal.,2001),aswellaswithlateralauditorybelt-regions wascomputedseparatelyforeachscan(i.e.,withatemporalresolution ofbothhemispheres.Therightauditorycoreregionshowedstronger of2s)ineachcondition.ThesetimelinesareshowninFig.4.IntheAC, functionalconnectivityduringjoywithlateralauditorybeltregionsof theauditorystimulievokedasignalincrease(inallconditions),with bothhemispheres(TE2accordingtoMorosanetal.,2001,noproba- thesignalintensitybeinggenerallyhighestforjoy,lowestforfear,and bilisticmapsareavailableforthisregion).Duringfear(comparedto intermediate for neutral (see next paragraph for statistical analysis). joy),bothleftandrightACshowedstrongerfunctionalconnectivity Themostpronounceddifferencesbetweenconditionsemergedat,and withthecuneus(areas17and18),themedianwalloftheprecuneus afteraround10safterstimulusonset.InSF,joystimulievokedasignal (areas5and7),andalmosttheentirecingulatesulcus(CS),fromthe increasebilaterally,whilefearstimulievokedasignalincreaseonlyin pre-genual CStotheascendingbranchofthe(posterior)CS.More- therightSF.IntheleftSF,differencesinsignalintensitybetweenfear over,bothleftandrightACshowedstrongerfunctionalconnectivity and joy were particularly strong during the first half of the stimuli duringfearwiththeanteriorinsulabilaterally,andtheleft(butnot Table2 ResultsofGeneralLinearModel(GLM)contrasts,correctedformultiplecomparisons(pb.05):(a)joy>fear,(b)fear>joy.Thetwooutermostrightcolumnsprovidethep-values forcomparisonsinvolvingtheneutralconditionwithinthesignificantclustersidentifiedintheGLManalysis(regionofinterestanalysis).Thediamondsintheoutermostrightcolumn indicatethatdifferencesbetweenfearandneutralwereduetohighersignalintensityduringneutralthanduringfear.Abbreviations:ROI:regionofinterest;l:left;r:right;n.s.:not significant. MNIcoordinate Clustersize(mm3) z-Value:max(mean) p-ValueROI:joyvs.neutral p-ValueROI:fearvs.neutral (a)joy>fear lHeschl'sgyrus −56−147 16,038 6.36(3.76) .0002 .0001⋄ rHeschl'sgyrus 50−168 13,176 5.55(3.72) .0006 .0007⋄ lsuperficialamygdala −17−7−15 486 4.32(3.36) .02 .009⋄ rsuperficialamygdala 22−6−13 324 3.40(3.09) n.s. .03⋄ (b)fear>joy rpostcentralgyrus(area3b) 52−1336 297 −3.50(−3.11) n.s. .0001 Author's personal copy S.Koelschetal./NeuroImage81(2013)49–60 55 Fig.3.FMRIresults(allcorrectedformultiplecomparisons,pb.05).(a)showsthestatisticalparametricmaps(SPMs)ofthedirectcontrastbetweenjoyandfearstimuli,red: joy>fear,blue:fear>joy.TheSPMsshowstrongerBOLDsignalsduringjoy(comparedtofear)intheauditorycortex(AC),andtheSFbilaterally.StrongerBOLDsignalsduring fear(comparedtojoy)wereyieldedinarea3boftheprimarysensorycortex.TheinsetshowsthecoordinatesofthepeakvoxelsintheSF(indicatedbytheblackcrosses)projected onthecytoarchitectonicprobabilitymapaccordingtoEickhoffetal.(2005);green:superficialamygdala,red:basolateralamygdala,yellow:hippocampal-amygdaloidtransition area,blue:hippocampus(cornuammonis).(b)showstheinteractioncontrastbetweenemotion(joyvs.fear)andtime(1sthalfofeachtrialvs.2ndhalfofeachtrial).Significant interactionswereindicatedintheauditorycortexbilaterally,theleftSF,leftarea45(parstriangularisoftheinferiorfrontalgyrus),inferiorfrontalsulcus,andventralpallidum/ ventralstriatum.(c)showsresultsofthePsychophysiologicalInteractionAnalysis(PPI)fortheregionsthatsignificantlydifferedintheSPMcontrastbetweenfearandjoy,seed voxelswerelocatedinleftAC(Heschl'sgyrus),rightAC(Heschl'sgyrus),leftSF,andrightSF.Red/yellowcolorsindicateregionsthatexhibitedstrongerfunctionalconnectivity withtheseedregionsduringthejoythanduringthefearcondition.Bluecolorsindicateregionsthatexhibitedstrongerfunctionalconnectivitywiththeseedregionsduringthe fearthanduringthejoycondition. theright)ACshowedstrongerfunctionalconnectivityduringfearwith connectivityduringjoy(comparedtofear)withthemediodorsalnucle- the fundus of the central sulcus and the anterior bank of postcentral usofthethalamus(43%th-temporalaccordingtoEickhoffetal.,2005). gyrus(areas3a&bofS1). TheS1regiondidnotshowanysignificantPPIresultsinourdata. The left SF showed stronger functional connectivity during joy (comparedtofear)withrightposteriorHG(posteriorauditorycore Discussion andbeltregions,80%TE1.1accordingtoMorosanetal.,2001).During fear(comparedtojoy),theleftSFshowedstrongerfunctionalconnec- Summaryofresults tivitywithcuneus(V1–V4),andarea7aofthesuperiorparietallobule (precuneus)bilaterally(left:70%,right:40%probability accordingto ThecontrastanalysisshowedthatBOLDsignalsintheauditorycor- Scheperjans et al., 2008). The right SF showed stronger functional tex(AC)bilaterallywerestrongestduringjoy,weakestduringfear,with Author's personal copy 56 S.Koelschetal./NeuroImage81(2013)49–60 a) b) c) d) e) Fig.4.TimelinesdepictingaverageBOLDsignalintensityintheregionsthatsignificantlydifferedintheGLMcontrastjoyvs.fear.Theordinaterepresentsvaluesofvoxelintensity, theabscissarepresentstime(inseconds),zerocorrespondstotheonsetoftrials. neutralinbetween.Asimilarpatternwasobservedforthesuperficial (comparedtofear)withboththeipsilateralandthecontralateralAC. amygdala (SF), except that joy vs. neutral did not differ from each Duringfear(comparedtojoy),bothleftandrightACshowedstronger other in the right SF. In S1, fear evoked stronger BOLD signals than functionalconnectivitywiththecuneus(areas17and18),themedian bothneutralandjoy(joyvs.neutraldidnotdiffer).InACbilaterally,re- walloftheprecuneus(areas5and7),andalmosttheentirecingulate sponses were stronger during the second half of each trial (and the sulcus(CS).Moreover,bothleftandrightACshowedstrongerfunction- samephenomenonwasobservedinarea45,theIFS,andtheventral alconnectivityduringfearwiththeanteriorinsulabilaterally,andthe pallidum/ventral striatum). By contrast, BOLD signals in the left SF left(butnottheright)ACshowedstrongerfunctionalconnectivitydur- werestrongerduring thefirsthalf.PPIresults showed thatbothleft ingfearwithareas3a&bofS1.TheleftSFshowedstrongerfunctional and right AC showed stronger functional connectivity during joy connectivityduringjoy(comparedtofear)withrightposteriorHeschl's gyrus.Duringfear(comparedtojoy),theleftSFshowedstrongerfunc- tionalconnectivitywithcuneus(V1–V4),andarea7aofthesuperior Table3 Resultsoftheinteractioncontrastofemotion(joyvs.fear)×time(1sthalfvs.2ndhalf parietallobule(precuneus)bilaterally.TherightSFshowedstrongerfunc- ofeachtrial),correctedformultiplecomparisons(pb.05).Abbreviations:AC:auditory tionalconnectivityduringjoy(comparedtofear)withthemediodorsal cortex;FOp:frontaloperculum;SF:superficialamygdalaSTG:superiortemporalgyrus; nucleusofthethalamus. l:left;r:right. MNI Clustersize z-Value:max Auditorycortexandemotionalprocessing coordinate (mm3) (mean) lpost.IFS −511831 1809 4.02(3.39) Pronouncedemotion-specificeffectswereobservedintheauditory rpost.IFS 452134 1134 3.76(3.17) cortex:IntheGeneralLinearModel(GLM)contrast,BOLDresponses lparstriangularis(area45)a −513010 – 3.76(–) intheentiresupratemporalcortex(auditorycore,belt,andparabelt) rparstriangularis(area45) 513010 513 3.27(3.26) lantinsula/deepFOp −34344 621 4.22(3.27) were stronger for joy than neutral stimuli, and stronger for neutral lant.STG −60−9−2 1377 4.56(3.45) thanfearstimuli.Aswillbearguedinthefollowing,theseresultsindi- rant.STG/planumpolare 510−8 2214 4.81(3.40) cateaprominentroleoftheauditorycortexintheemotionalprocessing lplanumtemp.(AC) −42−3013 2457 3.94(3.35) ofauditoryinformation.Importantly,therearefivereasonsastowhy rplanumtemp.(AC) 45−2719 5589 4.50(3.42) lSF −21−6−14 324 3.51(3.19) the activity differences between conditions cannot simply be due to lpallidum −1507 1296 4.42(3.47) acousticalfactors:(1)thevaluesofacousticaldescriptorsthatsignifi- rpallidum 1134 378 3.79(3.31) cantlydifferedbetweenconditionswereincludedascovariatesofno a Thepeakvoxelinthelparstriangulariswaspartoftheclusterwiththemaximum interest,andshouldthereforenothavecontributedtodifferencesbe- peakvoxelinthelinsula/deepfrontalFOp. tweenconditionsobservedintheGLMcontrasts.(2)However,evenif Author's personal copy S.Koelschetal./NeuroImage81(2013)49–60 57 Table4 the interactions of the auditory cortex with limbic/paralimbic brain ResultsofPPIanalysis(correctedformultiplecomparisons,pb.05),separatelyforthe structures are likely to be due to emotional processes, rather than seedvoxelsin:(a)leftAC(Heschl'sgyrus),(b)rightAC(Heschl'sgyrus),(c)leftSF,and beingmerelyduetocognitiveprocessesrelatedtothekey-strength (d)rightSF(thePPIanalysiswithS1asseedregiondidnotindicateanyresults).Pos- ofsounds.(5)Althoughfearstimulihadahigherdegreeofsensory itivez-values(outermostrightcolumn)indicatestrongerfunctionalconnectivitydur- ing joy compared to fear, whereas negative z-values indicate stronger functional dissonancethanjoystimuli,activitychangesintheauditorycortex connectivityduringfearcomparedtojoy.Abbreviations:AC:auditorycortex;FOp: areunlikelytobeduetothisdifferenceonly,becauseneutralstimuli frontaloperculum;HG:Heschl'sgyrus;ITS:inferiortemporalsulcus;MD:mediodorsal; were even more consonant than joy stimuli. The pattern of BOLD MTG:middletemporalgyrus;PAC:primaryauditorycortex;SF:superficialamygdala; signalintensityobservedintheGLMcontrastis,thus,notrelatedto SFS: superior frontal sulcus; SPL: superior parietal lobule; STG: superior temporal gyrus;l:left;r:right. thedegreeofsensorydissonanceofthestimuli. Instead,theobservedpatternofBOLDsignalintensityin theAC MNI Clustersize z-Value:max corresponds to the emotion ratings for joy (and inversely for fear, coordinate (mm3) (mean) respectively),indicatingthatactivityoftheauditorycortexisrelated (a)Leftauditorycortex totheemotionalqualityofauditoryinformation:Comparedtoneu- lHG(PAC) 51−187 2349 4.26(3.17) rHG(PAC) −51−187 1431 3.77(3.16) tral,BOLDsignalshadahigherintensityduringthejoycondition,and rsupramarginalgyrus 63−2434 89,235 −4.97(−3.22) alowerintensityduringthefearcondition.Inotherwords,weobserved cuneus(area17,18) 9−664 19,764 −3.99(−3.07) anactualincreaseinBOLDactivityduringlisteningtojoystimuliandan lpost.MTG/ITS −60−607 2646 −4.19(−3.17) actualdecreaseduringlisteningtofearstimuli(comparedtoneutral lanteriorinsula −4291 7263 −4.52(−3.16) stimuli).Withregardtothepronouncedregionalactivityintheaudito- lmid-insulaa −41−514 – −3.5(–) lpost.insulab −36−2011 – −3.68(–) rycortexduringthejoy-evokingmusic(asindicatedbytheGLMs),itis (b)Rightauditorycortex likelythatthiswasinpartduetoamoredetailedacousticalanalysisof lSFS −243052 2997 −4.07(−3.19) the joyful music, which was probably related to a voluntary shift of lSFS −245125 756 −3.92(−3.04) attention:participantshadapreferenceforthejoystimuli(asindicated rSFS 274237 3672 −3.76(−3.05) lant.insula/deepFOp −45121 648 −4.06(−3.27) bythevalenceratings),andthereforeprobablypaidmorevoluntaryat- lmid-insula −34316 459 −3.48(−3.05) tentiontothosestimuli,leadingtoastrongerauditorycortexactivation rant.insula&putamen 27127 2295 −4.35(−3.17) (Jänckeetal.,1999).Similarfindingshavepreviouslybeenreportedfor lplanumtemporale −60−247 2970 4.34(3.22) pleasantcomparedtounpleasantmusic(Koelschetal.,2006;Muelleret rplanumtemporale 60−184 1188 3.68(3.13) al., 2011) or pleasant vs. unpleasant sounds from the International rsupramarginalgyrus 63−4237 3429 −4.65(−3.17) lpost.MTG/ITS −60−667 3240 −4.40(−3.24) AffectiveDigitizedSoundSystem(IADS,Plichtaetal.,2011).However, rpost.MTG 54−5713 5427 −3.81(−3.06) it is unlikelythatmerelypreference(and,correspondingly, volun- pre-genualcingulate −6427 2268 −3.64(−2.98) taryshiftsofattention)explainsthiseffect,becausethepreference cingulatesulcus 31543 3888 −4.38(−3.13) of participants was comparable between fear and neutral music post.cingulatesulcus 6−3049 33,264 −5.40(−3.18) (c)Leftsuperficialamygdala (again,asindicatedbythevalenceratings),andyetBOLDsignalin- rplanumtemporale/post.HG 42−3313 567 3.75(3.05) tensitydifferedbetweenfearandneutral. rSPL(area7) 18−4854 351 −4.13(−2.94) Theroleoftheauditorycortexintheemotionalprocessingofau- lSPL(area7) −21−5154 756 −4.56(−3.21) ditoryinformationisfurtherhighlightedbythePPIresultsinvolving rsup.occipitalgyrus(area18) 26−9520 7020 −3.68(−2.87) auditoryseedregions:Theseresultsrevealedemotion-specificfunc- lmiddleoccipitalgyrus −30−7819 11,043 −4.24(−2.99) llingualgyrus(V4) −18−73−5 675 −2.94(−2.69) tionalconnectivity(a)betweenauditorycorticalareasandcingulate, rlingualgyrus(V3&V4) 18−81−8 648 −2.85(−2.67) aswellasinsularcortexduringjoystimuli,and(b)betweenauditory (d)Rightsuperficialamygdala areasandparietal,aswellasvisualcortex(V1–V5)duringfearstimuli. MDthalamus 3−124 297 3.22(2.93) Bothcingulateandinsularcortexareinvolvedinemotionalprocesses, a Thepeakvoxelinthelmid-insulawaspartoftheclusterwiththemaximumpeak inparticularwithregardtoautonomicregulationaswellastheproduc- voxelinthelant.insula. tionofsubjectivefeelings(Craig,2009;MedfordandCritchley,2010).In b Thepeakvoxelinthelpost.-insulawaspartoftheclusterwiththemaximumpeak addition,thecingulatecortexhasbeenimplicatedinthecoordinationof voxelinthelant.insula. autonomic activity, behavior, motor expression, as well as cognitive processes in response to emotionally salient stimuli (Koelsch et al., thisproceduredidnotcanceloutacousticaldifferencesbetweencondi- 2010b;MedfordandCritchley,2010). tions,joyandfearstimulididnotdifferwithregardtotheirintensity, Withregardtothemarkedfunctionalconnectivitybetweenaudi- mean F0 frequency, variation of F0 frequency, pitch centroid value, tory areas and parietal as well as visual cortex, anatomical studies spectralcomplexity,andspectralflux.(3)F0salienceandchordstrength indicatethatcore,beltandparabeltregionsprojecttoV1andV2ofvi- differedsignificantlybetweenjoyandfearstimuli,aswellasbetweenjoy sualcortex,andthatneuronsinV2projectbackintotheseauditory andneutralstimuli(F0saliencewashighestforneutral,intermediatefor regions (reviewed in Smiley et al., 2007). The observed functional joy,andlowestforfearstimuli;chordstrengthwashighestforjoystim- connectivitybetweentheseareasinthepresentstudyhighlightsthe uli,anddidnotdifferbetweenneutralandfearstimuli).Nevertheless,in role of auditory–visual interactions, in particular during emotional theGLM,BOLDsignalintensityintheauditorycortexwasstrongerinre- statesoffear.Thefunctionalsignificanceofsuchinteractionsisprob- sponsetojoycomparedtoneutral,andduringneutralcomparedtofear ablyincreasedvisualalertnessinthefaceofdangersignaledbyaudi- stimuli;thispatterndoesnotcorrelatewiththepatternofF0salience toryinformation(probablyincludinginvoluntaryshiftsofattention). (beingstrongest for neutral stimuli) or the pattern of chord strength Ourresultsarethefirsttoshowthattheauditorycortexisacentral (which did not differ between neutral and fear stimuli). (4) Key- hubofanaffective-attentionalnetworkthatismoreextensivethan strength showed differences between joy and fear, as well as be- previously believed, involving functional connectivity of auditory tween fear and neutral stimuli, but not between joy and neutral associationcortexwithadiverserangeofvisual,attentional,andlimbic/ stimuli.Again,thispatternisnotconsistentwiththepatternofBOLD paralimbicstructures.Thisfindingalsosupportsthenotionthatmultisen- responsesobservedintheauditorycortex.Althoughnotwellknown, sory interactions in the cerebral cortex are not limited to established itishighlylikelythatextractionofthekeyoftonalmusic(including polysensoryregions,butthat“interactionswithothersensorysystems extraction of a tonal center) involves both posterior and anterior alsotakeplaceinauditorycortex”(Smileyetal.,2007).Notably,thislatter supratemporalcortexbilaterally(e.g.,Koelsch,2011;Liegeois-Chauvel conclusion holds even if such multisensory interactions were due to etal.,1998;Pattersonetal.,2002;PeretzandZatorre,2005).Therefore, acoustical features which were possibly not accounted for by the

Description:
Germany). Stimuli were then rendered as wav-files using Ableton Live. r supramarginal gyrus. 63 −42 37. 3429. −4.65 (−3.17) l post. MTG/ITS.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.