ebook img

The role of APOBEC3 in the neutralizing antibody response to Friend retrovirus PDF

104 Pages·2015·8.54 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The role of APOBEC3 in the neutralizing antibody response to Friend retrovirus

THE ROLE OF APOBEC3 IN THE NEUTRALIZING ANTIBODY RESPONSE TO FRIEND RETROVIRUS by KALANI HALEMANO B.A., Whitman College, 2008 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Doctor of Philosophy Microbiology Program 2015 This thesis for the Doctor of Philosophy degree by Kalani Halemano has been approved for the Microbiology Program by Linda F. van Dyk, Chair Mario L. Santiago, Advisor Edward N. Janoff Roberta Pelanda Brent E. Palmer Date 7/6/15 ii Halemano, Kalani (Ph.D., Microbiology) The Role of APOBEC3 in the Neutralizing Antibody Response to Friend Retrovirus Thesis directed by Assistant Professor Mario L. Santiago. ABSTRACT A vaccine that elicits HIV-1 broadly neutralizing antibodies (bNAbs) could significantly lower the risk of infection. However, HIV-1 bNAbs exhibit unprecedented levels of somatic hypermutation (SHM) and often have essential framework region mutations. These properties are not typically induced by current vaccination methods. Activation induced deaminase (AID) is thought to be the only initiator of SHM. However, in the Friend retrovirus (FV) model, an evolutionary descendent of AID, APOBEC3 (apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3), has been shown to modulate the neutralizing antibody (NAb) response. We hypothesized that APOBEC3 in mice acts as a complimentary initiator of SHM. To test this hypothesis, we generated and characterized FV-specific IgG monoclonal antibodies (mAbs) from infected WT and APOBEC3-defective mice. We found that APOBEC3 was associated with higher rates of SHM and an enrichment of mutations matching the known deamination hotspot of mouse APOBEC3, but not the deamination hotspot of AID. These observations were confirmed by the analysis of over 300,000 next generation sequencing reads from WT and APOBEC3-KO germinal center B cells. Notably, the impact of APOBEC3 was restricted to putative immunodominant V gene segments associated with virus recognition. These data H suggest that APOBEC3 acts as an initiator of SHM in virus-specific B cells during retrovirus in- fection. Additionally, the role of non-neutralizing mechanisms in an effective antibody response against HIV-1 is unclear. Recent evidence suggests that HIV-1 bNAbs utilize Fcγ-receptors (FcγRs) to improve protection in vivo. However, these studies utilized mAbs and it is currently unclear whether the engagement of FcγRs would be utilized by a polyclonal NAb response, iii such as one elicited by a vaccine. We decided to test whether the APOBEC3-dependent NAb response to FV utilized FcγRs or complement-fixing. Using an in vivo neutralization assay, we showedthatthepotencyofAPOBEC3-dependentNAbswasdependentonactivatingFcγRsbut not complement. These data suggest that modulating APOBEC3 activity may provide a means to augment the rate of vaccine-induced SHM, which may expedite the development of HIV-1 bNAbs. Furthermore, an effective HIV-1 vaccine strategy should account for the engagement of FcγRs to optimize in vivo potency. The form and content of this abstract are approved. I recommend its publication. Approved: Mario L. Santiago iv TABLE OF CONTENTS CHAPTER I LITERATURE REVIEW 1 Impediments to an HIV-1 Vaccine . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 HIV-1 Broadly Neutralizing Antibodies . . . . . . . . . . . . . . . . . . . . . . . . . 5 The Friend Retrovirus Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Non-Neutralizing Antibody Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . 22 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 II METHODOLOGY 29 Viral Stocks and Mice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Cell Culture Assays and Hybridomas . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ELISA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Flow Cytometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 PCR and Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 III THE APOBEC3/RFV3-DEPENDENT Ab RESPONSE 40 Characterization of the mA3r/s and mA3-/s mAb Cohorts . . . . . . . . . . . . . . 40 APOBEC3-type and AID-type Mutations in FV-reactive Monoclonal Antibodies . . . 44 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 IV INVESTIGATING THE ROLE OF APOBEC3/RFV3 IN SOMATIC HYPERMU- TATION USING NEXT GENERATION SEQUENCING 49 Experimental Design and Analysis Pipeline . . . . . . . . . . . . . . . . . . . . . . . 49 v Mutational Analysis of NGS Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 V FC-MEDIATED EFFECTORS IN THE FRIEND VIRUS MODEL 58 Confirmation of the Rfv3-dependent NAb Response by Passive Transfer in vivo . . . 58 Rfv3-dependent NAb Response Correlates with Higher IgG2 Titers . . . . . . . . . . 59 In vivo FV Neutralization by Rfv3r Antisera Requires Fc Receptors . . . . . . . . . . 61 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 VI DISCUSSION 65 The Rfv3-dependent Antibody Response . . . . . . . . . . . . . . . . . . . . . . . . 65 APOBEC3 Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Implications of APOBEC3 in HIV-1 Vaccinations . . . . . . . . . . . . . . . . . . . 71 REFERENCES 79 vi LIST OF TABLES TABLE 1.1 HIV-1 Broadly Neutralizing Antibodies . . . . . . . . . . . . . . . . . . . . . . 7 1.2 HIV-1 and FV comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.3 Host Susceptibility and Recovery Genes . . . . . . . . . . . . . . . . . . . . . 19 1.4 Mouse Strain Genotypes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.5 Deaminase Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.1 Primers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.2 MiSeq Adapter Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.1 Hybridoma FV-reactivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2 FV-reactive Hybridoma Isotypes . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.3 V Gene Segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 H 3.4 APOBEC3-Type Mutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.1 Sequence Counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.1 FV-reactive Hybridoma Isotypes . . . . . . . . . . . . . . . . . . . . . . . . . 60 vii LIST OF FIGURES FIGURES 1.1 HIV-1 Virion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 HIV-1 Replication Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 HIV-1 Progression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Antibody Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.5 The Heavy Chain Immunoglobulin Locus . . . . . . . . . . . . . . . . . . . . . 10 1.6 B cell Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.7 Cytidine Deamination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.8 Somatic Hypermutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.9 FV Disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.10 AID/APOBEC Cytidine Deaminase Family . . . . . . . . . . . . . . . . . . . . 21 1.11 Antibody Effectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.12 Fcγ Receptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.13 Class Switch Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.1 Screening for FV-reactive Hybridomas from Infected Mice . . . . . . . . . . . . 41 3.2 FV-reactive IgG Hybridoma Mutation Frequencies and Relative Binding . . . . 44 3.3 V 1-19 Relative Binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 H 3.4 AID/APOBEC3-Type Mutations . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.1 Sorting Germinal Center B cells . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.2 Mutation Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.3 AID-type Mutations In NGS Data . . . . . . . . . . . . . . . . . . . . . . . . 53 4.4 mA3-type Mutations in NGS Data . . . . . . . . . . . . . . . . . . . . . . . . 54 4.5 Non-synonymous mA3-Type Mutations . . . . . . . . . . . . . . . . . . . . . . 55 viii 4.6 Phylogeny . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.1 In vitro and in vivo Neutralization Assay Design . . . . . . . . . . . . . . . . . 59 5.2 Rfv3-dependent Antibody Neutralization in vitro and in vivo . . . . . . . . . . 60 5.3 Isotype-specific Endpoint Titers . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.4 Overview of in vivo NAb Assay . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.5 Antisera from Rfv3-resistant Mice Require Fcγ-mediated Effectors to Neutralize FV in vivo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.1 The Indirect and Direct Model . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6.2 Mouse APOBEC3 Nuclear Localization Models . . . . . . . . . . . . . . . . . 70 6.3 Hill Climbing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.4 Hills Changing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.5 Broadly Neutralizing Antibody Development . . . . . . . . . . . . . . . . . . . 74 6.6 Serial Vaccinations with APOBEC3 Stimulation . . . . . . . . . . . . . . . . . 75 6.7 AID and APOBEC3 Hotspots . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.8 AID and APOBEC3 in HIV-1 Vaccinations . . . . . . . . . . . . . . . . . . . . 78 ix LIST OF ABBREVIATIONS AID activation induced deaminase, page 11 APOBEC apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like-3, page 18 B6 C57BL/6 mouse strain, page 7 BCR B cell receptor, page 8 BER base excision repair pathway, page 14 bNAb broadly neutralizing antibodies, page 5 bp base pairs, page 10 CDR complementarity determining region, page 9 CSR class switch recombination, page 23 D diversity gene segment, page 7 dpi days post infection, page 20 dsDNA double-stranded DNA, page 21 Fab fragment, antigen-binding, page 8 Fc fragment, crystallizable, page 8 FcR Fc Receptor, page 22 FFU focus forming unit, page 31 FV Friend retrovirus, page 15 FWR framework region, page 9 GALT gut-associated lymphoid tissue, page 5 GC germinal center, page 12 HAART highly active antiretroviral therapy, page 1 HIV-1 human immunodeficiency virus-1, page 1 HSC hematopoietic stem cells, page 7 IC infectious center, page 31 Ig immunoglobulin, page 5 ITAM immunoreceptor tyrosine-based activation motif, page 25 ITIM immunoreceptor tyrosine-based inhibitory motifs, page 25 J joining gene segment, page 7 x

Description:
to augment the rate of vaccine-induced SHM, which may expedite the development of HIV-1 .. Vif, Vpr, and Nef stranded DNA intermediate.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.