ebook img

The Road to Universal Logic: Festschrift for the 50th Birthday of Jean-Yves Béziau Volume II PDF

607 Pages·2015·9.836 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Road to Universal Logic: Festschrift for the 50th Birthday of Jean-Yves Béziau Volume II

Studies in Universal Logic Arnold Koslow Arthur Buchsbaum Editors The Road to Universal Logic Festschrift for the 50th Birthday of Jean-Yves Béziau Volume II StudiesinUniversal Logic SeriesEditor Jean-YvesBéziau(FederalUniversityofRiodeJaneiroandBrazilianResearchCouncil, RiodeJaneiro,Brazil) EditorialBoardMembers HajnalAndréka(HungarianAcademyofSciences,Budapest,Hungary) MarkBurgin(UniversityofCalifornia,LosAngeles,USA) RazvanDiaconescu(RomanianAcademy,Bucharest,Romania) JosepMariaFont(UniversityofBarcelona,Spain) AndreasHerzig(CentreNationaldelaRechercheScientifique,Toulouse,France) ArnoldKoslow(CityUniversityofNewYork,USA) Jui-LinLee(NationalFormosaUniversity,HuweiTownship,Taiwan) LarissaMaksimova(RussianAcademyofSciences,Novosibirsk,Russia) GrzegorzMalinowski(UniversityofŁódz´,Poland) DarkoSarenac(ColoradoStateUniversity,FortCollins,USA) PeterSchröder-Heister(UniversityTübingen,Germany) VladimirVasyukov(RussianAcademyofSciences,Moscow,Russia) Thisseriesisdevotedtotheuniversalapproachtologicandthedevelopmentofageneral theoryoflogics. Itcoverstopicssuchasglobalset-upsforfundamentaltheoremsoflogic andframeworksforthestudyoflogics,inparticularlogicalmatrices,Kripkestructures, combinationoflogics,categoricallogic,abstractprooftheory,consequenceoperators, andalgebraiclogic. Itincludesalsobookswithhistoricalandphilosophicaldiscussions aboutthenatureandscopeoflogic. Threetypesofbookswillappearintheseries: graduatetextbooks,researchmonographs,andvolumeswithcontributedpapers. (cid:2) Arnold Koslow Arthur Buchsbaum Editors The Road to Universal Logic Festschrift for the 50th Birthday of Jean-Yves Beziau Volume II Editors ArnoldKoslow ArthurBuchsbaum CityUniversityofNewYork FederalUniversityofSantaCatarina NewYork,USA Florianópolis,SC,Brazil ISSN2297-0282 ISSN2297-0290(electronic) StudiesinUniversalLogic ISBN978-3-319-15367-4 ISBN978-3-319-15368-1(eBook) DOI10.1007/978-3-319-15368-1 SpringerChamHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2014953260 MathematicsSubjectClassification(2010):03B22,03B42,03B62,03G30,03A05,01A99 Birkhäuser ©SpringerInternationalPublishingSwitzerland2015 Thisworkissubjecttocopyright. AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotective lawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsorthe editorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforanyerrors oromissionsthatmayhavebeenmade. Printedonacid-freepaper SpringerInternationalPublishingAGSwitzerlandispartofSpringerScience+BusinessMedia (www.springer.com) Preface Thesetwovolumesgathertogetherthetributesofadistinguishedgroupofcolleaguesand friendsinhonorofProfessorJean-YvesBeziauonhis50thbirthday. The chapters in each of the two volumes (of which this is the second) fall, broadly speaking,intofourcategories: 1. thoseconcernedwithuniversallogic; 2. thoseconcernedwithhexagonalandothergeometricaldiagramsofopposition; 3. thoseconcernedwithparaconsistency,and 4. currentworknotdirectlyconnectedtotheworkofJean-YvesBeziau. With these contributed chapters, we want to express our gratitude for the intellectual andorganizationalworkofJean-Yvesinuncoveringagoldentraditionoflogicalthought, and his constant encouragement to all of us to ensure that tradition will continue and flourish.Manythanks,Jean-Yves.Ourheartfeltthanksonyour50thbirthday. Withthepossibleexceptionofthelastcategory,therearethreesubdivisionsofuniver- sal logic as conceived by Jean-Yves Beziau. In order to understand this project, we can donobetter thantorecallthewayin whichuniversallogicwascompactlydescribedby Beziau in the preface to what is probably the defining collection on the subject,1 and to expanduponit,briefly: (i) BeyondParticularLogicalSystems “Universallogicisa generalstudy of logical structures.Theideaistogobeyondparticularlogicalsystemstoclarifyfundamental conceptsoflogicandtoconstructgeneralproofs.”(p.v) (ii) ComparisonofLogics“Comparisonoflogicsisacentralfeatureofuniversallogic.” (p.v) (iii) Abstraction and the CentralNotion ofConsequence “Buttheabstraction rise is not necessarily progressive, there are also some radical jumps into abstraction. In logic, we find such jumps in the work of Paul Hertz on Satzsysteme (Part 1), and of AlfredTarskionthenotionof aconsequenceoperator(Part3).Whatis primary in these theories are not the notions of logical operators or logical constants (con- nectivesandquantifiers),butamorefundamentalnotion:arelationofconsequence 1Beziau[2]. v vi Preface definedonundeterminedabstractobjectsthatcanbepropositionsofanyscience,but alsodata,acts,events.”(p.vi) (iv) BeyondSyntaxandSemantics“Inuniversallogic,consequenceisthecentralcon- cept.Butthisconsequencerelationisneithersyntactical(proof-theoretical),norse- mantical(model-theoretical).Wearebeyondthedichotomysyntax/semantics(proof theory/modeltheory.”(p.vi) ThereareofcourseotherthemesthatarecharacteristicofUniversalLogic,butitseems evidentto usthatthefirst observation– (i) Beyondparticular LogicalSystems – indi- catesclearlythatuniversallogicdoesnotadvocateauniquelogicalsystemthatistheone correct, most expressive, accurate, and useful logical structure. Universal logic includes in its domain a host of logical structures in all their variety. But universal logic is not simply acatalog of alladvocated orimagined logicalstructures, alllogicalpossibilities, asitwouldhavealltheutilityofatelephonebookthatisusefulforcertainproblems,but cognitivelydumb. Itisthesecondobservation–(ii)ComparisonofLogics–whichaddsintellectualcon- tenttotheproject.Comparisonisindeedcentraltouniversallogic,butnotcomparisonsof avalidkind.Whatisintendedarecomparisonsthatnotonlynotethedifferencebetween logicalstructures,butexplanationsofwhytherearethosedifferencesinawaythatreveal their differentlogicalcharacter. Thesecond observationsuggests that notonly arecom- parisonsoffered,buttheremaybealsomanydifferentwaysoforderingthoselogics,and onecannottakeforgrantedthatthoseorderingsorcomparisonsarecoherentwhentaken together.Thiskindofissueisnicelyillustratedwhenwethinkofapapernowcommonly referredtoas“Beziau’stranslationparadox”.2Simplyput,twologicalsystemsK (classi- calpropositionallogic),andK=2aredescribed.Twoorderingsorrelationsareprovedto hold:K isanextensionofK=2andalsothatthereisafaithfultranslationofK intoK=2. Sotherearetwoorderings.ThefirstseemstoindicatethatK isclearlythestrongerlogic, yetthesecondresultseemstosayotherwise(thatthereiswithinK=2afaithfultranslation ofclassicalpropositionallogic).Eachofthetwoorderingsseemstomeasurethestrength ofonelogicoveranother.AccordingthentoBeziau’sconceptofuniversallogic,compar- isonsareacentraltask,butitisalsoataskofuniversallogictofigureoutwhattodowhen the orderings seem to go in different directions. Beziau has suggested that it is like the so-calledGalileanparadox,whichnotesthattherearemoresquarenaturalnumbersthan therearenaturalnumbers,andalsonotesthatthosetwocollectionsareevenlymatched.It isnotthatGalileo’ssolutionisrecommendedfortheBeziauexample.Thatisnotapossi- blewayout,sinceGalileothoughtthat,inthecaseofinfinitecollections,thenotionof“is largerthan”justdoesn’tapply.Theintendedsimilarity,asweseeit,isthatinbothcases therearetwowaysofexplainingthenotionofonecollectionhavingmoremembersthan another, and one logic being more powerful than another. The two ways give opposing verdicts,andtheresolutionofthissituation,Beziaumaintains,isataskthatliessquarely withintheprovinceofuniversallogic. WementionedthatthestudyofHexagonallogicsofoppositionfallssquarelywithinthe provinceofuniversallogic,fortheyprovideagoodexampleoffinitelogicalsystems,with 2Beziau[1]. Preface vii aspecifiedparticularimplicationrelationbetweentheirsentences(takenpairwise).Infact thereisagrowingliteraturewhichconsidersconsequencerelationsonfinitegeometrical arraysofdifferentdimension.Allbelongcomfortablywithintheprojectthatisuniversal logic. Wealsomentionedthatparaconsistentlogicsareincludedintheprogram.Thatshould beobviousifoneconsidersthevariousconsequencerelationstobefoundinthatbranchof logic.AlsoweneedtomentionthebeautifulstudiesofDovGabbayinwhichheproposed the study of restrictive access logics as an alternative to paraconsistent logics that is an extensionofclassicallogic.3 Theserestrictiveaccesslogicscanbedescribedbyusingasubstructuralconsequence relation,wherethereisamodificationoftheGentzenstructuralconditionsonimplication. It then becomes an interesting problem to see what features the logical operators have willhaveasaconsequence.4Theexamplesofparaconsistentandrestrictivelogicsliewell withintheprovinceofpresentdaylogic. Incontrast,whatisinterestingandnovelisthatBeziau’sobservationsin(iv)Beyond SyntaxandSemanticspermitstheextensionoftheprogrambeyondthemoretraditional range of contemporary logical systems. As he stated, not only can we have the notion of consequence for scientific propositions, and nonpropositional, nonsentential objects including,data,acts,andevents,butwedonowaddpictures(perhapsmathematicaldia- grams),andeventheepistemicnotionofstatesofbeliefforwhichconsequencerelations exist,andthepossibilityoflogicaloperatorsactingonpicturesaswellasstatesofbelief. We are concerned with consequence relations that are beyond the semantical or proof- theoretical. Thecaseforaconsequencerelationbetweenpictureshasrecentlybeenforcefullymade byJanWesterhoff.Here,compactly,istheclaim: “I will describe an implication relation between pictures. It is then possible to give precisedefinitionsofconjunctions,disjunctions,negations,etc.ofpictures.Itwillturnout thattheselogicaloperationsarecloselyrelated to,orevenidenticalwith basiccognitive relationswenaturallyemploywhenthinkingaboutpictures.”5 Thisexamplewithitsparticularconsequencerelation,andthepicturesitrelates,isan extensionwellbeyondtheusualrestrictionoflogictosyntaxandsemantics.Itillustrates the broad implications of Beziau’s observations in (iv) and the fertility of the project of universallogic.Itisnotbusinessasusual. Finally,wewillbrieflydescribeanothercasePeterGärdenfors,6whodevelopedalogic ofpropositionsonthebasisofatheoryaboutbeliefrevision.Hisresultscanberecastin suchawaythattheyalsofollowasacasewherehedefinespropositionsasspecialkinds of functions, and also defines a special relation among those functions that turns out to beaconsequencerelation.Theresultisfascinating:theconjunctionoffunctionsturnsout tobethefunctionalcompositionoffunctions,andGärdenfors’specialrelationamongthe 3GabbayandHunter[4]. 4PrivatecommunicationfromD.Gabbay,2005. 5Westerhoff[6].TheimplicationrelationproposedforpicturesissimilartoonethatCorcoran[3]pro- posedforpropositions,asnotedbyWesterhoff. 6Gärdenfors[5]. viii Preface functionsisaconsequencerelationprovidedthatfunctionalcompositioniscommutative andidempotent. More specifically, (1) let S be a set of states of belief of some person. (2) Let P be a set of functions from S to S (called propositions) which is closed under functional composition.(3)Foranymembersf ;f ;:::;f andginP,let(G)betheconditionthat 1 2 n f ;f ;:::;f )g ifandonlyif gf f :::f Df f :::f 1 2 n 1 2 n 1 2 n (theconcatenationoftwofunctionshereindicatestheirfunctionalcomposition). In particular,for anytwo propositions(functions)f and g, f implies g (f ) g) if andonlyifgf D f.Itiseasytoprovethattherelation(G)isaconsequencecondition ifandonlyiffunctionalcompositioniscommutativeandidempotent.Thelogicofthese propositionshasbeenshownbyGärdenforstobeIntuitionistic,andhisconsequencerela- tion(G)isclearlyepistemic.Again,itisnotlogicasusual,butitisjustonemorecaseof thefruitfulnessoftheideasthattheprojectofuniversallogicembodies. References 1. Beziau, J-Y.: Classical negation can be expressed by one of its halves. Log. J. IGPL 7(2),145–151(1999) 2. Beziau, J-Y.: Universal Logic: An Anthology, from Paul Hertz to Dov Gabbay. Birkhäuser,Boston(2012) 3. Corcoran,J.: Information-theoreticlogic. In:Martinez, C. (ed.) Truthin Perspective, pp.113–135.Ashgate,Aldershot(1998) 4. Gabbay,D.M.:Restrictiveaccesslogicsforinconsistentinformation.In:ECCSQARU. LectureNotesinComputerScience,pp.137–144.Springer,Berlin(1993) 5. Gärdenfors, P.: The dynamics of belief as a basis for logic. Br. J. Philos. Sci. 1–10 (1984) 6. Westerhoff,J.:Logicalrelationsbetweenpictures.J.Philos.102(12),603–623(2005) NewYork,USA ArnoldKoslow Florianópolis,Brazil ArthurBuchsbaum Contents PersonalRecollectionsAboutJYBbyNewtondaCostaandOthers . . . . . . . 1 K.Gan-Krzywoszyn´ska LogicalAutobiography50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 J.-Y.Béziau AQuantitative-InformationalApproachtoLogicalConsequence . . . . . . . . . 105 M.A.AlvesandI.M.LoffredoD’Ottaviano Finite-VariableLogicsDonotHaveWeakBethDefinabilityProperty . . . . . . 125 H.AndrékaandI.Németi Peirce’sRoleintheHistoryofLogic:LinguaUniversalisand CalculusRatiocinator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 I.H.Anellis TheMeaning(s)of“Is”:Normativevs.NaturalisticViewsofLanguage . . . . . 171 I.Angelelli TheRelationBetweenLogic,SetTheoryandToposTheoryasItIsUsed byAlainBadiou . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 R.Angot-Pellissier PotentialityandContradictioninQuantumMechanics . . . . . . . . . . . . . . . . 201 J.R.BeckerArenhartandD.Krause Two,Many,andDifferentlyMany . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 D.Batens LogicsandTheirGalaxies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 H.Bensusanetal. ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.