ebook img

The rising sea. Foundations of algebraic geometry PDF

801 Pages·2015·3.406 MB·English
by  Vakil R
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The rising sea. Foundations of algebraic geometry

THE RISING SEA Foundations of Algebraic Geometry math216.wordpress.com December29,2015draft ⃝c 2010–2015byRaviVakil. Notetoreader:thefigures,index,andformattinghaveyettobeproperlydealtwith. Thereremainmanyissuesstilltobedealtwithinthemainpartofthenotes(including manyofyourcorrectionsandsuggestions). Contents Preface 11 0.1. Forthereader 12 0.2. Fortheexpert 16 0.3. Backgroundandconventions 17 0.4. ⋆⋆Thegoalsofthisbook 18 PartI. Preliminaries 21 Chapter1. Somecategorytheory 23 1.1. Motivation 23 1.2. Categoriesandfunctors 25 1.3. Universalpropertiesdetermineanobjectuptouniqueisomorphism 31 1.4. Limitsandcolimits 40 1.5. Adjoints 44 1.6. Anintroductiontoabeliancategories 47 1.7. ⋆Spectralsequences 58 Chapter2. Sheaves 71 2.1. Motivatingexample: Thesheafofdifferentiablefunctions 71 2.2. Definitionofsheafandpresheaf 73 2.3. Morphismsofpresheavesandsheaves 78 2.4. Propertiesdeterminedatthelevelofstalks,andsheafification 82 2.5. Sheavesofabeliangroups,andO -modules,formabeliancategories 86 X 2.6. Theinverseimagesheaf 89 2.7. Recoveringsheavesfroma“sheafonabase” 92 PartII. Schemes 97 Chapter3. Towardaffineschemes: theunderlyingset,andtopologicalspace 99 3.1. Towardschemes 99 3.2. Theunderlyingsetofaffineschemes 101 3.3. VisualizingschemesI:genericpoints 113 3.4. Theunderlyingtopologicalspaceofanaffinescheme 114 3.5. AbaseoftheZariskitopologyonSpecA: Distinguishedopensets 117 3.6. Topological(andNoetherian)properties 118 3.7. ThefunctionI((cid:1)),takingsubsetsofSpecAtoidealsofA 127 Chapter4. Thestructuresheaf,andthedefinitionofschemesingeneral 129 4.1. Thestructuresheafofanaffinescheme 129 4.2. VisualizingschemesII:nilpotents 133 3 4.3. Definitionofschemes 136 4.4. Threeexamples 139 4.5. Projectiveschemes,andtheProjconstruction 145 Chapter5. Somepropertiesofschemes 153 5.1. Topologicalproperties 153 5.2. Reducednessandintegrality 155 5.3. Propertiesofschemesthatcanbechecked“affine-locally” 157 5.4. Normalityandfactoriality 161 5.5. Thecrucialpointsofaschemethatcontroleverything: Associated pointsandprimes 166 PartIII. Morphisms 175 Chapter6. Morphismsofschemes 177 6.1. Introduction 177 6.2. Morphismsofringedspaces 178 6.3. Fromlocallyringedspacestomorphismsofschemes 180 6.4. Mapsofgradedringsandmapsofprojectiveschemes 186 6.5. Rationalmapsfromreducedschemes 188 6.6. ⋆Representablefunctorsandgroupschemes 194 6.7. ⋆⋆TheGrassmannian(initialconstruction) 199 Chapter7. Usefulclassesofmorphismsofschemes 201 7.1. Anexampleofareasonableclassofmorphisms: Openembeddings 201 7.2. Algebraicinterlude: LyingOverandNakayama 203 7.3. Agazillionfinitenessconditionsonmorphisms 207 7.4. Imagesofmorphisms: Chevalley’sTheoremandeliminationtheory 216 Chapter8. Closedembeddingsandrelatednotions 225 8.1. Closedembeddingsandclosedsubschemes 225 8.2. Moreprojectivegeometry 230 8.3. The(closedsub)scheme-theoreticimage 236 8.4. EffectiveCartierdivisors,regularsequencesandregularembeddings240 Chapter9. Fiberedproductsofschemes,andbasechange 245 9.1. Theyexist 245 9.2. Computingfiberedproductsinpractice 251 9.3. Interpretations: Pullingbackfamilies,andfibersofmorphisms 254 9.4. Propertiespreservedbybasechange 260 9.5. ⋆Propertiesnotpreservedbybasechange,andhowtofixthem 261 9.6. Productsofprojectiveschemes: TheSegreembedding 269 9.7. Normalization 271 Chapter10. Separatedandpropermorphisms,and(finally!) varieties 277 10.1. Separatedmorphisms(andquasiseparatednessdoneproperly) 277 10.2. Rationalmapstoseparatedschemes 287 10.3. Propermorphisms 291 PartIV. “Geometric”properties: Dimensionandsmoothness 299 Chapter11. Dimension 301 11.1. Dimensionandcodimension 301 11.2. Dimension,transcendencedegree,andNoethernormalization 305 11.3. Codimensiononemiracles: Krull’sandHartogs’sTheorems 313 11.4. Dimensionsoffibersofmorphismsofvarieties 319 11.5. ⋆⋆ProofofKrull’sPrincipalIdealandHeightTheorems 324 Chapter12. Regularityandsmoothness 327 12.1. TheZariskitangentspace 327 12.2. Regularity,andsmoothnessoverafield 333 12.3. Examples 338 12.4. Bertini’sTheorem 341 12.5. Discretevaluationrings 345 12.6. Smooth(ande´tale)morphisms(firstdefinition) 350 12.7. ⋆Valuativecriteriaforseparatednessandproperness 353 12.8. ⋆Moresophisticatedfactsaboutregularlocalrings 358 12.9. ⋆Filteredringsandmodules,andtheArtin-ReesLemma 359 PartV. Quasicoherentsheaves 363 Chapter13. Quasicoherentandcoherentsheaves 365 13.1. Vectorbundlesandlocallyfreesheaves 365 13.2. Quasicoherentsheaves 371 13.3. Characterizingquasicoherenceusingthedistinguishedaffinebase 373 13.4. Quasicoherentsheavesformanabeliancategory 377 13.5. Module-likeconstructions 379 13.6. Finitetypeandcoherentsheaves 382 13.7. Pleasantpropertiesoffinitetypeandcoherentsheaves 385 13.8. ⋆⋆Coherentmodulesovernon-Noetherianrings 389 Chapter14. Linebundles: Invertiblesheavesanddivisors 393 14.1. Somelinebundlesonprojectivespace 393 14.2. LinebundlesandWeildivisors 395 14.3. ⋆EffectiveCartierdivisors“=”invertibleidealsheaves 404 Chapter15. QuasicoherentsheavesonprojectiveA-schemes 407 15.1. Thequasicoherentsheafcorrespondingtoagradedmodule 407 15.2. Invertiblesheaves(linebundles)onprojectiveA-schemes 408 15.3. Globallygeneratedandbase-point-freelinebundles 409 15.4. Quasicoherentsheavesandgradedmodules 412 Chapter16. Pushforwardsandpullbacksofquasicoherentsheaves 417 16.1. Introduction 417 16.2. Pushforwardsofquasicoherentsheaves 417 16.3. Pullbacksofquasicoherentsheaves 418 16.4. Linebundlesandmapstoprojectiveschemes 424 16.5. TheCurve-to-ProjectiveExtensionTheorem 431 16.6. Ampleandveryamplelinebundles 432 16.7. ⋆TheGrassmannianasamodulispace 437 Chapter17. RelativeversionsofSpecandProj,andprojectivemorphisms 443 17.1. RelativeSpecofa(quasicoherent)sheafofalgebras 443 17.2. RelativeProjofasheafofgradedalgebras 446 17.3. Projectivemorphisms 449 17.4. Applicationstocurves 455 Chapter18. Cˇechcohomologyofquasicoherentsheaves 461 18.1. (Desired)propertiesofcohomology 461 18.2. Definitionsandproofsofkeyproperties 466 18.3. Cohomologyoflinebundlesonprojectivespace 471 18.4. Riemann-Roch,degreesofcoherentsheaves,andarithmeticgenus 474 18.5. AfirstglimpseofSerreduality 481 18.6. Hilbertfunctions,Hilbertpolynomials,andgenus 485 18.7. ⋆Serre’scohomologicalcharacterizationofampleness 490 18.8. Higherpushforward(ordirectimage)sheaves 493 18.9. ⋆ From projective to proper hypotheses: Chow’s Lemma and Grothendieck’sCoherenceTheorem 497 Chapter19. Application: Curves 503 19.1. Acriterionforamorphismtobeaclosedembedding 503 19.2. Aseriesofcrucialtools 505 19.3. Curvesofgenus0 508 19.4. Classicalgeometryarisingfromcurvesofpositivegenus 509 19.5. Hyperellipticcurves 511 19.6. Curvesofgenus2 515 19.7. Curvesofgenus3 516 19.8. Curvesofgenus4and5 518 19.9. Curvesofgenus1 521 19.10. Ellipticcurvesaregroupvarieties 528 19.11. Counterexamplesandpathologiesusingellipticcurves 534 Chapter20. ⋆Application: Aglimpseofintersectiontheory 539 20.1. Intersectingnlinebundleswithann-dimensionalvariety 539 20.2. Intersectiontheoryonasurface 543 20.3. The Grothendieck group of coherent sheaves, and an algebraic versionofhomology 549 20.4. ⋆⋆TheNakai-MoishezonandKleimancriteriaforampleness 551 Chapter21. Differentials 557 21.1. Motivationandgameplan 557 21.2. Definitionsandfirstproperties 558 21.3. Smoothnessofvarietiesrevisited 572 21.4. Examples 575 21.5. Understandingsmoothvarietiesusingtheircotangentbundles 579 21.6. Unramifiedmorphisms 584 21.7. TheRiemann-HurwitzFormula 586 Chapter22. ⋆Blowingup 593 22.1. Motivatingexample: blowinguptheoriginintheplane 593 22.2. Blowingup,byuniversalproperty 595 22.3. Theblow-upexists,andisprojective 599 22.4. Examplesandcomputations 604 PartVI. More 613 Chapter23. Derivedfunctors 615 23.1. TheTorfunctors 615 23.2. Derivedfunctorsingeneral 619 23.3. Derivedfunctorsandspectralsequences 623 23.4. DerivedfunctorcohomologyofO-modules 628 23.5. Cˇechcohomologyandderivedfunctorcohomologyagree 631 Chapter24. Flatness 639 24.1. Introduction 639 24.2. Easierfacts 641 24.3. FlatnessthroughTor 646 24.4. Ideal-theoreticcriteriaforflatness 648 24.5. Topologicalaspectsofflatness 655 24.6. Localcriteriaforflatness 659 24.7. FlatnessimpliesconstantEulercharacteristic 663 Chapter25. Smoothande´talemorphisms,andflatness 669 25.1. Somemotivation 669 25.2. Differentcharacterizationsofsmoothande´talemorphisms 671 25.3. GenericsmoothnessandtheKleiman-BertiniTheorem 676 Chapter26. DepthandCohen-Macaulayness 681 26.1. Depth 681 26.2. Cohen-Macaulayringsandschemes 684 26.3. ⋆Serre’sR1+S2criterionfornormality 687 Chapter27. Twenty-sevenlines 693 27.1. Introduction 693 27.2. Preliminaryfacts 694 27.3. Everysmoothcubicsurface(overk)has27lines 695 27.4. Everysmoothcubicsurface(overk)isablownupplane 699 Chapter28. Cohomologyandbasechangetheorems 703 28.1. Statementsandapplications 703 28.2. ⋆Proofsofcohomologyandbasechangetheorems 709 28.3. Applyingcohomologyandbasechangetomoduliproblems 716 Chapter29. PowerseriesandtheTheoremonFormalFunctions 721 29.1. Introduction 721 29.2. Algebraicpreliminaries 721 29.3. Definingtypesofsingularities 725 29.4. TheTheoremonFormalFunctions 727 29.5. Zariski’sConnectednessLemmaandSteinFactorization 729 29.6. Zariski’sMainTheorem 732 29.7. Castelnuovo’sCriterionforcontracting(-1)-curves 735 29.8. ⋆⋆ProofoftheTheoremonFormalFunctions29.4.2 739 Chapter30. ⋆ProofofSerreduality 743 30.1. Introduction 743 30.2. ExtgroupsandExtsheavesforO-modules 748 30.3. Serredualityforprojectivek-schemes 752 30.4. Theadjunctionformulaforthedualizingsheaf,and! =K 757 X X Bibliography 763 Index 769 December29,2015draft 9 Jepourraisillustrerla... approche,engardantl’imagedelanoixqu’ils’agitd’ouvrir. La premie`re parabole qui m’est venue a` l’esprit tantoˆt, c’est qu’on plonge la noix dans unliquidee´mollient,del’eausimplementpourquoipas,detempsentempsonfrottepour qu’ellepe´ne`tremieux,pourleresteonlaissefaireletemps. Lacoques’assouplitaufildes semainesetdesmois—quandletempsestmuˆr, unepressiondelamainsuffit, lacoque s’ouvrecommecelled’unavocatmuˆra` point! ... L’image qui m’e´tait venue il y a quelques semaines e´tait diffe´rente encore, la chose inconnue qu’il s’agit de connaˆıtre m’apparaissait comme quelque e´tendue de terre ou de marnes compactes, re´ticente a` se laisser pe´ne´trer. ... La mer s’avance insensiblement et sans bruit, rien ne semble se casser rien ne bouge l’eau est si loin on l’entend a` peine... Pourtantellefinitparentourerlasubstancere´tive... I can illustrate the ... approach with the ... image of a nut to be opened. The first analogythatcametomymindisofimmersingthenutinsomesofteningliquid,andwhy notsimplywater? Fromtimetotimeyourubsotheliquidpenetratesbetter,andotherwise youlettimepass. Theshellbecomesmoreflexiblethroughweeksandmonths—whenthe timeisripe,handpressureisenough,theshellopenslikeaperfectlyripenedavocado! ... A different image came to me a few weeks ago. The unknown thing to be known appeared to me as some stretch of earth or hard marl, resisting penetration ... the sea advances insensibly in silence, nothing seems to happen, nothing moves, the water is so faroffyouhardlyhearit... yetfinallyitsurroundstheresistantsubstance. —A.Grothendieck[Gr6,p.552-3],translationbyC.McLarty[Mc,p.1]

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.