ebook img

The Riemann Hypothesis in Characteristic p in Historical Perspective PDF

237 Pages·2018·2.924 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Riemann Hypothesis in Characteristic p in Historical Perspective

Lecture Notes in Mathematics 2222 History of Mathematics Subseries Peter Roquette The Riemann Hypothesis in Characteristic p in Historical Perspective Lecture Notes in Mathematics 2222 Editors-in-Chief: Jean-MichelMorel,Cachan BernardTeissier,Paris AdvisoryBoard: MichelBrion,Grenoble CamilloDeLellis,Princeton AlessioFigalli,Zurich DavarKhoshnevisan,SaltLakeCity IoannisKontoyiannis,Athens GáborLugosi,Barcelona MarkPodolskij,Aarhus SylviaSerfaty,NewYork AnnaWienhard,Heidelberg Moreinformationaboutthisseriesathttp://www.springer.com/series/304 Peter Roquette The Riemann Hypothesis in Characteristic p in Historical Perspective 123 PeterRoquette MathematicalInstitute HeidelbergUniversity Heidelberg,Germany ISSN0075-8434 ISSN1617-9692 (electronic) LectureNotesinMathematics ISSN2193-1771 HistoryofMathematicsSubseries ISBN978-3-319-99066-8 ISBN978-3-319-99067-5 (eBook) https://doi.org/10.1007/978-3-319-99067-5 LibraryofCongressControlNumber:2018955713 MathematicsSubjectClassification(2010):01A60,11R58,14H05 ©SpringerNatureSwitzerlandAG2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Thisbookistheresultofmanyyears’work.IamtellingthestoryoftheRiemann hypothesis for function fields, or curves, of characteristic p starting with Artin’s thesis in the year 1921, covering Hasse’s work in the 1930s on elliptic fields and more, until Weil’s final proof in 1948. The main sources are letters which wereexchangedamongtheprotagonistsduringthattimewhichIfoundinvarious archives,mostly in the UniversityLibrary in Göttingen butalso at other places in the world.I am tryingto show howthe ideas formed,and howthe propernotions andproofswerefound.Thisisagoodillustration,fortunatelywelldocumented,of howmathematicsdevelopsingeneral. Some of the chapters have already been prepublished in the “Mitteilungen der Mathematischen Gesellschaft in Hamburg.” But before including them into this book, they have been thoroughly reworked, extended, and polished. I have writtenthisbookformathematicians,butessentiallyitdoesnotrequireanyspecial knowledge of particular mathematical fields. I have tried to explain whatever is needed in the particular situation, even if this may seem to be superfluous to the specialist. Every chapter is written such that it can be read independently of the other chapters.Sometimesthisentailsarepetitionofinformationwhichhasalreadybeen giveninanotherchapter.Thechaptersareaccompaniedby“summaries.”Perhaps, itmaybeexpedientfirsttolookatthesesummariesinordertogetanoverviewof whatisgoingon. The preparation of this book had been supported in part by the Deutsche Forschungsgemeinschaft and the Marga und Kurt Möllgaard Stiftung. A number of colleagues and friends have shown interest and helped me with their critical comments; it is impossible for me to mention all of them here. Nevertheless, I wouldliketoexpressmyspecialthankstoSigridBöge,KarinReich,Franz-Viktor Kuhlmann,andFranzLemmermeyer. References Mostof the lettersanddocumentscited in thisbookare containedin theHandschriftenabteilungoftheUniversityLibraryofGöttingen(exceptifanother sourceis mentioned),mostbutnotall of themin the Hasse files. The lettersfrom v vi Preface Hasse to Davenport are contained in the archive of Trinity College, Cambridge. The letters from Hasse to Mordellare containedin the archiveof King’s College, Cambridge. The letters from Hasse to Fraenkel are in the archive of the Hebrew University,Jerusalem. IhavetranslatedthecitedtextintoEnglishforeasierreading.Transcriptionsof thefullletters(andmore)intheiroriginallanguageareavailableatmyhomepage: https://www.mathi.uni-heidelberg.de/~roquette/ Heidelberg,Germany PeterRoquette Contents 1 Overture..................................................................... 1 1.1 WhyHistoryofMathematics?....................................... 1 1.2 ArtinandtheInterventionbyHilbert ............................... 2 1.3 Hasse’sProject ....................................................... 4 1.4 Weil’sContribution................................................... 6 Summary..................................................................... 7 2 SettingtheStage............................................................ 9 2.1 OurTerminology..................................................... 9 2.2 TheTheorem:RHp................................................... 11 3 TheBeginning:Artin’sThesis ............................................ 13 3.1 QuadraticFunctionFields ........................................... 14 3.1.1 TheArithmeticPart......................................... 17 3.1.2 TheAnalyticPart........................................... 20 3.2 Artin’sLetterstoHerglotz........................................... 25 3.2.1 ExtensionoftheBaseField................................ 26 3.2.2 ComplexMultiplication.................................... 27 3.2.3 BirationalTransformation.................................. 30 3.3 HilbertandtheConsequences....................................... 31 Summary..................................................................... 31 3.4 SideRemark:Gauss’LastEntry..................................... 32 Summary..................................................................... 37 4 BuildingtheFoundations.................................................. 39 4.1 F.K.Schmidt.......................................................... 39 4.2 ZetaFunctionandRiemann-RochTheorem........................ 43 4.3 F.K.Schmidt’sL-polynomial........................................ 47 4.3.1 SomeComments............................................ 48 4.4 TheFunctionalEquation............................................. 49 4.5 Consequences......................................................... 51 Summary..................................................................... 53 vii viii Contents 5 EnterHasse.................................................................. 55 6 DiophantineCongruences ................................................. 59 6.1 Davenport............................................................. 59 6.2 TheChallenge........................................................ 61 6.3 TheDavenport-HassePaper ......................................... 67 6.3.1 Davenport’sLetterandGeneralizedFermatFields....... 67 6.3.2 GaussSums................................................. 70 6.3.3 Davenport-HasseFields.................................... 73 6.3.4 Stickelberger’sTheorem ................................... 75 6.4 ExponentialSums.................................................... 76 Summary..................................................................... 78 7 EllipticFunctionFields .................................................... 81 7.1 TheBreakthrough.................................................... 81 7.2 TheProblem.......................................................... 83 7.3 Hasse’sFirstProof:ComplexMultiplication....................... 85 7.4 TheSecondProof .................................................... 90 7.4.1 MeromorphismsandtheJacobian ......................... 92 7.4.2 TheDoubleField........................................... 96 7.4.3 NormAdditionFormula.................................... 97 7.4.4 TheFrobeniusOperator.................................... 102 7.5 SomeComments ..................................................... 104 7.5.1 Rosati’sAnti-automorphism............................... 104 Summary..................................................................... 105 8 MoreonEllipticFields..................................................... 107 8.1 TheHasseInvariantA................................................ 107 8.2 UnramifiedCyclicExtensionsofDegreep......................... 109 8.2.1 TheHasse-WittMatrix..................................... 111 8.3 GroupStructureoftheJacobian..................................... 112 8.3.1 HigherDerivations ......................................... 115 8.4 TheStructureoftheEndomorphismRing .......................... 117 8.4.1 TheSupersingularCase .................................... 118 8.4.2 SingularInvariants.......................................... 121 8.4.3 EllipticSubfields ........................................... 122 8.4.4 GoodReduction ............................................ 124 8.5 ClassFieldTheoryandComplexMultiplication ................... 126 Summary..................................................................... 128 9 TowardsHigherGenus..................................................... 131 9.1 Preliminaries.......................................................... 131 9.2 TheYears1934–1935................................................ 134 9.2.1 Deuring...................................................... 136 9.2.2 MorePoliticalProblems.................................... 139 9.3 Deuring’sLettertoHasse............................................ 141 9.3.1 Correspondences............................................ 143 Contents ix 9.4 Hasse’sLettertoWeil................................................ 146 9.5 Weil’sReplyandLefschetz’sNote.................................. 148 9.6 TheWorkshoponAlgebraicGeometry............................. 152 Summary..................................................................... 156 10 AVirtualProof.............................................................. 157 10.1 TheQuadraticForm.................................................. 157 10.1.1 TheDoubleField........................................... 157 10.1.2 TheDifferent................................................ 159 10.2 Positivity.............................................................. 166 10.2.1 ApplyingtheRiemann-HurwitzFormula ................. 166 10.2.2 TheDiscriminantEstimate................................. 168 10.3 TheRHp.............................................................. 173 10.4 SomeComments ..................................................... 175 10.4.1 FrobeniusMeromorphism.................................. 175 10.4.2 Differents ................................................... 176 10.4.3 IntegerDifferentials ........................................ 177 10.5 TheGeometricLanguage............................................ 177 Summary..................................................................... 179 11 Intermission................................................................. 181 11.1 ArtinLeaves.......................................................... 181 11.2 TheItalianConnection............................................... 183 11.2.1 Severi........................................................ 183 11.2.2 TheVoltaCongress......................................... 186 11.3 TheFrenchConnection.............................................. 190 11.3.1 OnFunctionFields ......................................... 190 11.3.2 TheBook.................................................... 195 11.3.3 ParisandStrassbourg....................................... 198 Summary..................................................................... 202 12 A.Weil ....................................................................... 203 12.1 BonneNouvelle ...................................................... 204 12.2 TheFirstNote1940.................................................. 207 12.3 TheSecondNote1941............................................... 209 Summary..................................................................... 212 13 Appendix .................................................................... 215 13.1 Bombieri.............................................................. 216 References......................................................................... 221 Index............................................................................... 231

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.