CanadianMathematicalSociety SociétémathématiqueduCanada Editors-in-Chief Rédacteurs-en-chef K.Dilcher K.Taylor AdvisoryBoard Comitéconsultatif P.Borwein R.Kane S.Shen CMSBooksinMathematics OuvragesdemathématiquesdelaSMC 1 Herrman/Kucˇera/Šimsˇa EquationsandInequalities 2 Arnold AbelianGroupsandRepresentationsofFinitePartiallyOrderedSets 3 Borwein/Lewis ConvexAnalysisandNonlinearOptimization,2ndEd. 4 Levin/Lubinsky OrthogonalPolynomialsforExponentialWeights 5 Kane ReflectionGroupsandInvariantTheory 6 Phillips TwoMillenniaofMathematics 7 Deutsch BestApproximationinInnerProductSpaces 8 Fabianetal. FunctionalAnalysisandInfinite-DimensionalGeometry 9 Krˇízˇek/Luca/Somer 17LecturesonFermatNumbers 10 Borwein ComputationalExcursionsinAnalysisandNumberTheory 11 Reed/Sales(Editors) RecentAdvancesinAlgorithmsandCombinatorics 12 Herman/Kucˇera/Šimsˇa CountingandConfigurations 13 Nazareth DifferentiableOptimizationandEquationSolving 14 Phillips InterpolationandApproximationbyPolynomials 15 Ben-Israel/Greville GeneralizedInverses,2ndEd. 16 Zhao DynamicalSystemsinPopulationBiology 17 Göpfertetal. VariationalMethodsinPartiallyOrderedSpaces 18 Akivis/Goldberg DifferentialGeometryofVarietieswithDegenerateGaussMaps 19 Mikhalev/Shpilrain/Yu CombinatorialMethods 20 Borwein/Zhu TechniquesofVariationalAnalysis 21 VanBrummelen/Kinyon MathematicsandtheHistorian’sCraft 22 Lucchetti ConvexityandWell-PosedProblems 23 Niculescu/Persson ConvexFunctionsandTheirApplications 24 Singer DualityforNonconvexApproximationandOptimization 25 Higginson/Pimm/Sinclair MathematicsandtheAesthetic 26 Hájek/Santaluc´ia/Vanderwerff/Zizler BiorthogonalSystemsinBanachSpaces 27 Borwein/Choi/Rooney/Weirathmueller TheRiemannHypothesis PeterBorwein,StephenChoi,BrendanRooney andAndreaWeirathmueller(Eds.) The Riemann Hypothesis A Resource for the Afficionado and Virtuoso Alike PeterBorwein StephenChoi DepartmentofMathematics DepartmentofMathematics &Statistics &Statistics 8888UniversityDrive 8888UniversityDrive SimonFraserUniversity SimonFraserUniversity Burnaby,BC,V5A1S6 Burnaby,BC,V5A1S6 CANADA CANADA [email protected] [email protected] BrendanRooney AndreaWeirathmueller 9161TenthAvenue 727WindsorStreet SimonFraserUniversity UniversityofWestern Burnaby,BC,V3N2T2 Ontario CANADA Fredericton,ONE2B4G3 [email protected] [email protected] Editors-in-Chief Rédacteurs-en-chef KarlDilcher K.Taylor DepartmentofMathematics andStatistics DalhousieUniversity Halifax,NovaScotiaB3H3J5 Canada [email protected] CoverFigure:A“randomwalk”ontheLiouvilleFunction. ISBN:978-0-387-72125-5 e-ISBN:978-0-387-72126-2 LibraryofCongressControlNumber:2007936622 MathematicsSubjectClassification(2000):11-xx01-xx (cid:2)c2008SpringeScience+BusinessMedia,LLC Allrightsreserved.Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewritten permissionofthepublisher(SpringerScience+BusinessMedia,LLC,233SpringStreet,NewYork,NY 10013,USA),exceptforbriefexcerptsinconnectionwithreviewsorscholarlyanlaysis.Useinconnection withanyformofinformationstorageandretrieval,electronicadaptation,computersoftware,orby similarordissimilarmethodologynowknownorhereafterdevelopedisforbidden. Theuseinthispublicationoftradenames,trademarks,servicemarks,andsimilarterms,evenifthey arenotidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornottheyare subjecttoproprietaryrights. Printedonacid-freepaper. 9 8 7 6 5 4 3 2 1 springer.com For Pinot - P. B. For my parents, my lovely wife, Shirley, my daughter, Priscilla, and son, Matthew - S. C. For my parents Tom and Katrea - B. R. For my family - A. W. Preface SinceitsinclusionasaMillenniumProblem,numerousbookshavebeenwrit- ten to introduce the Riemann hypothesis to the general public. In an average local bookstore, it is possible to see titles such as John Derbyshire’s Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Math- ematics, Dan Rockmore’s Stalking the Riemann Hypothesis: The Quest to Find the Hidden Law of Prime Numbers, and Karl Sabbagh’s The Riemann Hypothesis: The Greatest Unsolved Problem in Mathematics. This book is a more advanced introduction to the theory surrounding the Riemann hypothesis. It is a source book, primarily composed of relevant originalpapers,butalsocontainsacollectionofsignificantresults.Thetextis suitable for a graduate course or seminar, or simply as a reference for anyone interested in this extraordinary conjecture. The material in Part I (Chapters 1-10) is mostly organized into indepen- dent chapters and one can cover the material in many ways. One possibility is to jump to Part II and start with the four expository papers in Chapter 11. The reader who is unfamiliar with the basic theory and algorithms used in the study of the Riemann zeta function may wish to begin with Chapters 2 and 3. The remaining chapters stand on their own and can be covered in anyorderthereaderfancies(obviouslywithourpreferencebeingfirsttolast). We have tried to link the material to the original papers in order to facilitate more in-depth study of the topics presented. We have divided Part II into two chapters. Chapter 11 consists of four expository papers on the Riemann hypothesis, while Chapter 12 contains the original papers that developed the theory surrounding the Riemann hypoth- esis. Presumably the Riemann hypothesis is very difficult, and perhaps none of the current approaches will bear fruit. This makes selecting appropriate papers problematical. There is simply a lack of profound developments and attacksonthefullproblem.However,thereisanintimateconnectionbetween the prime number theorem and the Riemann hypothesis. They are connected VIII Preface theoreticallyandhistorically,andtheRiemannhypothesismaybethoughtof asagrandgeneralizationoftheprimenumbertheorem.Thereisalargebody of theory on the prime number theorem and a progression of solutions. Thus wehavechosenvariouspapersthatgiveproofsoftheprimenumbertheorem. WhiletherehavebeennosuccessfulattacksontheRiemannhypothesis,a significant body of evidence has been generated in its support. This evidence is often computational; hence we have included several papers that focus on, or use computation of, the Riemann zeta function. We have also included Weil’s proof of the Riemann hypothesis for function fields (Section 12.8) and the deterministic polynomial primality test of Argawal at al. (Section 12.20). Acknowledgments.Wewouldliketothankthecommunityofauthors,pub- lishers, and libraries for their kind permission and assistance in republishing thepapersincludedinPartII.Inparticular,“OnNewman’sQuickWaytothe PrimeNumberTheorem”and“PairCorrelationofZerosandPrimesinShort Intervals” are reprinted with kind permission of Springer Science and Busi- nessMedia,“ThePairCorrelationofZerosoftheZetaFunction”isreprinted with kind permission of the American Mathematical Society, and “On the Difference π(x) − Li(x)” is reprinted with kind permission of the London Mathematical Society. We gratefully acknowledge Michael Coons, Karl Dilcher, Ron Ferguson andAlexavanderWaallformanyusefulcommentsandcorrectionsthathelp make this a better book. Contents Part I Introduction to the Riemann Hypothesis 1 Why This Book............................................ 3 1.1 The Holy Grail.......................................... 3 1.2 Riemann’s Zeta and Liouville’s Lambda .................... 5 1.3 The Prime Number Theorem ............................. 7 2 Analytic Preliminaries..................................... 9 2.1 The Riemann Zeta Function .............................. 9 2.2 Zero-free Region......................................... 16 2.3 Counting the Zeros of ζ(s)................................ 18 2.4 Hardy’s Theorem........................................ 24 3 Algorithms for Calculating ζ(s)............................ 29 3.1 Euler–MacLaurin Summation ............................. 29 3.2 Backlund............................................... 30 3.3 Hardy’s Function........................................ 31 3.4 The Riemann–Siegel Formula ............................. 32 3.5 Gram’s Law ............................................ 33 3.6 Turing ................................................. 34 3.7 The Odlyzko–Sch¨onhage Algorithm ........................ 35 3.8 A Simple Algorithm for the Zeta Function .................. 35 3.9 Further Reading......................................... 36 X Contents 4 Empirical Evidence ........................................ 37 4.1 Verification in an Interval ................................ 37 4.2 A Brief History of Computational Evidence................. 39 4.3 The Riemann Hypothesis and Random Matrices............. 40 4.4 The Skewes Number ..................................... 43 5 Equivalent Statements..................................... 45 5.1 Number-Theoretic Equivalences ........................... 45 5.2 Analytic Equivalences.................................... 49 5.3 Other Equivalences ...................................... 52 6 Extensions of the Riemann Hypothesis .................... 55 6.1 The Riemann Hypothesis................................. 55 6.2 The Generalized Riemann Hypothesis...................... 56 6.3 The Extended Riemann Hypothesis........................ 57 6.4 An Equivalent Extended Riemann Hypothesis............... 57 6.5 Another Extended Riemann Hypothesis .................... 58 6.6 The Grand Riemann Hypothesis........................... 58 7 Assuming the Riemann Hypothesis and Its Extensions ... . 61 7.1 Another Proof of The Prime Number Theorem.............. 61 7.2 Goldbach’s Conjecture ................................... 62 7.3 More Goldbach.......................................... 62 7.4 Primes in a Given Interval................................ 63 7.5 The Least Prime in Arithmetic Progressions ................ 63 7.6 Primality Testing........................................ 63 7.7 Artin’s Primitive Root Conjecture ......................... 64 7.8 Bounds on Dirichlet L-Series.............................. 64 7.9 The Lindel¨of Hypothesis.................................. 65 7.10 Titchmarsh’s S(T) Function .............................. 65 7.11 Mean Values of ζ(s) ..................................... 66 8 Failed Attempts at Proof .................................. 69 8.1 Stieltjes and Mertens’ Conjecture.......................... 69 8.2 Hans Rademacher and False Hopes ........................ 70 8.3 Tur´an’s Condition ....................................... 71 8.4 Louis de Branges’s Approach.............................. 71 8.5 No Really Good Idea .................................... 72
Description: