ebook img

The Riemann Hypothesis PDF

157 Pages·2017·2.45 MB·english
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Riemann Hypothesis

The Riemann Hypothesis A Million Dollar Problem 1 2 3 4 5 6 7 8 9 2.5 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 2 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 1.5 50 51 52 53 54 55 56 57 58 59 1 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 0.5 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 0 5 10 15 20 25 30 y Thehalftitlepagefigureshowsthegraphofthefunction 1 f(y)=|ζ( + iy)| 2 for 0≤y ≤32 against a background in which the primes less than 100 aremarked(seealsofigure3.7onpage54). Originaltitle:DeRiemann-hypothese–Eenmiljoenenprobleem EpsilonUitgaven,Utrecht,2011 Translatedbytheauthors. (cid:2)c 2015by TheMathematicalAssociationofAmerica(Incorporated) LibraryofCongressCatalogCardNumber2015959833 PrinteditionISBN978-0-88385-650-5 ElectroniceditionISBN978-0-88385-989-6 PrintedintheUnitedStatesofAmerica CurrentPrinting(lastdigit): 10987654321 The Riemann Hypothesis A Million Dollar Problem Roland van der Veen Leiden University and Jan van de Craats University of Amsterdam PublishedandDistributedby TheMathematicalAssociationofAmerica CouncilonPublicationsandCommunications JenniferJ.Quinn,Chair CommitteeonBooks FernandoGouveˆa,Chair AnneliLaxNewMathematicalLibraryEditorialBoard KarenSaxe,Editor TimothyG.Feeman JohnH.McCleary KatharineOtt KatherineS.Socha JamesS.Tanton JenniferMWilson ANNELILAXNEWMATHEMATICALLIBRARY 1. Numbers:RationalandIrrationalbyIvanNiven 2. WhatisCalculusAbout?byW.W.Sawyer 3. AnIntroductiontoInequalitiesbyE.F.BeckenbachandR.Bellman 4. GeometricInequalitiesbyN.D.Kazarinoff 5. TheContestProblemBookIAnnualHighSchoolMathematicsExaminations 1950–1960.CompiledandwithsolutionsbyCharlesT.Salkind 6. TheLoreofLargeNumbersbyP.J.Davis 7. UsesofInfinitybyLeoZippin 8. GeometricTransformationsIbyI.M.Yaglom,translatedbyA.Shields 9. ContinuedFractionsbyCarlD.Olds 10. (cid:2) ReplacedbyNML-34 11. HungarianProblemBooksIandII,BasedontheEo¨tvo¨sCompetitions 12. 1894–1905and1906–1928,translatedbyE.Rapaport 13. EpisodesfromtheEarlyHistoryofMathematicsbyA.Aaboe 14. GroupsandTheirGraphsbyE.GrossmanandW.Magnus 15. TheMathematicsofChoicebyIvanNiven 16. FromPythagorastoEinsteinbyK.O.Friedrichs 17. TheContestProblemBookIIAnnualHighSchoolMathematicsExaminations 1961–1965.CompiledandwithsolutionsbyCharlesT.Salkind 18. FirstConceptsofTopologybyW.G.ChinnandN.E.Steenrod 19. GeometryRevisitedbyH.S.M.CoxeterandS.L.Greitzer 20. InvitationtoNumberTheorybyOysteinOre 21. GeometricTransformationsIIbyI.M.Yaglom,translatedbyA.Shields 22. ElementaryCryptanalysisbyAbrahamSinkov,revisedandupdatedbyTodd Feil 23. IngenuityinMathematicsbyRossHonsberger 24. GeometricTransformationsIIIbyI.M.Yaglom,translatedbyA.Shenitzer 25. TheContestProblemBookIIIAnnualHighSchoolMathematicsExamina- tions 1966–1972. Compiled and with solutions by C. T. Salkind and J. M. Earl 26. MathematicalMethodsinSciencebyGeorgePo´lya 27. International Mathematical Olympiads—1959–1977. Compiled and with solutionsbyS.L.Greitzer 28. The Mathematics of Games and Gambling, Second Edition by Edward W. Packel 29. TheContestProblemBookIVAnnualHighSchoolMathematicsExamina- tions1973–1982.CompiledandwithsolutionsbyR.A.Artino,A.M.Gaglione, andN.Shell 30. TheRoleofMathematicsinSciencebyM.M.SchifferandL.Bowden 31. InternationalMathematicalOlympiads1978–1985andfortysupplementary problems.CompiledandwithsolutionsbyMurrayS.Klamkin 32. RiddlesoftheSphinxbyMartinGardner 33. U.S.A.MathematicalOlympiads1972–1986.Compiledandwithsolutionsby MurrayS.Klamkin 34. Graphs and Their Uses by Oystein Ore. Revised and updated by Robin J. Wilson 35. ExploringMathematicswithYourComputerbyArthurEngel 36. GameTheoryandStrategybyPhilipD.Straffin,Jr. 37. Episodes in Nineteenth and Twentieth Century Euclidean Geometry by Ross Honsberger 38. TheContestProblemBookVAmericanHighSchoolMathematicsExaminations and American Invitational Mathematics Examinations 1983–1988. Compiled andaugmentedbyGeorgeBerzsenyiandStephenB.Maurer 39. OverandOverAgainbyGengzheChangandThomasW.Sederberg 40. TheContestProblemBookVIAmericanHighSchoolMathematicsExamina- tions1989–1994.CompiledandaugmentedbyLeoJ.Schneider 41. TheGeometryofNumbersbyC.D.Olds,AnneliLax,andGiulianaP.Davidoff 42. Hungarian Problem Book III, Based on the Eo¨tvo¨s Competitions 1929–1943, translatedbyAndyLiu 43. MathematicalMiniaturesbySvetoslavSavchevandTituAndreescu 44. GeometricTransformationsIVbyI.M.Yaglom,translatedbyA.Shenitzer 45. WhenLifeisLinear:fromcomputergraphicstobracketologybyTimChartier 46. The Riemann Hypothesis: A Million Dollar Problem by Roland van der Veen andJanvandeCraats Othertitlesinpreparation. MAAServiceCenter P.O.Box91112 Washington,DC20090-1112 1-800-331-1MAA FAX:1-240-396-5647 Contents Preface ix 1 Primenumbers 1 1.1 Primesaselementarybuildingblocks..................... 1 1.2 Countingprimes....................................... 3 1.3 Usingthelogarithmtocountpowers..................... 7 1.4 Approximationsforπ(x)................................ 9 1.5 Theprimenumbertheorem.............................. 11 1.6 Countingprimepowerslogarithmically................... 11 1.7 TheRiemannhypothesis—alookahead.................. 14 1.8 Additionalexercises.................................... 16 2 Thezetafunction 21 2.1 Infinitesums........................................... 21 2.2 Seriesforwell-knownfunctions......................... 26 2.3 Computationofζ(2).................................... 29 2.4 Euler’sproductformula................................. 32 2.5 Lookingbackandaglimpseofwhatistocome ........... 34 2.6 Additionalexercises.................................... 34 3 TheRiemannhypothesis 41 3.1 Euler’sdiscoveryoftheproductformula.................. 41 3.2 Extendingthedomainofthezetafunction................ 43 3.3 Acrashcourseoncomplexnumbers ..................... 45 3.4 Complexfunctionsandpowers.......................... 47 3.5 Thecomplexzetafunction.............................. 50 3.6 Thezeroesofthezetafunction........................... 51 3.7 Thehuntforzetazeroes................................. 54 3.8 Additionalexercises.................................... 55 4 PrimesandtheRiemannhypothesis 59 4.1 Riemann’sfunctionalequation........................... 60 4.2 Thezeroesofthezetafunction........................... 63 4.3 Theexplicitformulaforψ(x)............................ 66 4.4 Pairingupthenon-trivialzeroes......................... 69 vii viii Contents 4.5 Theprimenumbertheorem.............................. 72 4.6 Aproofoftheprimenumbertheorem.................... 73 4.7 Themusicoftheprimes ................................ 76 4.8 Lookingback.......................................... 78 4.9 Additionalexercises.................................... 81 AppendixA.Whybigprimesareuseful 87 AppendixB.Computersupport 91 AppendixC.Furtherreadingandinternetsurfing 99 AppendixD.Solutionstotheexercises 101 Index 143 Preface Mathematicsisfullofunsolvedproblemsandothermysteries,butnonemore importantandintriguingthantheRiemannhypothesis.Bafflingthegreatest minds for more than a hundred and fifty years, the Riemann hypothesis isattheverycoreofmathematics.Aproofofitwouldmeananenormous advance.Inaddition,theRiemannhypothesiswaschosenasoneoftheseven Millennium Problems1 by the Clay Mathematics Institute. This means that provingtheRiemannhypothesiswillnotonlymakeyouworldfamous,but alsoearnsyouaonemilliondollarprize. TheRiemannhypothesisconcernstheprimenumbers 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,... i.e.,theintegernumbersgreaterthan1thatarenotdivisiblebyanysmaller number(except1).Ubiquitousandfundamentalinmathematicsastheyare, it is important and interesting to know as much as possible about these numbers.Simplequestionswouldbe:howaretheprimenumbersdistributed among the positive integers? How many prime numbers are there? What is the number of prime numbers of one hundred digits? Of one thousand digits? These questions were the starting point of a groundbreaking paper by Bernhard Riemann written in 1859. As an aside in his article Riemann formulatedhisnowfamoushypothesis,thatsofarnobodyhascomecloseto proving: TheRiemannHypothesis. Allnontrivialzeroesofthezetafunctionlieon thecriticalline. Hidden behind this at first mysterious statement, lies a whole mathe- maticaluniverseofprimenumbers,infinitesequences,infiniteproductsand complexfunctions.Thepresentbookisafirstexplorationofthisfascinating world. 1seehttp://www.claymath.org/millennium/RiemannHypothesis/ ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.