ebook img

The Resolved Asteroid Program - Size, shape, and pole of (52) Europa PDF

0.62 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Resolved Asteroid Program - Size, shape, and pole of (52) Europa

I The Resolved Asteroid Program - Size, shape, and pole of (52)Europa W.J.Merlinea,J.D.Drummondb,B.Carryc,d,A.Conrade,f,P.M.Tamblyna,C.Dumasg,M.Kaasalainenh,A.Eriksoni, S.Mottolai,J.Dˇurechj,G.Rousseauk,R.Behrendk,l,G.B.Casalnuovok,m,B.Chinagliak,m,J.C.Christoun,C.R.Chapmana, C.Neymanf aSouthwestResearchInstitute,1050WalnutSt.#300,Boulder,CO80302,USA bStarfireOpticalRange,DirectedEnergyDirectorate,AirForceResearchLaboratory,KirtlandAFB,NM87117-577,USA cIMCCE,ObservatoiredeParis,CNRS,77av.DenfertRochereau,75014Paris,France dEuropeanSpaceAstronomyCentre,ESA,P.O.Box78,28691VillanuevadelaCan˜ada,Madrid,Spain eMax-Planck-Institutfu¨rAstronomie,Ko¨nigstuhl,17,Heidelberg,Germany fW.M.KeckObservatory,65-1120MamalahoaHighway,Kamuela,HI96743,USA gESO,AlonsodeCo´rdova3107,Vitacura,Casilla19001,SantiagodeChile,Chile 3 hTampereUniversityofTechnology,P.O.Box553,33101Tampere,Finland 1 iInstituteofPlanetaryResearch,DLR,Rutherfordstrasse2,12489,Berlin,Germany 0 jAstronomicalInstitute,FacultyofMathematicsandPhysics,CharlesUniversityinPrague,VHolesˇovicˇka´ch2,18000Prague,CzechRepublic 2 kCdR&CdLgroup:Lightcurvesofminorplanetsandvariablestars lGenevaObservatory,1290Sauverny,Switzerland n mEuracObservatory,Bolzano a nGeminiObservatory,670N.AohokuPlace,Hilo,Hawaii,96720,USA J 2 2 ] PAbstract E With the adaptive optics (AO) system on the 10m Keck-II telescope, we acquired a high quality set of 84 images at 14 epochs . h of asteroid (52)Europa on 2005January20, when it was near opposition. The epochscovered its 5.63h rotation period and, by p followingitschangingshapeandorientationontheplaneofsky,weobtaineditstriaxialellipsoiddimensionsandspinpolelocation. - oAnindependentdeterminationfromimagesatthreeepochsobtainedin2007isingoodagreementwiththeseresults. Bycombining rthesetwodatasets,alongwithasingleepochdatasetobtainedin2003,wehavederivedaglobalfitfor(52)Europaofdiameters t sa b c = (379 330 249) (16 8 10)km,yieldingavolume-equivalentspherical-diameterof √3abc = 315 7km,and a × × × × ± × × ± [aprograderotationalpolewithin 7◦ of[RA;Dec]=[257◦;+12◦]inanEquatorialJ2000referenceframe(Ecliptic: 255◦; +35◦). 1 Usingtheaverageofallmassdeterminationsavailablefor(52)Europa,we derivea densityof1.5±0.4gcm−3, typicalofC-type asteroids. ComparingourimageswiththeshapemodelofMichalowskietal. (Astron. andAstrophys. 416,p353,2004),derived v 1fromopticallightcurves,illustratesexcellentagreement,althoughseveraledgefeaturesvisibleinthe imagesarenotrenderedby 0the model. We thereforederived a complete 3-D description of (52)Europa’sshape using the KOALA algorithm by combining 1our18AOimagingepochswith4stellaroccultationsand49lightcurves. Weusethis3-Dshapemodeltoassessthesedepartures 5 from ellipsoidal shape. Flat facets (possible giant craters) appear to be less distinct on (52)Europa than on other C-types that . 1havebeenimagedindetail,(253)Mathildeand(511)Davida. Weshowthatfewergiantcraters,orsmallercraters, isconsistent 0withitsexpectedimpacthistory. Overall,asteroid(52)Europaisstillwellmodeledasasmoothtriaxialellipsoidwithdimensions 3 constrainedbyobservationsobtainedoverseveralapparitions. 1 v:Keywords: i X r1. Introduction accurate knowledge of these parameters. Improved sizes a1 7 permit improved estimates of albedo, in turn allowing better 8 Direct,accuratemeasurementsofasteroidshapes,sizes,and interpretationofsurfacecomposition. Inthosecaseswherewe 2 9 polepositionsarenowpossibleforlargerasteroidsthatcanbe have an estimate of the mass, for example from the presence 3 10 spatially resolved using the Hubble Space Telescope (HST) of a satellite, the uncertainty in the volume of the asteroid is 4 11 or large ground-based telescopes equipped with adaptive the overwhelminguncertaintyin attemptsto deriveits density 5 12 optics(AO).Physicalandstatisticalstudyofasteroidsrequires (Merlineetal. 2002). Of course, density is the single most 6 13 critical observable having a bearing on bulk composition, 14 porosity,andinternalstructure(Merlineetal.2002;Brittetal. 15 IBasedonobservationsattheW.M.KeckObservatory,whichisoperatedas 2002,2006). Withourtechniqueofdeterminingthesizeofan 16 ascientificpartnershipamongtheCaliforniaInstituteofTechnology,theUni- asteroid by following its changing apparent size, shape, and 17 versityofCaliforniaandtheNationalAeronauticsandSpaceAdministration. orientation, the uncertainties in volume can now be reduced TheObservatorywasmadepossiblebythegenerousfinancialsupportoftheW. 18 M.KeckFoundation. to the level of the mass uncertainty, vastly improving our 19 Emailaddress:[email protected](W.J.Merline) PreprintsubmittedtoIcarus January23,2013 Figure1:ApparentangularsizesofSolarSystemobjects.Asteroid,moon,comet,andTNOdiametersareplottedagainsttheirgeocentricdistances,definedasthe differencebetweentheirsemi-majoraxisand1AU.Symbolsizecorrespondstophysicaldiameter.Grayscalesrepresentthechangingapparentsizewithgeocentric distance. AbodyofagivensizemovesalongtheobliquelinesasitsdistancefromtheEarthchanges.TheangularresolutionsatCFHT,KeckandfutureTMTand E-ELTarealsoshownfordifferentfilters(V:0.6µm,andK:2.2µm). TypicalNEApopulations(Apollos,Atens,andAmors)arealsoshown,asrepresentedby (1566)Icarus,(99942)Apophis,and(433)Eros,respectively. confidenceinthederivedasteroiddensities. Theimprovement gram. We routinely image the apparentdisk of asteroids, and 34 20 comesaboutbecausewecanseethedetailedshape,trackedge search their close vicinity for companions, aiming at setting 1 35 or surface features during rotation, and often can make an betterconstraintsontheirspin-vectorcoordinates,3-Dshapes, 2 36 immediatepoledetermination. sizes, and multiplicity. One of our main goals is to derive 3 37 Dedicatedstudyofasteroidsnowallowsdirectlyobservable (or better constrain) their densities. We use two independent 4 38 shapeprofiles,andalreadyhasshownthatsomeasteroidsshow methods to determine size, shape, and pole position of the 5 39 large departures from a reference ellipsoid that may provide target asteroids. One of these is based on the assumption 6 40 clues to the body’s response to large impacts over time (e.g., that the shape is well-described by a smooth triaxial ellipsoid 7 41 (4)Vesta, Thomasetal. 1997). For asteroid (511)Davida, we (see Drummond 2000; Drummondetal. 2009a, 2010, for 8 42 suggested (Conradetal. 2007) that such features (e.g., large instance). Our other method allows construction of full 3-D 9 43 flat facets) may be analogs of the giant craters, seen edge-on, shape models by combining our AO images with other data 10 44 in the images of (253)Mathilde during the NEAR mission types, when available (e.g., optical lightcurves and stellar 11 45 (Veverkaetal.1999)flyby.Ifgiantcratersareevidentonthese occultations,seeCarryetal.2010a,b),inthetechniquewecall 12 46 surfaces, they can be related to the impact history and impact KOALA(KnittedOccultation,Adaptive-opticsandLightcurve 13 47 fluxovertime,andthereissomechancetheycanbeassociated Analysis,seeCarryetal.2010a;Kaasalainen2011). 14 48 with asteroid families or clusters that are being identified by The best angular resolution, approximated by θ=λ/ 15 49 D numerical back-integration and clustering of orbital elements (radian), with λ the wavelength and the diameter of the 16 50 D (e.g.,Nesvorny´ etal.2002). telescope aperture, of current ground-basedoptical telescopes 17 51 As we have demonstrated with asteroid (511)Davida is about 0.04 (Keck/NIR). Due to systematics, however, we 18 ′′ 52 (Conradetal. 2007), we canderiveanasteroid’striaxialellip- have found that our ability to accurately measure sizes and 19 53 soid dimensionsand rotationalpole location in a single night. details of the apparent shape degrades below about 0.10 , 20 ′′ 54 However, we now have developed the ability to combine sets basedonsimulationsandobservationsofthe moonsofSaturn 21 55 of similar observations obtained at different viewing aspects and simulations (Carry 2009; Drummondetal. 2009b). The 22 56 to make a global fit to all of the images, drastically reducing sample of observable asteroids (i.e., having angular sizes that 23 57 dimension uncertaintiesthat mightbe due to sparse rotational getaboveabout0.10 )isthereforelimitedtoabout200. 24 ′′ 58 sampling or peculiarobservinggeometries(Drummondet al., This limit in angular resolution can be converted to a 25 59 in preparation). The leverage of widely spaced observations physicaldiameter. Ascanbe seenin Fig. 1, wecan probethe 26 60 and the accompanying range of viewing aspects allows un- size distributionof main-beltasteroidsdownto about100km, 27 61 precedentedaccuracyin derivedparameters. We can then use while Pluto is the only Trans-NeptunianObject(TNO) whose 28 62 these estimates to project the apparent size and shape of an apparent disk can be resolved. At opportune times, we have 29 63 asteroidintothepastorfuture,makingtheasteroidusefulasa beenabletoresolvethedisksofNear-EarthAsteroids(NEAs, 30 64 referenceorcalibrationobject. forexample,see Merlineetal. 2011, 2012). The nextgenera- 31 65 Here we report on the physical properties of the asteroid tion of optical facilities will allow an improvementin angular 32 66 (52)Europa as a part of our on-going ResolvedAsteroidPro- resolution by a factor of 3-4 due to mirror size alone (30m 33 67 2 for TMT and 40m for E-ELT), allowing the observation of sky-subtracted, and then fit in the Fourier plane for the aster- 68 53 morethan500asteroids,evenifwe consideronlyobjectsthat oidandLorentzianPSF,usingourmethodofParametricBlind 1 54 reach half (or 0.05 ) of the current size limits (We computed Deconvolution (PBD, as described by Drummondetal. 1998; 2 ′′ 55 theexpectedapparentdiameterofasteroidsforthe2020–2030 Drummond2000;Conradetal.2007). Asteroidellipseparam- 3 56 period, and counted objects when apparent diameters reach eterswerecomputedasweightedmeansfromeachsetofsixim- 4 57 0.05 within this period.) Second-generation instruments agesobtainedateachfilterandeachrotationalphaseorepoch. 5 ′′ 58 with high-Strehl AO corrections into visible wavelengths are Theseellipseparameters(apparentmajoraxislength α, minor 6 59 planned for these large ground-based telescopes, providing axislengthβ,andanorientationanglePA ),werethenusedto 7 α 60 another factor of 5 improvement due to operation at shorter converttheseriesofapparentdiametersandorientationstothe 8 61 wavelengths. Together, these two factors should provide full triaxial-ellipsoid diameters and direction of (52)Europa’s 9 62 more than an order-of-magnitude improvement with respect rotationalpolethroughanon-linearleastsquaresinversion(see 10 63 to current resolution. Almost 7000 asteroids should then Drummond2000,forinstance). Theresultsofthefitaregiven 11 64 be observable with apparent diameters greater than 0.01 . inTable2. 12 ′′ 65 This breakthrough in imaging capabilities will also enable InadditiontothedirectPBDmethodology,ascross-checks, 13 66 the spatial resolution of apparent disks of TNOs larger than we use two additional avenues to get to the triaxial-ellipsoid 14 67 500km,largermoons( 100km)ofUranusandNeptune,small solutions. In the first of these, the data were flat-fielded, 15 68 ∼ moonsofJupiterandSaturn,main-beltasteroidsoffewtensof shifted,andaddedateachrotationalepoch(Fig.2),andasin- 16 69 kilometers, and NEAs of several hundred meters in favorable gledeconvolvedimagewascreatedwiththeMistralalgorithm 17 70 conditions(Fig.1). (Mugnieretal. 2004), for each epoch and each filter. These 18 71 sevenKpandsevenHdeconvolvedimages(Fig.3)wereagain 19 72 fitintheFourierplanefortheirapparentellipseparameters,and 73 theserieswasfitforthefulltriaxialsolution,alsogiveninTa- 2. Disk-resolvedimagingobservations 74 20 ble2. 75 Forasteroid(52)Europa,ourprimarydatasetwas takenon 21 2005January20. In addition, we observed(52)Europa at one 22 epochon2003October12,andatthreeepochson2007May28. 23 In 2005 we obtained adaptive optics images of (52)Europa at 24 H(1.6µm)andKp(2.1µm)bandswithNIRC2(vanDametal. 25 2004)ontheKeckII10mtelescope,andgivetheobservinglog 26 inTable1.The2003and2005imagesweretakenusingthefirst 27 generation Keck wave-frontcontroller; the 2007 images were 28 taken using Keck’s nextgenerationwavefrontcontroller(NG- 29 WFC,vanDametal.2007)undersimilarconditions.Strehlra- 30 tioswere30%,27%,and40%onaverage,respectively,forthe 31 2003,2005,and2007epochs. Thelatter,higher,valuereflects 32 the NGWFCchangeswhich,in additionto anewdetector,in- 33 cludeimprovementstotheelectronicsandtothesoftware.The 34 data set consists of 111 images: 9 from 2003, 84 from 2005, 35 and18from2007,thatresultin18compositeimages(Table1). 36 AlthoughlessextensiveandatalargerdistancefromEarth, 37 the2007dataaddanimportantnewepochtoour2005data.By 38 combiningall3datasets(2003,2005,and2007),ourgoalwas 39 toderiveaglobalfitthatspansawiderangeofviewinggeome- 40 Figure 2: Sky-subtracted, flat-fielded, shifted, and added, images of tries andprovidetightconstraintson the size, shape, and pole 41 (52)Europa, from 2005, before deconvolution, rotated so that the asteroid’s for(52)Europa. 42 spinaxisisvertical. AlthoughthedirectiontotheSunisindicated, thesolar 43 When observing at Kp in good seeing conditions, adaptive phaseanglewasonly5.5◦,makingtheSunnearlyperpendiculartotheplane 44 optics on Keck II delivers diffraction-limited resolution ele- ofthefigure.Therotationalphaseindegrees,±360◦,ofeachtileisplacedon topofitforplacementinFig5. TheKp-bandimagesareinthefirstandthird ments of width approximately 50milli-arcsecond (mas). We 45 columnswhiletheH-bandimagesalwaysfollowbyafewdegreesrotationin used the narrow plate-scale (9.942 0.050mas/pixel) of the 46 thesecondandfourthcolumns. ± NIRC2 camera, oriented North-up ( 0.15 , Konopackyetal. 47 ◦ ± 2007)foralltheobservations. 48 76 Finally, ellipse parameters were derived from fitting the 77 edgesproducedbyaLaplacianofGaussianwavelettransform 3. TriaxialEllipsoid(TE)Assumption 78 49 (Carryetal.2008)ontheMistraldeconvolvedimages. Afull 79 50 3.1. 2005January20 triaxial solution can then be foundfrom these ellipse parame- 80 EachofsevensetsofsixH-bandimagesandsevensetsofsix ters, and is given in Table 2. The adopted triaxial solution 51 81 Kp-bandimagesofasteroid(52)Europaobtainedin 2005was for(52)Europa,independentlydeterminedfromthe2005data, 52 82 3 Date ∆ r φ m ϕ Rotationphase Filter V (UT) (AU) (AU) ( ) (mag) ( ) ( ) ◦ ′′ ◦ 2003-10-12-11:48 3.02 2.07 7.2 10.8 0.25 26 Kp 2005-01-20-10:39 2.79 1.84 5.5 10.3 0.28 6 Kp 2005-01-20-10:43 2.79 1.84 5.5 10.3 0.28 9 H 2005-01-20-11:25 2.79 1.84 5.5 10.3 0.28 55 Kp 2005-01-20-11:28 2.79 1.84 5.5 10.3 0.28 58 H 2005-01-20-12:02 2.79 1.84 5.5 10.3 0.28 95 Kp 2005-01-20-12:04 2.79 1.84 5.5 10.3 0.28 97 H 2005-01-20-13:01 2.79 1.84 5.5 10.3 0.28 157 Kp 2005-01-20-13:04 2.79 1.84 5.5 10.3 0.28 160 H 2005-01-20-13:45 2.79 1.84 5.5 10.3 0.28 204 Kp 2005-01-20-13:48 2.79 1.84 5.5 10.3 0.28 206 H 2005-01-20-14:16 2.79 1.84 5.5 10.3 0.28 237 Kp 2005-01-20-14:18 2.79 1.84 5.5 10.3 0.28 239 H 2005-01-20-15:02 2.79 1.84 5.5 10.3 0.28 -74 Kp 2005-01-20-15:05 2.79 1.84 5.5 10.3 0.28 -71 H 2007-05-28-11:44 3.41 2.69 13.3 11.9 0.19 105 Kp 2007-05-28-12:54 3.41 2.69 13.3 11.9 0.19 179 Kp 2007-05-28-13:01 3.41 2.69 13.3 11.9 0.19 186 Kp Table1: Observinglog: heliocentric distance(∆),rangetoobserver(r),phaseangle(φ),visualapparentmagnitude(mV),angulardiameter(ϕ),andarbitrary rotationphase(zerophasebeingdefinedforalightcurvemaximum,i.e.,whentheapparentcross-sectionof(52)Europaisthelargest)foreachepoch(reportedin UT). Parameter PBD Mistral Edges Mean a(km) 377 3 376 3 381 4 378 3 ± ± ± ± b(km) 331 3 332 3 335 4 332 3 ± ± ± ± c(km) 236 9 246 8 249 10 244 8 ± ± ± ± SEP ( ) +27 3 +25 3 +25 5 +25 3 β ◦ ± ± ± ± PA ( ) 339 1 339 1 338 1 338 1 node ◦ ± ± ± ± ψ (UT) 10.35 0.03 10.33 0.03 10.28 0.04 10.30 0.03 0 ± ± ± ± EQJ2000(α ,δ in ) 261;+10 260;+11 259;+12 260;+11 0 0 ◦ σradius( ) 1 1 1 1 ◦ ECJ2000(λ ,β in ) 260;+34 258;+34 257;+35 258;+34 0 0 ◦ Table2: Triaxial-ellipsoidparametersforour2005data,withthreedifferentdata-processingmethods:PBDimages,Mistraldeconvolvedimages,andedgefitting. Theaveragevaluesfortheparametersarereportedinthelastcolumn.Thequantitiesderivedfromthefitsofthe2005dataare:triaxialellipsoiddiametersa,b,and c;thesub-EarthlatitudeSEPβ;thelineofnodes(theintersectionoftheasteroid’sequatorandtheplaneofthesky)PAnode;andtheUToftheinstantwhenthe longaxisaliesintheplaneoftheskyalongthelineofnodesψ0. Uncertaintiesreportedhereareformalerrorbarsofthefit,seethetextforadiscussiononthe systematics. is derived from the series of mean ellipse parameters at each studythesedeparturesfromapureellipsoidshape. 1 15 epoch,thatis, fromthemeanofthePBD images,theMistral 2 deconvolvedimages, and the edge-fitting at each epoch. This 3 3.2. 2007May28 preferredmeanfitisplottedagainstobservationsinFig.5. The 16 4 location of the pole on the Ecliptic globe is shown in Fig. 6, 5 We also acquired AO observations of (52)Europa at Keck 17 along with the locations derived from lightcurves analysis by 6 in 2007 (Table 1). Following the recipe from the last section, 18 others. 7 weformedthemeanapparentparametersfromthethreemeth- 19 Our imaging of (511)Davida (Conradetal. 2007) showed 8 odsalreadydescribed(PBD,deconvolvedimages,andoutlines 20 largeedgefeaturesthatcouldbefollowedduringrotation,even 9 fromthedeconvolvedimages). Althoughnotexpectedtoyield 21 in the raw images. While there may be similar features on 10 significantresultsbecausethethree2007observationsprovide 22 (52)Europa,theydonotappearasconsistentlyintheedgepro- 11 only nine observables to find six unknowns, we nevertheless 23 filesandarenotaseasytotrack. Thefeaturesarenotaslarge 12 fit the three observations for a triaxial ellipsoid (Table 3 and 24 orprominentasthoseonDavida,relativetoourreferenceellip- 13 Fig.7),andfoundthatthemodelisinsurprisinglygoodagree- 25 soid. Laterin the paper, we use 3-D shape modelingto try to 14mentwiththeresultsfromthe2005setinTable2. 26 4 20−Jan−2005 UT 400 9 10 11 12 13 14 0.3 350 m) 0.25 Diameter (k300 0.2 Arc Sec 250 200 −90 −45 0 45 90 135 180 225 270 Rotational Phase 20 Conv Deconv PA of Long Axis332500 Edges -73 -71 290 −90 −45 0 45 90 135 180 225 270 Rotational Phase Figure 5: Triaxial ellipsoid fit to measured ellipse parameters for our 2005 data. Intheuppersubplot, eachimage’s longandshortaxisdimensions are Figure3:SameasinFig.2fortheMistraldeconvolvedimagesof(52)Europa. plottedalongtheupperandlowerlines,respectively.TheH-bandepochsfollow theKp-bandepochsbyafewdegrees,andthedifferentsymbolsrepresentthe differentmethodsusedtoextracttheellipseparameters(PBDorConv,Mistral or Deconv, and Edges). Thesolid lines are the prediction for the projected (full)ellipsesfromthemeantriaxialellipsoidparameters(Table2).Thedashed Rot Phase = −90 Rot Phase = 0 linesarefortheellipseparameters fortheterminatorellipse, which, because thesolarphaseangleisonly5.5◦,fallonthesolidlines. Thedatashouldlie approximatelymidwaybetweenthedashedandsolidlines(here,thatmeanson 2003 thecoincidentsolid/dashedlines). Thelowersubplotshowsthepositionangle ofthelongaxis(PAα)withthesameconventions. 2005 +60 +30 315 180 225 270 2007 0 Figure4:Plane-of-skyorientationof(52)Europaasseenduringthe3observing datesanalyzed.Thegridsareinequatorialcoordinates,withnorthup,eastleft. Thebluesquareisthesubsolarpointandtheredcircleisthesub-Earthpoint. −30 Twoviewsforeachareshown: themaximum(RotPhase=0)cross-section andtheminimum(RotPhase=-90)cross-sectionforthatdate. Thesephases −60 arethesameasthoselistedinthetablesandFigs.5,7,and8.Thebolddotted linerepresentsthelinedefinedaslongitude=0,accordingtoIAUconvention (seeArchinaletal.2011). Thelongitudeisrelatedtotherotationalphaseby: longitude=270 -Rotphase. Thesenseofrotationisgivenbytheright-hand Figure6: Polelocations for(52)EuropaontheEcliptic globe. Thetwocir- ◦ rulehere,withthe(positive)polealwaysnorthward, andcanbediscernedin clesdenotetheuncertaintyareasaroundthepolefoundfor2005(larger)and thefigurefromtheadvancementofthebolddottedlineby90 . 2007(smaller),whileX’sshowthepositionsfoundfrompreviousworkersus- ◦ inglightcurves. 3.3. 2003October12 1 3.4. Aglobalsolutionforallepochs 8 2 The single set of AO images of (52)Europa taken in 2003 We can tie the 2003, 2005, and 2007 observations of 9 3 (Table1)doesnotallowanindependentfitforatriaxialsolution (52)Europa together into one simultaneous global fit (Drum- 10 4 because it only provides three observables for six unknowns. mondetal., 2012,inpreparation),usingthesiderealperiodof 11 5 WeusetheseearlyKeckAOimages,however,inaglobalfitin Ps=0.2345816days(withanuncertaintyof2inthelastdigit) 12 6 the nextsection. Fig. 8 showsthe globalfit predictionforthe derived by Michałowskietal. (2004). Along with the global 13 7 2003epoch,togetherwiththosedata. solutionforthetriaxialdimensionsandpoleinTable4,welist 14 5 28−May−2007 UT the three parametersthatdifferdue to the changinganglesfor 1 400 9 10 11 12 13 eachdate. 0.2 2 Statistical uncertainties for the dimensional parameters, as 350 3 Diameter (km)235000 0.15Arc Sec wgfoietrulltdhaeeso6tfhpotahsreeamninoevdtoeelr,vscitnohgmataednfegrfiloenmse, tsthhueechnToEans-mplioondleeealrp,oltehsaietsit3o-nsdqiauanamdreelstoefinrs-t 456 and3Eulerangles. Systematiceffectscanariseintheprocess 200 7 −90 −45 0 45 Rotation9a0l Phase 135 180 225 270 ofconstructinga3-Ddescriptionofanasteroidfrominforma- 8 tionlimitedtoa2-Dplane(images).Therefore,oneneedstobe 260 9 10 11 12 13 9 Conv particularlyvigilantregardingmodelassumptions,andtheirap- Deconv 10 °PA() of Long Axis220300 Edges dpweraorripdvr,eiadetseftnoimersatshtiefnogpraatrhapemasretyitscetureslmaarasstiifictuteabfftyieoctnht.seWtmhhaoitldeaerltehaepreruensstcerenartitgaihsintnftoioerts-. 111123 Deriving realistic (and therefore, directly applicable by other 14 170 workers) uncertainties for our results, including possible sys- −90 −45 0 45 90 135 180 225 270 15 Rotational Phase tematics,isthemostchallengingaspectofourwork. 16 We havecarefullycalibratedsomeof these uncertaintiesby Figure7:SameasFig.5,butfor2007.Themaximumthatoccursat9.74 0.01, 17 lighttime corrected, is the same hemisphere as the maximum that occ±urs at making observations of external sources (e.g., the moons of 18 10.30UTinFig.5. Saturn) of known size. One of the results of that work has 19 shown that our systematic uncertainties are larger for objects 20 of smaller angular diameter, until we reach a limit (at about 21 Parameter Mean 0.09 fora10mtelescope)wherewecannolongergetreliable ′′ 22 a(km) 379 1 sizes. Aspect ratios of projected shapes are still possible, but ± 23 b(km) 330 1 absolutesizesbreakdown.Wehavefoundthatoursystematics ± 24 c(km) 225 9 fromthesetestsspanabout1–4%perlineardimension. Inad- ± 25 SEPβ (◦) -41±5 dition,wehavealsoimagedtargetsofspacecraftmissionsprior 26 PAnode(◦) 212±1 toflyby(seeKOALAsection). Inthecaseof(21)Lutetia,de- 27 ψ0(UT) 9.74±0.01 spite anangularsize ofonly0.10′′, ourresultingmodelswere 28 EQJ2000(α0,δ0in◦) 258;+11 goodto2%insizeand2kmRMSintopographyona 100km 29 σradius(◦) 1 object(seeCarryetal.2012). 30 ECJ2000(λ0,β0in◦) 256;+34 We can also compareourTE results with those of KOALA 31 (seebelow),incaseswherewehaveadequateobservations. In 32 Table3: TriaxialEllipsoidFitParametersfrom2007observations. Uncertain- particular,wehavesuchcomparisonsforfourasteroids,includ- tiesreportedhereareformalerrorbarsofthefit,seethetextforadiscussionon 33 ing(52)Europa.Wecanlookforconsistency,notonlybetween thesystematics. 34 thetwotechniques,butinsub-setsofdatatolearnhowfarwe 35 fallfromthe“correct”values. Wecanalsocomparetheresults 36 12−Oct−2003 of data sets from differentyears. Our upcomingarticle, men- 37 400 10 11 12 13 14 15 tionedabove(Drummondetal.,inpreparation)willbeastand- 38 0.25 alone treatment of the global fitting technique and calibration 350 39 m) thatwillincludemuchdetailonuncertainties. Forthepresent Diameter (k300 0.2 Arc Sec rseyssuteltms,atwiceuhnacveertdaeintetiremsinoefd4.t1h%at,w2e.3s%ho,ualndda3d.d8%qutaodrtahteicTalEly- 4401 250 42 0.15 derivedfiterrors(giveninTable4)fora,b,c,respectively.The 43 200 −90 −45 0 45 90 135 180 225 270 resultingtotaluncertaintyestimatesforthea,b,c diametersare Rotational Phase 44 16 8 10km, with a 7 degree systematic uncertaintyfor the 250 10 Conv 11 12 13 14 15 orie×nta×tionofthespinaxis. SeeFig.4foravisualizationofthe 4465 Deconv °PA() of Long Axis129200 Edges o4r.ieCnotamtiponaroifso(n52)oEfu(r5o2p)aEounrtohpeapltaoneLoifgthhtecsukryv.es Inversion 4487 Model 49 160 −90 −45 0 45 90 135 180 225 270 Rotational Phase From optical lightcurves of (52)Europa, Michałowskietal. 50 (2004)foundarotationalpoleat[λ ,β ]=[252 ,+38 ],witha Figure8:Globalfitand2003data. 0 0 ◦ ◦ 51 5 uncertaintyineachEclipticcoordinate. Itisthepoleclosest ◦ 52 tooursinFig. 6, about6 away. Theyderivedana/baxialra- 1 ◦ tioof1.15,thesameasour1.15 0.04,andab/cratioof1.3, 2 ± comparedwithour1.33 0.05. 3 ± 6 Diameter(km) Pole Param 2003Oct12 2005Jan20 2007May28 a=379 2 (α ,δ )=257 ;+12 SEP ( ) +49 1 +23 1 -40 1 0 0 ◦ ◦ β ◦ ± ± ± ± b=330 2 σradius=1 PA ( ) 204 1 339 1 213 1 ◦ node ◦ ± ± ± ± c=249 3 (λ ,β )=255 ;+35 ψ (UT) 11.11 0.02 10.31 0.02 9.72 0.02 0 0 ◦ ◦ 0 ± ± ± ± Table 4: Results forthe global fit. Uncertainties reported here are formal error bars ofthe fit. Including systematic effects raises the total uncertainties to 16 8 10kmforthethreeellipsoiddiameters,andto 7 inthepole. × × ◦ Figure10: SameasFig.9,butfor2003and2007. Inadditiontothedecon- volvedimages inthemiddlerow, weshowthenon-deconvoled, shifted, and centeredimagesinthetoprowforeachepoch. In2003,(52)Europawas1.3 Figure 9: Comparison of our (2005) deconvolved K images from Fig. 3 timescloserthanin2007resultingindifferentscalesforthetwoyears. (columns1and3)withthewebmodelofMichałowskietal.(2004),projected forwardfrom1983usingtheirsiderealperiodof0.2345816daysandanupdate (althoughnearlyidentical)tothierpolefromDAMIT(columns2and4). lightcurves,stellaroccultationstimings,andprofilesfromdisk- 23 resolvedimages.TheresultsofKOALAhavebeenrecentlyval- 24 Figure 9 is a side by side comparison of our decon- idatedat(21)Lutetiabythe imagestakenbythe ESA Rosetta 4 25 volved Kp images, from 2005January20 (from Fig. 3) and mission:The3-Dshapemodelandspinorientationdetermined 5 26 the Michałowskietal. model, using the updated rotational beforetheencounterbycombiningAOimagesandlightcurves 6 27 pole forthe modelat [λ , β ]=[251 ; +35 ] fromthe DAMIT (Carryetal. 2010b) were in complete agreement with images 7 0 0 ◦ ◦ 28 (Dˇurechetal. 2010) web site1. Figure 10 shows compari- andresultsfromtheflyby(Sierksetal.2011;Carryetal.2012). 8 29 son between our convolved and deconvolved images and the AxialdimensionsfromKOALAweredeterminedwithin2%of 9 30 lightcurvesinversionmodelfor2003and2007. thetheactualvaluesandRMSdifferencesintopographywere 10 31 TheoverallagreementbetweenourAOdeconvolvedimages only2km. 11 32 and the model predictions is excellent. A careful examina- We use here the 18 imaging epochs described in Sect. 2, 12 33 tion of Figs 9 and 10, however, will show edge features that together with 49 lightcurves taken between 1979 and 2011 13 34 are seen in one but not the other, requiring the development (we acquired 8 additional lightcurves within the CdR/CdL 14 35 of an updatedshape model, as discussed in followingsection. collaboration with respect to the 41 lightcurves presented by 15 36 Despite these features, (52)Europa is still well-modeled as a Michałowskietal. 2004), and 4 stellar occultations (timings 16 37 smoothtriaxialellipsoid. takenfromDunhametal.2011). AcomparisonoftheKOALA 17 38 3-D shape model with the AO imagesfrom 2005 is presented 39 in Fig. 11. The agreementbetween the 3-D shape model and 5. KOALA3-Dshapemodel 40 18 thedataisverygood. Thetypicaldeviationwiththe18imag- 41 19 We construct a 3-D shape model of (52)Europa to give ing contours is of 0.2pixel, corresponding to a few km. The 42 20 a better rendering of the apparent shape visible in the im- 49lightcurvesarerenderedatalevelof0.03mag,i.e.,closeto 43 21 ages. For that, we use our KOALA algorithm (Carryetal. theintrinsiclevelofuncertaintyofthedata.Finally,theresidu- 44 2010a;Kaasalainen2011)thatmakescombineduse ofoptical 22alsbetweentheoccultationchordsandthemodelare13km,on 45 average,mainlyowingtothelowerqualityof1983occultation 46 timings(residualsof19km, comparedto11,13, and6kmfor 47 1http://astro.troja.mff.cuni.cz/projects/asteroids3D/web.php 1 theotherepochs). Figure 12showsthesechordsmappedonto 7 theprojectionsofthe3-DKOALAmodelfortheepochsofthe 2 occultations. 3 The3-DshapederivedwithKOALAisclosetoanellipsoid, 4 validating(52)EuropaasaStandardTriaxialEllipsoidAsteroid 5 (STEA,Drummondetal.2008). FittingtheKOALAmodelas 6 a triaxialellipsoidyieldsdiametersof 368 327 255km, in 7 × × excellentagreementwith the diametersand total uncertainties 8 in Table 4. The volume-equivalent spherical-diameter of the 9 KOALA 3-Dshapemodel, derivedbysummingvolumecells, 10 is312 6km,inexcellentagreementwiththeTEanalysispre- 11 ± sented above. The KOALA model yields a spin pole within 12 3 of[λ ,β ]=[254 ;+37 ]or[α ,δ ]=[257 ;+15 ],alsoclose 13 ◦ 0 0 ◦ ◦ 0 0 ◦ ◦ to the TE result. The shape model can be downloaded from 14 theDAMITwebpage. 15 6. OccurrenceoflargefacetsonC-typeasteroids 16 The 3-D shape model presents two broad shallow depres- 17 sions, probablybestnotedinthe lowerrightofFig. 12. They 18 can also be seen on the tops and bottoms of the asteroid im- Figure 11: Comparison of our 2005 deconvolved Kp images from Fig. 3 19 (columns1and3)withtheKOALAmodeldescribedhere agesincolumn1, panel3, andcolumn3, panel2. Thedepar- 20 tures from an ellipsoid, however, are not nearly as significant 21 astheapparentgiantfacetsseeninouranalysisof(511)Davida 22 (Conradetal.2007),norasprominent,relativetobodysize,as 23 the giantcraters seen on (253)Mathilde (Veverkaetal. 1997). 24 We chose Mathilde as a prototypical object displaying giant 25 featuresseeninprofile(craters/facets),althoughMathildewas 26 a much smaller asteroid than Davida. But it turns out that 27 (52)EuropaisalmostatwinofDavidainmanyrespects: both 28 are C-type asteroids of very nearly the same size, they have 29 similar spin periods, and they have similar orbital properties, 30 so they have likely seen the same impact environment (al- 31 though Davida does have a bit larger eccenticity and inclina- 32 tion). IntheDavidapaper,wewenttosomelengthtodemon- 33 strate that Davida could have encounteredimpacts of the size 34 necessarytoproducethegiantfacetsseen,withouthavingbro- 35 ken up the body. So given the similarities between Davida 36 and (52)Europa, one might now wonder how likely it is that 37 (52)Europa would not show such facets (or at least not show 38 facetsthatarequiteasprominent). 39 ReturningtoouranalysisintheDavidapaper,weestimated 40 thatDavidashouldhavehadabout2.5impactslargeenoughto 41 makesuchagiantcraterduringitslifetime.Thisledtothecon- 42 clusionthatifthefacetsseenwereindeedcraters,seenedge-on, 43 asonMathilde,theywouldnotbeunexpected.Thesamestatis- 44 tics should hold true for (52)Europa. But with an expected 45 total of only 2.5 impacts of this size during its lifetime, the Figure12:ComparisonofthefourstellaroccultationswiththeKOALAshape 46 model. Solid and dashed grey lines represent positive (hits) and negative chancesare also reasonablethatit did notencounteranysuch 47 (misses)chords,respectively.BlackcontoursaretheprojectionoftheKOALA 48 impacts. Wethereforeconcludethatnotseeingsuchprominent 3-Dshapemodelontheplaneoftheskyateachoccultationepoch. featuresonatwinsuchas(52)Europacouldalsobeexpected. 49 Of course, the flux of smallerimpactorswould be higher, and 50 thesewouldberesponsiblefortheperhapslessprominentedge 51 featuresthatwedosee. Giventhattheviewinggeometryhasto 52 53 be justrightto see these typesoffacets, itis possiblethat ob- haveafairlywiderangeoflatitudesandlongitudesinourdata 57 servationalcircumstanceshaveconspiredsuch thatwe missed 54set, however, so the chances of missing something as promi- 58 somegiantfeature,orsuchthatthosefacetswedoseeareless 55nentasaDavida-stylefacetarediminished,andweassertthat 59 pronouncedorareparticularlyhardtofollowwithrotation.We 1 56EuropaappearsqualitativelydifferentthanDavida. 8 7. Densityof(52)Europa latitudes and longitudes, and Drummond (2000) show how to 2 56 derive the projected ellipse parameters from the asterocentric 57 3 There are 17 estimates of the mass of (52)Europa avail- latitudesandlongitudes.Forexample,(52)Europa’sasterocen- 58 4 able in the literature, derived either from the analysis of the triclatitudecanbepredictedtowithintheerrorofitsrotational 59 5 orbit’s deflection during close approachesof minor planets to pole, 7◦,anditsasterocentriclongitudetowithin0.5◦/yrsince 60 6 (52)Europa (e.g., Michalak 2001), or from a general adjust- thedateofthemostrecentepochreportedhere(2007May28). 61 ment of the parameters used to generate the ephemeris of the 7 Thelongitudeuncertaintyarisesfromtheformaluncertaintyin 62 8 planets and asteroids in the Solar System (e.g., Fiengaetal. thesiderealperiod,butinfact,judgingbythegoodagreement 63 9 2009). We adopt here the weighted mean of these deter- shownbetweentheimagesandlightcurvesinversionmodelpro- 64 10 minations (following the selection discussed in Carry 2012): jectedforwardfrom1983,longitudesshouldbepredictabletoa 65 11 (2.38±0.58)×1019kg. muchhigheraccuracythanthesevaluesindicate.Theprojected 66 12 Ingeneral,thedifferencesinvolumebetweenthetriaxialand majororminoraxisdimensionscanbepredictedtowithinap- 67 13 theKOALAmodelsaresmall. Here,thatdifferenceislessthan proximatelytheuncertaintyfoundhereof5–10km,andtheori- 68 14 1%, whichwouldleadtoavolumedifferenceoflessthan3%. entationoftheapparentellipsetowithin 2◦. 69 15 Whenassigninguncertaintiestooursizes(fromeithermethod), We are fortunate to have both the triaxial ellipsoid (TE, 70 16 wenotonlyassessthederivablestatisticaluncertainties,butwe Drummondetal. 2009a) and the KOALA (Carryetal. 2010a) 71 17 must also provide an estimate of systematic effects, of which techniques available for our analysis of AO images of aster- 72 18 this difference is an example. The uncertainties used already oids.Eachhasitsownstrengths.TErequiresrelativelyfewim- 73 19 include potential differences between the models. Because of ages,canreturnshape/size/poleinformationamazinglyquickly, 74 20 the added topographicdetail providedby the KOALA model, isgenerallyinsenstivetochangesinthePSF,andisusuallyade- 75 21 wechoose,inthiscase, tousetheKOALA-derivedvolumeof quatetogetthebasicasteroidparameters.Formoredetailed3- 76 22 (1.59±0.10) ×107km3, giving a density of 1.5±0.4gcm−3. DshapeinformationwecanrelyonKOALA.Unlikelightcurve 77 23 This bulk density falls within the observed range of densities inversionalone,KOALAcanobtainabsolutesizes,andissen- 78 24 forC-typeasteroids. Here,theuncertaintyismainlyduetothe sitivetoconcavities. Themethodscanbeusedtovalidateeach 79 25 uncertainty on the mass determination (24%) rather than the other,aswefoundexceedinglyusefulduringouranalysisofthe 80 26 volumeuncertaintyof6%.Thus,weareatthepointinthestudy Lutetiadata,priortotheRosettaflyby(Drummondetal.2010; 81 27 ofthedensityofasteroidswheretheuncertaintyonthevolume Carryetal. 2010b). And while a detailed 3-D shape model 82 28 isnolongerthelimitingfactor(volumedeterminationremains mightbeseentosupercedethetriaxialassumptionofTE,that 83 29 generally the limiting factor when the mass is estimated from isnotnecessarilythecase. Asanexample,ourAOimagingof 84 30 a spacecraft encounter or a satellite, see the review by Carry thecloseflybyofNear-EarthAsteroid2005YU55fromKeck, 85 2012). 31 inNovember2011,resultedinalmostimmediatesizeandshape 86 32 Dedicatedobservingprogramsandtheoreticalworkarenow informationfromTE (Merlineetal. 2011). In futheranalysis, 87 33 neededtoderivemoreaccuratemassesoflargemain-beltaster- wehadhopedtousenumerouslightcurves,takennearthetime 88 34 oids. The adventof the Gaia mission (expectedlaunch 2013) oftheflyby,tohelprefinethesize/shapewithKOALA.Butde- 89 35 shouldcontributealargenumberofnew,improvedmasses(see spiteourefforts,thelightcurveinformationon2005YU55so- 90 36 Mouretetal.2007,forinstance). Withthesemorereliablevol- farisinsufficient(mostlyduetoaveryslowspinperiod)toal- 91 umesandmasses,wecanderiveimproveddensitiesandporosi- 37 lowKOALAtoimprovesignificantlyonTE.Thisdemonstrates 92 ties, whichinturnwillallowustobetterunderstandhowden- 38 theimportanceofhavingbothmethodsavailableforanalysisof 93 sity and porosity may be related to taxonomic class, absolute 39 ourasteroiddata. 94 diameters, or location (e.g., inner vs. outer main belt). And 40 Newimaging,lightcurve,andoccultationdatawillbeadded 95 this highlights the importance of continuing to push for more 41 to our overall analysis for (52)Europa as they become avail- 96 AOobservationsofasteroidsforsize/shapedetermination,from 42 able. These may allow us to distinguish whether any of the 97 thebestfacilities,andthecontinueddevelopmentoftechniques, 43 somewhat-flattened edges seen on (52)Europa in our existing 98 such as KOALA,thatcombinemultipledata types(hopefully, 44 datasetsareindeedfacetsorcratersofthetypeseenonDavida 99 45 eventuallytoincludethermalradiometryandradarechoes). andMathilde,andtobetterevaluatetheextentandmorphology 100 ofanydeparturefromapureellipsoid. Thetechniquesweare 101 developinghere (both observationaland in data analysis) will 8. Summary 102 46 allowustomakeimmediateandsubstantialadvancesoncedata 103 At this point, (52)Europa can be considered for member- fromnew,largertelescopescanbeacquired. 47 104 ship as a Standard Triaxial Ellipsoid Asteroid (STEAs, see 48 Drummondetal. 2008) because it is so well modeled as an 49 Acknowledgments 105 ellipsoid (like asteroid (511)Davida, see Conradetal. 2007). 50 Theellipses projectedbythese standardellipsoidscan bepre- This work presented here was supported by grants from 51 106 dicted well into the future or past, and therefore, can be used NASA’s Planetary Astronomy Program and the U.S. National 52 107 ascalibrationobjectsforothertechniquesusedinstudyingas- Science Foundation, Planetary Astronomy Program. We are 53 108 teroids. Conradetal.(2007)andDrummondetal. (inprepara- gratefulfortelescope time made available to us by the NASA 54 109 tion)detailtheequationsnecessarytopredicttheasterocentric TAC, and also for the support of our collaborators on Team 55 1 9 2 Keck,theKecksciencestaff. TheworkofJ. Dˇ wassupported68 J.D.Drummond,W.J.Merline,A.Conrad,C.Dumas,andB.Carry.Standard 3 by grant P209/10/0537 of the Czech Science Foundation and69 TriaxialEllipsoid Asteroids fromAOObservations. In AAS/Division for bytheResearchProgramMSM0021620860oftheMinistryof70 Planetary Sciences Meeting Abstracts #40, volume 40 of Bulletin ofthe 4 71 AmericanAstronomicalSociety,page427,2008. Education. 5 D.W.Dunham,D.Herald,E.Frappa,T.Hayamizu,J.Talbot,andB.Timerson. 72 6 This research has made use of NASA’s Astrophysics Data Asteroid Occultations. NASA Planetary Data System, 2011. EAR-A-3- 73 7 Sveyrsytesmig.niTfihceanatucthuoltrusrawlirsohletoanredcroegvneirzeencaendthaactkthneowsulemdmgeitthoef J.DˇRuDreRc-hO,VC.CSUidLoTrAinT,IaOnNdSM-V.K9.a0a.salainen,2010. DAMIT:adatabaseofaster- 7745 8 oidmodels.AstronomyandAstrophysics,513:A46. 76 Mauna Kea has always had within the indigenous Hawaiian 9 A.Fienga,J.Laskar,T.Morley,H.Manche,P.Kuchynka,C.LePoncin-Lafitte, 77 10 community. We are most fortunateto have the opportunityto F.Budnik,M.Gastineau,andL.Somenzi,2009.INPOP08,a4-Dplanetary 78 conductobservationsfromthismountain. ephemeris:fromasteroidandtime-scalecomputationstoESAMarsExpress 79 11 andVenusExpresscontributions. AstronomyandAstrophysics,507:1675– 80 1686. 81 References M. Kaasalainen, 2011. Maximum compatibility estimates andshape recon- 82 12 struction with boundary curves and volumes of generalized projections. 83 11621261366436262233552416651243423545442325535351543443534401664682597170402259026851563139820678148599774373 BJBJJDABDBBBBJJ...............DDDDDCCCGtRTA5Ttda3aaIAeCPWtPCRm2p2RomlRfasR5PCeTCCCTARoera.eci.nnnrnl..2i73a0f1..ohraary.haooo..a....aarsi.dAt.gmraDeo.eoiDdddgdn3t511Drroi.,rDBDr,rortrDnnnBaranDWrhnReaIBrrNCCophrreArSrg:–0riueamxTryypArrs.DDPSsryvsryyAyddCrursuseerouaan2aJe/poostuieA.,,iiutri,..,,eptliuD,Khrmatmso.aoaaddi.yyht,m.c9s4uhun2eatmDt2CEGmtrvtFManmtneylvMsC,,infi,,hn,r2cn,34mJiirr4rAnPDm0eoaeCc,Svsmed.ncue:imtaoosE.himatDP0e...HR3imdsG1ishein.Jnnah.inDsdauAasg.omnnoO.nts2,Nls–Cop.Ba2oDaynst.aad.econKis.l,oa,hK.oSdoM,niie:Hun2n,oin.nprsldoiCiqo,KoDne1nlefwNRtpAOnurmrEd,ctJcyCamit6dlrda,dtwT,riunyoo.dD4,.cyL.hesdtIimao,ia.F.cotSa2i.a.bM.,he,yc.Se.ri,o7aa,IshTa2ltr,sJthCJP.uesYfvdsd,nAsnhDsWeaPiDaPlnAi–MsDia.i.o0aaRFAnee,vsnoaeesode.ieoc2VsseAt.,dlC1opmIlnDr0tdtrKianassruOaf.rDau,tlreeR.oWan0ostmMeopFua5rvr.e,kiD,a7t.lira.dPikamtiC,Pmawbotos0aeuaitMc.Qnhbmona.9tTrns.yCvdoauRiol.as6CsiecL.,lsop0ho,ttAayeo,sel.aLaaeAmeaygeta.ruaonsimskl6lh.TKfe.eilnNro.n.esanonrssntmcnirthnerees’DridsFE:yrrftia,eareo,,nfF,pagrnerh,APiAHost2astrOtciet,i-o,manenmadrua,,mnmids.Mtio,eurPaPnPawWnaWL0oJoeaOCirdaosgeatgs’gdts.lsldilK.edtldP0olsnAbsarttpRyaanDaie,dcfnctiaaaaa..he.y,casoMC.,pIe–tuegcAl,sr,hRhida,,rno.tnol.WoAryntseo2nLnnJJyerrega2,n(Kly.afoi1DPe,SefRtsouooDn.s..2tS0g,r,Ws,Kire1aseeaOmnsCi0t.taRttniacotrip..,(a1M1dnTt..oaeyMttnrngi2.aaddJGkE92erCriJerScmnoh.eees)rr1o2,SHarIdtae.nthiy.usHe.r:)nyoHs.,ri(iapasdirecbuIeemL.n10sno.Mdetsn,ocdtC2i,P,MJR,oitsrasourrtDAeiFiBsiz0R0cieid,tugnSl.e1dlueWeP5.r,bu2dJad.ustrJl.iIceePsi(18suOtNlraoo.sskeen)t.cerW2lnt.lsSl0es2rtzeesr.oHWCI–.lre,y.a.lsrwpiureeeLBl3lew0a1ytnefodelPiDomCnpi1,mSWnTMo.in.no,h,JEAˇ.r,ids:nl9u.)nNenffaeenffeaieoA31,.stbe,Sir.reaJuCTeetll.aArtLsncaJsgJtgirotiee(em53ahele.ebresnMtCa.rna,gk9snn.t.eIr.2,shhh,ereeunomema.2ertsryndctrM,tMgai4na,i.1AGstoDatoMirtrt,fcyaAt:eBCAhaadi2,.ee,ie.-v,Pey8)ffECnRhounnM2rntraiJd.eIa.rr2to.and.a.hIl0egLSuoGf,,fM,gdnie0P.nSosr.c.iaScM1tannDtarreC–h.nslAem,SC.fiW0udikspDAoalai.CLMt.4p.Aofddr,9.,eiBn:hI9tar,FwrtSneum2soaan¨J,tyneIVsu2.Au.i9.huerTebia2PtSFrR2rdv.n..ul0Intet2vsrerm0m.Jaes,leoe..asiHUI0.e0oopgyl1,oCreleo0AS.aKCpn5,sIdstconEaTaSl1,JF0rlauar0nmrI.iis0MtJ1omcm:hOi,dnktdW.adalz2u,acshOr.94&l¨buoenC.IM6et9niaire,aco,e;ateL.ppD.oapt.6aag.smseaAKr.hBp1.sro,,tst,pn2paRcpTknlyntKr0Gxna.a-sESoCie.vt(rliRsltyd.0regoeeDea,,,pis–Pioc,2khJiiolcoe.Ot.mcDare,v1Bnre,r,KmhHs.p4ro4n)iChaeitst,a.ls2sGSllosne0.eea:aJAhSui1rRr7oioeniCyn,eM6ae0.tnet.J,ps,ndtugp.i.mfs:4.2rlddcaILsidggLO1.e.ls0hg#DuohcameiAStonCPli8kn..GyHaiaeAnir6.9aiceAe,D,AtryTopn.afl,5ns-5hpux,i.aoomp–FaNbr.,sI.lJDntabEohBy3–ad.sA9ysmni,oDnlm6iIsi.17Ru.laK.etnoon.Mocb7c5.sKrdhuesC2e2r9s3ll0ptDar.asPindi.sTlAay0Poocnewrapt0y7ecd9:iso7rarree,PrnTndHho.0pl9mlps.lCoadna0I,,.g8omflg.cmeoo4pa,,idaihlm.eh8lhslpD,F,2ee.thgensFeoenkain7oLsiiyyy–HpAaepsepocA.mdsumoan.nognaec,P8lrstsgu1CbroserrniuFsgmtsoomir...rC(aAai.taigotDooaenn1nepacokci4icmaeonnunnnARRCerecnpoodlieoa8gydoaesfysrs)iriilldydddsss------rf----:,,,l.,l.,,,..,....,, DMGQWWWTLHPMJS.........V.....CMMMMMbsZ2A(KaC3SJbISGOlSA1CCAPC2GP523mO5(AFacsNSJJJAAee17nc.i.nse..r01e904052....ocriev’.oo.rioned..d..re.evieo50t.nee..drHTco02i90613AMDSblcceeMMRLcnnsMEGubLaDanaMeerspl)4KthvvCn5.i7771–6hrrivhcknk,prrpekrPenret.e.eut.ee)Ekoaaera.aai...33aeeehsooo.easrrrutt.Kutcoyw,DrCMInłraoiCnddeiiglrrtuSevyO6Y7oS,rrrnrmLMoodeLglvvnpa,urHll,,efnnm,,.Ni,niih62yltliioawzp,PPDneekt-DebnUsuDnt.Potsoonnay,1eT(´ooa..e,tPbhCCape--.a3soiE,Juorser.gW,2frsssee,FarpaeOO9amb.M.fncio2a,cW.er3n,L2Cl,n..eka,,A1Gnm5.AJmrsWm9szWtoHch,b0r´a14,,mppIi0eRiSsiRRR.u)a,A5,.JJviyAk7z,,iRmnaFAl11m,C:.sc,tt0Taem..r.e.LPLTe.Fae2.in4y...ii.n2,´en25TlhinsDns1ccE,.mI.aJtnS.Fa.DD0,yne5s8.uhiI0,PCCyg.tKoaA.ss,o..saJFgIT.zAkrr.cSS0(bgAA.7tFo.FL0,lsr-r..mt.wiKoW.hhDW5eeeiBiruiV.2yiyCehM–nc.LmU4BleeC,koIG..DDalttffala2aysAra..iypw.4oliehm,Ar.oEn.eome,pMRppconiFia)caA.ebra.urrtra9denCT,tPAcJirsheRmim.iA:eoid.ssDuuraEadtyeMdBctIJmr,a.0gdztesA,..kz,htr.iiM,,gnmmesPHrsao.teAtur,teerMamaa.r,IGaAeaAooStktroc,aioa.pi.cinhaPMmM2lrnrnoeer2n,aongmmnaAntt,onnfr.BuontsihnVsa.be1xerE,orD,ewr7gindnnseJoawsddcleoopoonMvHaedrtioorsFd(2acmeszra7Joa.Ja,ghemlhfemkt1zitiamres.Fernnals5oi.,.rJ3ntioose:ad,mreoiepiNis.u,ni,K-e0rivok.1L,dd.ni3crsylLrrnn8tCCrfnsooyoLtfp-,tcGelJ)na,niocM4lm9mi,,,hg.oruMsa2io¨np,n:.,(Mc.co,..a.tDahanyDi9aa2N1k,M.,n8TPPnhi,tJai,dGa,aMMnDGsiDCM,oCgnno2i4,o8.P5..Dt8ogorgaRla.hinesicSPdBn,ddt.f–.n2J,4eC(ahohn)ro-trMMB,npas.,o.cJK.eu..Hh1.edPENrff1-:Da1r.dArdnrTAao-leoASmtKB,o1.cCJb-Mii)iMF-aas4oLEah–..sx¨oreaeulssanM.:.hhE.n.smet.,ndo.dsMtyao9sa3yoav1stDpntTT.e.lratzieDRSalˆ.otoMaece,fqEae,,ssMnrm57eds8troBaCaaroaanongaorthut.tt,us:obu2ooa..aKt–.A,5srismmeortde,tlervSelaeh.pnn,,aiioelhh0pCntdbeuFD5a4simme,kd2rAelIt,iwu.Keachyn-¨,gbb,a0hdi,iCrrCasdt7.mul.srS0C1mntupi,aekDy,s.rill,mssiAF7yiaoKsea.nol.,o.yyT0n3seuHtrp(,kts.laHsSn..sloaiaht.MndIr4oennnsq4DaeD3ielxudeNJgooiMiAPsmodlf..ci,,tAaS4.cnsn.,,cu..r:,bteanseJunAsuer2FsM,.ssesfp4k4,FPt,eBRhacsBBlIiSrres,MN,trem,eooms.0,aa.J..Ipo).nMgpeCt,ouWV,.l.s3iI...armz.ie4no0LBBalioecLTDcSep-aImInsar.2aPr7ReidreF7aCCft8L.ceSsAks.rkeeslyscI.eyeeo.ub0nA.s4e,si.,2.t–MIv.,,mdeThPraa.nlpacitere0tsnBbW:.2MlDt:Oad2PaEirhHerrSai7aMa,tytdM,,iR14cse,(Ja0,rrani.:eCiO0nn,etn06.uecHBeosoayy0hrnm..nvLil0rAdmsF1Viadg4d,ebhoi3im)nHNnupo,,1ea,e,iy.5sn.L..Ar4Pea,1iee,n–LvdHr,Artia7asgSCCCsdB,U.BuRSnMtis(.dyn7raie,7Air,ast–2i:cYo5,,.nsebLBsenWa..asrelrna.:t..tn1.2Ss10SeataBty17fboaar.ebrbmlUgG.NN,r.KL,d10,LoMbRIs00c.,rzr12teeKloaMeI,AAaPoS.zo1reie5,J2.2zA.ee4,.lF)0eoIuapsMcAmrl..arlf.i1oJyy,5a7.2(.l3En.d–ssEDa,ythWhdySsrlP1at.,Clpmm.e,.Mt0a(uMderD7.Woiat,nhy.sTanhppa02ir,,rand0rIJ.avFzs7.prJkrsgkaoaaLve,aaeih)m3gcaB.cutn7.oMca..i1miSevY-oGnnecneniSJFcecH)caeezruSd.uBJdO...Cea,e,cr.,,:.oCisiz,syapyo.ad5goaaCrnncgyEioK.z,2mpBdCAAhMssenrnesKeMT,b4´h2i,tgegfa4oaVdtk0tddeeconcusnho.58ee..siaiaairerv.1engp1ettskeccsccaemioilmilr8nnn9HihhcRRnloen6nehnngeoh1aoaFeasyatIll–ddd–kees-----f--tll:,,,,,,,,,,,..,....., 61611116111616666111111661611116611111109111111088090190920011288999001110089911029001100802225733768945972059884972514704518124368160420339015664523 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.