ebook img

The Relativistic Inverse Stellar Structure Problem PDF

0.29 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Relativistic Inverse Stellar Structure Problem

The Relativistic Inverse Stellar Structure Problem Lee Lindblom TheoreticalAstrophysics,CaliforniaInstituteofTechnology,Pasadena,CA91125 4 1 Abstract. Theobservablemacroscopicpropertiesofrelativisticstars(whoseequationsofstateareknown)canbepredicted 0 bysolvingthestellarstructureequationsthatfollowfromEinstein’sequation.Forneutronstars,however,ourknowledgeof 2 theequationofstateispoor,sothedirectstellarstructureproblemcannotbesolvedwithoutmodelingthehighestdensity b partoftheequationofstateinsomeway.Thistalkwilldescriberecentworkondevelopingamodelindependentapproach e todetermining thehigh-density neutron-star equationof statebysolvinganinversestellarstructureproblem. Thismethod F usesthefactthatEinstein’sequationprovidesadeterministicrelationshipbetweentheequationofstateandthemacroscopic observablesofthestarswhicharecomposedofthatmaterial.Thistalkillustrateshowthismethodwillbeabletodetermine 1 thehigh-densitypartoftheneutron-starequationofstatewithfewpercentaccuracywhenhighqualitymeasurementsofthe massesandradiiofjusttwoorthreeneutronstarsbecomeavailable.Thistalkwillalsoshowthatthismethodcanbeused ] E withmeasurementsofothermacroscopicobservables,likethemassesandtidaldeformabilities,whichcan(inprinciple)be measuredbygravitationalwaveobservationsofbinaryneutron-starmergers. H Keywords: equationofstate,stars:neutron,relativity . h PACS: 04.40.Dg,97.60.Jd,26.60.Kp,26.60.Dd p - o 1. STANDARD STELLAR STRUCTURE PROBLEM r t s a Modelsof stars in generalrelativity theoryare constructedby solvingthe relativistic stellar structureequationsthat [ followfromEinstein’sequation.Themostwidelyusedformoftheseequations,fornon-rotatingstellarmodels,was 1 firstderivedbyOppenheimerandVolkoff[1]: v 5 dm = 4p r2e , (1) 3 dr 0 dp m+4p r3p 0 = −(e +p) . (2) . dr r(r−2m) 2 0 Theseequationsdeterminem(r)and p(r),themassofthestarcontainedwithinasphereofradiusrandthepressure 4 respectively.Theseequationsareincompletehowever,andmustbesupplementedbygivinganequationofstatethat 1 characterizesthematerialcontainedwithinthestar. Inparticular,therelationshipbetweenthetotalenergydensitye : v andthepressure pmustbespecified.Theadditionoftherelationshipe =e (p)completesthestructureequations,(1) i X and(2),makingthemafirst-ordersetofordinarydifferentialequationsthatcanbesolvedusingstandardtechniques. These equationsare usually integratedstarting at the center of the star, where r=0, using the boundaryconditions r a m(0)=0, to ensure thatthe stellar modelis non-singular,and p(0)= p to select the centralvalue of the pressure. c Thevalueofthecentralpressure p canbechosenarbitrarily,withlargerp generallycorrespondingtostellarmodels c c havinglargermasses.Thestellarstructureequations,(1)and(2),arethenintegratedtowardlargervaluesofruntilthe surfaceofthestaratr=Risreached,where p(R)=0.ThetotalmassofthestarisgivenbyM=m(R). Thecentralpressurep isafreelyspecifiableparameter,sothestellarstructureequationsdetermineaone-parameter c family of solutions, m(r,p ) and p(r,p ), for any given equation of state. In general, the macroscopic observables c c associatedwiththesestellarmodels,likethetotalmassMandradiusR,alsodependonthisparameterp .Thereforethe c macroscopicobservablesassociatedwithanyparticularequationofstatecanbethoughtofasacurve,parameterized by p ,inthespaceofthoseobservables.ThistalkwillfocusontheparticularcaseofmassesM(p )andradiiR(p ). c c c Thestandardstellarstructureproblemcanbethoughtofasanabstractmapthatassociatesanequationofstate(which isineffectacurvethoughthespaceofenergydensitiesandpressures)withacurvethroughthespaceofobservables. Figure1illustrateswhatthisabstractmaplookslikefortheparticularcaseofthemass-radiuscurveofobservables. FIGURE1. Standardrelativisticstellarstructureproblemcanbethoughtofasanabstractmapbetweenanequationofstate(a curveinthespaceofdensitiesandpressures)andacurveofmacroscopicobservables,likethemass-radiuscurve. 2. INVERSE STELLAR STRUCTURE PROBLEM Whentheequationofstate iswellunderstood,asinwhitedwarfstars,thestandardstellarstructureproblemisvery useful. Detailed models of these stars can be computed, and their observable properties can be compared directly with observations. For cases where the equation of state is poorly know however, like neutron stars, the standard stellar structureproblemisnotsouseful.Figure2 illustratesthehigh-densityportionsof34theoreticalneutron-star equationsof state [2]. The range of pressures correspondingto nuclear density (dashed red line) predictedby these theoreticalequationsofstate havearangethatspansaboutanorderofmagnitude.Thismeansthatitisnotpossible to make reliable quantitativepredictionsaboutthe structuresof neutron stars simply by solving the standard stellar structureproblem. 15 10 e (p) p 14 10 12 13 14 10 10 10 FIGURE2. Theneutron-starequationofstateispoorlyknown,asillustratedherebythehigh-densityportionsof34theoretical neutron-starequationsofstate.Therangeofpressuresatnucleardensity(dashedredline)intheseequationsofstatespanaboutan orderofmagnitude. The range of densities and pressures inside typical neutron stars are well beyondthe range where any currentor foreseeablefuturelaboratoryexperimentwillbeabletomeasuretheneutron-starequationofstatedirectly.Incontrast, observationsof themacroscopicpropertiesof neutronstarsare becomingmorenumerousandmoreaccurateall the time. What is needed then is an inverse stellar structure problem,where the equation of state is determinedfrom a knowledgeofthemacroscopicobservablesofthosestars,e.g.theirmassesandradii.Thatis,weneedawayofsolving thestellarstructureequationsfortheequationofstate,insteadofspecifyingitaprioriaswedidaspartofthedefinition ofthestandardstellarstructureproblem. Atanabstractlevelitisnothardtoimaginewhatsuchaninversestellarstructureproblemmightlooklike.InFig.1 we visualized the standard stellar structure problem as a map that takes a curve in density-pressure space (i.e. the equation of state) and identifies it with a curve in the space of macroscopicobservables.From this perspective, the inversestellar structureproblemcorrespondstothe inverseofthisabstractmap.Thatis, the inversestellar structure problemistheabstractmap,illustratedinFig.3,thattakesacurveinthespaceofmacroscopicobservablesandfrom itdeterminesthecorrespondingcurveindensity-pressurespace. FIGURE 3. Inverse stellar structure problem can be thought of as an abstract map that takes a curve of observables, like the mass-radiuscurve,andfromitdeterminestheequationofstateofthestellarmatter. 3. TRADITIONALSOLUTIONOFTHEINVERSESTELLAR STRUCTUREPROBLEM Letmefirstdiscussaparticularsolutiontotheinversestellarstructureproblem,developedabout20yearsago[3],that Icallthetraditionalsolution.LaterinthistalkIwillalsodiscussanewerandmoresophisticatedapproachtosolving thisproblem.Thetraditionalapproach,however,providesaclearerinsightintothewaythestellarstructureequations determinethesolutiontothisinverseproblem,soIthinkitisworthdiscussing. Letusassumethattheentiremass-radiuscurve{R,M}isknown.Letusalsoassumethatthelowestdensitypartof theequationofstateisknown,i.e.,e =e (p)isassumedtobeknownfor p≤ p ande (p)≤e (p)=e .Let{R,M} i i i i i denotethepointonthemass-radiuscurvewhosecentralpressureis p. We chooseanotherpointonthemass-radius i curve,{R ,M },thatis“close”tothepoint{R,M},buthasaslightlylargercentralpressure.Figure4illustrates i+1 i+1 i i these assumptions. The mass-radius curve is illustrated in the first panel of Fig. 4, including the particular points {R,M} and {R ,M }. The red portion of the equation of state curve, shown in the middle panel of Fig. 4, is i i i+1 i+1 alsoassumedtobeknown,includingtheparticularpoint{p,e }.Theredportionofthemass-radiuscurveinFig.4 i i represents those stellar models whose central pressures are less than p. The panel on the right in Fig. 4 is a cross i section thatrepresentsthe structureofthe stellar model{R ,M }. Theouterportionsofthis model,shadedred, i+1 i+1 arecomposedoflowdensitymaterialwhoseequationofstateisalreadyknown.Thesmallcentralcoreofthismodel, shadedblue,iscomposedofmaterialwhosepressureanddensityexceed{p,e }. i i FIGURE4. Knowledgeofthecompletemass-radiuscurveplusaknowledgeofthelowdensityequationofstatedeterminesthe structureoftheouter partsofthestarwithtotalmassM andradiusR .Alsodeterminedfromthisknowledgearethemass i+1 i+1 m andradiusr ofthesmallinnercoreofmaterialhavingdensitiesandpressuresfromtheundeterminedhigh-densitypartof i+1 i+1 theequationofstate. Therelativisticstellarstructureequations,(1)and(2),canbeintegratedtodeterminequantitativelythestructureof the stellar model{R ,M }. Generally these equationsare integratedfrom the center of the star, r=0, outward. i+1 i+1 Butwecannotdothatinthiscase,becausewedonotknowtheequationofstateatdensitiescontainedinthecoreof thismodel.Wecan,however,integratetheequationsstartingatthesurfaceofthisstar,r=R ,usingasinitialdata i+1 m(R )=M and p(R )=0.Sincethelowdensityequationofstateisknown,thisintegrationcanbecontinued i+1 i+1 i+1 up to the point where p= p. The mass and radius, {r ,m }, of this small high-density core can therefore be i i+1 i+1 determinedquantitativelyfromthismodel: p(r )=p,andm(r )=m . i+1 i i+1 i+1 Ifthepoint{R ,M }hasbeenchosentobesufficientlycloseto{R,M},thenthehigh-densitycorecomposedof i+1 i+1 i i materialfromtheunknownhigh-densitypartoftheequationofstatewillhaveverysmallmassandradius,{r ,m }. i+1 i+1 Inthiscasethestructureequations,(1)and(2),canbesolvedaspowerseriesexpansions: 4p m = e r3 +O(r5 ), (3) i+1 3 i+1 i+1 i+1 2p p = p − (e +p )(e +3p )r2 +O(r4 ). (4) i i+1 3 i+1 i+1 i+1 i+1 i+1 i+1 Thecoefficientsintheseseriesdependon{p ,e },thecentraldensityandpressureofthelittlecore{r ,m }. i+1 i+1 i+1 i+1 These series can therefore be inverted to determine {p ,e } in terms of the known quantities {p,e } and i+1 i+1 i i {r ,m }.Thisprovidesanadditionalpointontheequationofstatecurve,asillustratedinFig.5.Thepointsonthe i+1 i+1 equationofstatecurvethatareintermediatebetween{p,e }and{p ,e }aredeterminedbyadoptingasuitable i i i+1 i+1 interpolationformula.Thisprocedurecanbeiteratedtodeterminetheequationofstatefortheentirerangeofdensities thatoccurwithinthecoresofneutronstars.Thismethodhasbeenusedsuccessfullytosolvetheinversestellarstruc- ture problemusing mock mass radiusdata constructedfrom a known theoreticalequationof state in Lindblom[3]. FIGURE5. Traditionalsolutionoftheinversestellarstructureproblemiterativelydeterminesasequenceofpointsontheequation of state curve by inverting the power series solutions for small inner cores of material whose masses and radii are determined numericallyfromaknowledgeofthecompletemassradiuscurve. Thistraditionalmethodforsolvingtheinversestellar structureproblemrepresentstheequationofstateasa table {p,e } for i=1,...,N plus an interpolation formula to fill in intermediate points. The accuracy of a particular i i EOS implementationofthismethoddependsonhowmanytermsareretainedinthepowerseriesexpansions,(3)and(4), aswellasthetypeofinterpolationformulaused.Theoverallaccuracyoftheequationofstatedeterminedinthisway will also depend on the number,N , of mass-radius data available, typically scaling like N−n for some n. Since stars stars thismethodofrepresentingequationsofstateisratherinefficient,andsincethismethodofsolvingtheinversestellar structureproblemconvergesratherslowly,manymass-radiusdatapointswouldbeneededtodeterminetheequationof statewithreasonableaccuracyinthisway.Measurementsofthesedataareverydifficulttomake,soitseemsunlikely thatthistraditionalmethodwilleverbeusefulforanalyzingrealastrophysicaldata. 4. SPECTRAL APPROACHTO THE INVERSESTELLAR STRUCTURE PROBLEM Thekeyideaofthespectralapproachtotheinversestellarstructureproblemistofindamoreefficientwaytorepresent equationsofstateusingspectralmethods.Fewerobservationsofthemacroscopicobservablesshouldthenbesufficient todeterminetheequationofstatebysolvinganappropriatelymodifiedversionoftheinversestellarstructureproblem. Thebasicideaistoconstructefficientparametricrepresentationsoftheequationofstate,e.g.e =e (p,g ),where k the g are a set of parameters that fix the functionalform of a particular equation of state. One example of such a k representationisasimplespectralexpansionoftheform,e (p,g )=(cid:229) g F (p),wheretheF (p)aresuitablychosen k k k k k basis functions.Examplesof such basis functionsincludethe Fourier basis functionsF (p)=eikp, and the various k collectionsoforthonormalpolynomials,liketheChebyshevpolynomialsF (p)=T (p).Spectralexpansionsofthis k k typeareexactwhenaninfinitenumberofbasisfunctionsareincludedinthesum.Truncatingtheseexpansionsatsome finitenumberofterms,k≤Ng ,givesanapproximationtotheequationofstate,whoseerrorsdecreasefasterthanany k power of Ng (e.g. typically exponentially) for smooth functions. I will discuss the particular choice of parametric k representationthathasbeenusefulforequationsofstatelaterinthistalk. For now, let us simply assume that we have a parametric representation, e =e (p,g ), that provides reasonably k accurateapproximateequationsofstatewithjustafewparametersg .Weusethisfamilyofequationsofstatetosolve k thestandardstellarstructureequations,(1)and(2).Theresultsincludethevariousmacroscopicobservablesassociated withthesestellarmodels,liketheirtotalmassesM(p ,g )andradiiR(p ,g ).Thesemodelobservablesnowdepend c k c k explicitlyintheparametersg thatdeterminetheparticularequationofstate,aswellastheparameterp thatspecifies k c thecentralpressureofthe model.Thespectralapproachtothe inversestellarstructureproblemfixestheseequation ofstate parameters,g ,bymatchingthe modelobservables{R(p ,g ),M(p ,g )} toa collectionofpoints{R,M}, k c k c k i i fori=1,...,N ,fromtheexactcurveofmacroscopicobservablesforthesestars.Theparametersg ,alongwiththe stars k parameters pi that representthe centralpressures of the models whose observablesare {R,M}, are determinedby c i i minimizingthequantityc (g ,pi),definedby, k c c 2(g ,pi) = 1 N(cid:229)stars log R(pci,g k) 2+ log M(pci,g k) 2 , (5) k c N R M stars i=1 ((cid:20) (cid:18) i (cid:19)(cid:21) (cid:20) (cid:18) i (cid:19)(cid:21) ) withrespecttoeachoftheparametersg and pi Thisnon-linearleastsquaresproblemcanbesolvedusingstandard k c numerical methods. Once fixed in this way, the parameters g now determine an equation of state, e = e (p,g ), k k thatprovidesanapproximatesolutiontotheinversestellarstructureproblem.Theaccuraciesofspectralexpansions typicallydecreaseexponentiallywiththenumberofparametersNg usedintheexpansion.Theexpectationisthatthe k approximateequationsofstateconstructedwiththisspectralapproachtotheinversestellarstructureproblemshould thereforeconvergerapidlytotherealequationofstateasthenumberofparametersg isincreased. k 5. SPECTRAL REPRESENTATIONS OFNEUTRON-STAR EQUATIONSOFSTATE The standard Oppenheimer-Volkoff representation of the stellar structure equations, (1) and (2), which use the pressure as the fundamental thermodynamic variable, is not actually the best form to use for numerical solutions (cf.Lindblom[3]).Foravarietyofreasonsitisbettertore-writethoseequationsintermsoftherelativisticenthalpy h,definedby p dp′ h(p) = , (6) 0 e (p′)+p′ Z insteadofthepressurep.Iwilldiscusssomeofthebenefitsoftheenthalpy-basedstellarstructureequationslaterinthis talk.Butletusfocusfirstontheproblemoffindingsuitableparametricenthalpy-basedrepresentationsoftheequation of state. The enthalpy-basedequation of state consists of the pair of functions, e =e (h) and p= p(h). The simple spectralexpansionsoftheseequationswouldhavetheformse (h,a )=(cid:229) a F (h)andp(h,b )=(cid:229) b F (h).These k k k k k k k k simpleexpansionshavetwoseriousdrawbacks.First,thespectralbasisfunctionsF (h)aretypicallyoscillatory,while k physicalequationsofstatemustbemonotonicallyincreasingfunctions.Whileitispossibletoexpresseverymonotonic functionusinganexpansionofthissort,doingsorequiresthatthespectralcoefficientssatisfyaverycomplicatedset ofinequalities.Theseconddrawbackisthattheseexpansionsofe (h)and p(h)requiretwosetsofparameters,while the original e (p) expansion considered previously required only one. These simple enthalpy based expansions are thereforeveryinefficient,whichmakestheminappropriateforourpurposes. Weneedfaithfulspectralrepresentationsoftheequationofstate.Faithfulrepresentationsinthiscontextmeansones whereeverychoiceofspectralparameterscorrespondsto a possiblephysicalequationof state, andconverselyones whereeveryphysicalequationofstatecanberepresentedbysomechoiceofspectralparameters(cf.Lindblom[4]). The simple spectral expansions proposed above are not faithful. It is not possible to represent the space of all monotonically increasing functions as all possible linear combinations of any choice of basis functions, because monotonic functions do not form a vector space. Faithful spectral expansions can, however, be constructed for the adiabaticindex,G (h),definedas G (h)= e +pdp =exp (cid:229) g F (h) . (7) p de k k " k # Monotonicityoftheequationofstateimpliesthattheadiabaticindexispositive,G (h)>0,butthereisnorequirement thatitmustalsobemonotonic.Anyspectralexpansionoftheformgiveninequation(7)isthereforefaithful. Unfortunately, the adiabatic index G (h) does not appear in the stellar structure equations, while e (h) and p(h) do. Fortunately, however, the adiabatic index G (h) determines both e (h) and p(h). The definitions of the enthalpy in equation(6), and the adiabatic indexin equation(7), can be written as the followingpair of ordinarydifferential equationsfore (h)and p(h): dp = e +p, (8) dh de (e +p)2 = . (9) dh pG (h) Given an adiabatic index, G (h), this first-order system of equations can be integrated exactly (cf. Lindblom [4]) to determineboth p(h)ande (h): heh′dh′ p(h) = p exp , (10) 0 "Zh0 m (h′)# eh−m (h) e (h) = p(h) , (11) m (h) m (h) = p0eh0 + hG (h′)−1eh′dh′, (12) e0+p0 Zh0 G (h′) whereh isthe lowerboundontherangeofenthalpiesoverwhichthe spectralexpansionisperformed,e =e (h ), 0 0 0 and p = p(h ). While theintegralsthatappearin equations(10)–(12)cannotgenerallybe doneanalytically,these 0 0 integralscan neverthelessbe donenumericallyveryefficiently.I havefoundthatthey can be evaluatednumerically withdoubleprecisionaccuracyusingGaussianquadratureusingonlytenortwelvecollocationpoints. Alltheequationsofstate,e (h,g )andp(h,g ),definedbyequations(10)–(12),usingtheadiabaticindexexpansion k k giveninequation(7)arefaithfulforanychoiceofbasisfunctions.Todeterminewhetherexpansionsofthistypeare efficientandpractical,Ihaveusedthemtoconstructspectralrepresentationsof34theoreticalneutron-starequations of state. These theoretical equation of state models are cataloged in Read, et al. [2], and referencesare given there to the original papers on which they are based. These theoretical equations of state are given as tables {p,e } for i i i=1,...,N ,fromwhichasetofcorrespondingh canbeevaluatedusingequation(6),onceasuitableinterpolation EOS i formula is adopted. These data were fit to these parametric equations of state, e = e (h,g ) and p = p(h,g ), by k k minimizingthequantityD EOS,definedby Ng k D EOS 2 = 1 N(cid:229)EOS log e (hi,g k) 2, (cid:16) Ngk (cid:17) NEOS i=1 (cid:26) (cid:20) ei (cid:21)(cid:27) withrespecttoeachofthespectralparametersg .Suchfitswereperformedusingseveralchoicesforthespectralbasis k functionsF (h). The following simple choice was found to be quite effective for a wide range of these theoretical k equationsofstate, G (h)=exp Ng(cid:229)k−1g log h k . (13) k h ( k=0 (cid:20) (cid:18) 0(cid:19)(cid:21) ) Thissimplepower-lawexpansionhasthereforebeenadoptedasthestandardtouseforenthalpy-basedrepresentations oftheequationofstate(cf.Lindblom[4]).TheresultsofthesefitsaresummarizedinTable1.Theseresultsshowthat only two or three spectral coefficients g are needed to produce representationsof these 34 theoretical neutron-star k TABLE1. Summariesof theaverageaccuraciesof the direct spectral fits to 34 theoretical equations of state.Theexamplesincludedinthistablearethebest case,PAL6,atypicalaveragecase,MS1,andtheworst case,BGN1H1.Alsolistedaretheaverageerrorsfor thespectralfitstoall34theoreticalequationsofstate. EOS D EOS D EOS D EOS D EOS 2 3 4 5 PAL6 0.0032 0.0016 0.0005 0.0002 MS1 0.0277 0.0055 0.0035 0.0003 BGN1H1 0.0868 0.0495 0.0439 0.0403 Average 0.0323 0.0166 0.0124 0.0089 equations of state with average errors of only a few percent errors over the entire range of densities that occur in the cores of neutron stars. Figure 6 illustrates in more detail the errors in these spectral equationsof state for three particular cases: PAL6, MS1 and BGN1H1. These three represent the equations of state having the best (PAL6), a typical average (MS1), and the worst (BGN1H1) spectral representations. These results show that even the worst case,theBGN1H1equationofstatewhichhasastrongphasetransitionwithintheneutron-stardensityrange,canbe representedfairlyaccuratelywithaspectralexpansionhavingonlyafewspectralcoefficients. FIGURE6. Accuraciesofthespectralrepresentationsofthreeofthetheoreticalneutron-starequationsofstate.Thesethreecases representtheequationsofstatewithspectralrepresentationshavingthebest(PAL6),theaverage(MS1),andtheworst(BGN1H1) accuracies. 6. SPECTRAL SOLUTION OFTHE INVERSE STELLAR STRUCTURE PROBLEM The standard Oppenheimer-Volkoff version of the relativistic stellar structure equations, (1) and (2), are not ideal fornumericalwork.The problemis thatthe rightside ofthe pressureequationvanishesas thesurfaceof thestar is approached.Theleadingorderterminthesolutionforthepressurep(r)nearthesurfacegoeslikep(cid:181) (R−r)G 0/(G 0−1), whereG isthesurfacevalueoftheadiabaticindex.Consequentlyitisverydifficulttosolve p(R)=0numericallyto 0 determinethelocationofthesurfaceofthestar.Thisproblemcanbeavoidedbyswitchingtotherelativisticenthalpy, hdefinedinequation(6),asthefundamentalthermodynamicvariable.Inthiscasethestructureequation(2)becomes dh 1 dp m+4p r3p(h) = =− . (14) dr e +p dr r(r−2m) Thisequationimpliesthattheleadingorderterminthesolutionfortheenthalpyh(r)goeslikeh(cid:181) (R−r)nearthe surface.Consequentlyitismucheasiernumericallytosolveh(R)=0todeterminethelocationofthesurfaceofthe starinthiscase. Equation (14) implies that the enthalpy h(r) is a monotonically decreasing function in any star. It is possible, therefore to transform the relativistic structure equations one more time by using h instead of r as the independent variable: dr r(r−2m) = − , (15) dh m+4p r3p(h) dm 4pe (h)r3(r−2m) = − . (16) dh m+4p r3p(h) Theboundaryconditionsfortheseequationsatthecenterofthestarwhereh=h arer(h )=m(h )=0.Thesolution c c c to these equations is a relativistic stellar model with the mass m(h) and radius r(h) expressed as functions of the enthalpy.Thisversionoftheequationshasseveraladvantagesfornumericalwork.First,therangeoftheindependent variableh ≥h≥0isfixedbeforetheintegrationbegins.Therefore,itisnotnecessarytohuntforthelocationofthe c surfacebytryingto solveh(R)=0onthe flyaspartof thesolutionprocess.Second,the surfacevaluesofthetotal massMandradiusRofthemodelaredeterminedsimplybyevaluatingthesolutionattheendpointoftheintegration where h=0: M =m(0) and R=r(0). The disadvantage to this approach is that the standard representation of the equationofstate,e =e (p)mustbetransformedintoapairoffunctionse =e (h)and p=p(h).Thiscanbedoneina straightforwardwaynumerically,usingthedefinitionoftheenthalpyinequation(6).Inpracticethisdisadvantageis notarealproblem. These enthalpy based representations of the stellar structure equations, (15) and (16), along with the enthalpy basedspectralrepresentationsoftheequationofstate,equations(10)–(13),canbesolvedtoevaluatethemacroscopic observablesM(h ,g )and R(h ,g ) accuratelyandefficiently.These observablesdependon the centralvalueof the c k c k enthalpyh inthesemodels(inmuchthesamewayasthestandardrepresentationsdependonthecentralpressurep ), c c alongwiththespectralparametersg thatspecifyaparticularequationofstate. k My collaboratorNathanielIndikandI haveusedthese techniquesto constructsolutionsto the relativistic inverse stellar structure problem [5, 6]. We compute the spectral coefficients g that determine the approximate solution to k the inversestellar structureproblembyminimizingthe quantity c (hi,g )thatmeasuresthe differencesbetweenthe c k model values of the observablesR(hi,g ) and M(hi,g ) and the data points {M,R} taken from the exact curve of c k c k i i observables: c 2(hi,g ) = 1 N(cid:229)stars log M(hci,g k) 2+ log R(hci,g k) 2 . (17) c k N M R stars i=1 ((cid:20) (cid:18) i (cid:19)(cid:21) (cid:20) (cid:18) i (cid:19)(cid:21) ) The quantity c (hi,g ) is minimized with respect to variations in the g , as well as the parameters hi that specify c k k c the centralvaluesof the enthalpiesin the stars with observables{R,M}. This minimization is accomplishedusing i i standardnumericalmethods. Wehavetestedthismethodbyconstructingsetsofmockobservables{R,M}basedonthe34theoreticalneutron i i star equations of state described earlier. For each equation of state, we select 2≤N ≤5 pairs of observables. stars Themassesofthesemockdataarechosentobeuniformlyspacedbetween1.2M (atypicalminimumastrophysical ⊙ neutron-starmass),andthemaximum-massmodelassociatedwiththatparticularequationofstate.Figure7illustrates thesemockdatapointsfortheN =5casesofthePAL6,theMS1andtheBGN1H1equationsofstate. stars Wethensolvetheinversestellarstructureproblembysolvingfortheparametersg andhi thatminimizec (hi,g ) k c c k forthedatasetsconsistingofN observabledatapairsfromeachofthe34theoreticalequationsofstate.Wetested stars theaccuracyoftheequationsof state determinedin thisway bycomparingtheresultingspectralmodelequationof statee (h,g )withthetabulatedexacttheoreticalequationofstate{p,e ,h}thatwasusedtoconstructthemockdata. k i i i WeevaluatethedifferencesbetweentheseusingtheaverageerrormeasureD MR definedby Ng k D MR 2 = 1 N(cid:229)EOS log e (hi,g k) 2. (18) (cid:16) Ngk(cid:17) NEOS i=1 (cid:26) (cid:20) ei (cid:21)(cid:27) TheseresultsaresummarizedinTable2.Theaverageerrorsinthespectralequationsofstatedeterminedbysolving the inverse stellar structure problem D MR are given in the left columns of Table 2. These error values, D MR, can Ng Ng k k be compared to those constructed earlier using direct spectral fits to the equation of state tables, D EOS, which are Ng k reproducedintherightcolumnsofTable2.Weseethattheaccuraciesoftheequationsofstatedeterminedbysolving the inverse stellar structure problem using spectral methods are somewhat less accurate than the optimal spectral fits to those equationsof state. This is not surprising. For the smoothest equationsof state however,like PAL6, the FIGURE7. Mockdataforthemassesandradii{Ri,Mi}wereselectedfromthemass-radiuscurvesofeachofthe34theoretical neutron-starequationsofstate.Shownherearethemass-radiuscurvesforthePAL6,MS1andtheBGN1H1equationsofstatewith theNstars=5datapointsselectedfromeachcurve.Mockdatawerechosentobeequallyspacedinmassbetween1.2M⊙(atypical minimumastrophysicalneutron-starmass)andthemaximummassmodelforeachparticularequationofstate. differencebetweentheinversestellarstructureequationofstateandtheonesdeterminedbydoingdirectspectralfits arenegligible.Evenforequationsofstatehavingsharpphasetransitions,likeBGN1H1,theerrorsintheinversestellar structureequationsofstateareonlyafewtimesworsethanthebestfits. TABLE 2. Accuracies of the equations of state determined by the spectral approach to the inversestellarstructureproblembasedonmass-radiusdata.Theexamplesincludedinthistable arethebestcase,PAL6,atypicalmediancase,MS1,andtheworstcase,BGN1H1.Alsolisted aretheaverageerrorsforall34theoreticalequationsofstate.TheaccuraciesfromTable1of thedirectspectralfitstotheseequationsofstatearealsolistedintherightcolumnsofthistable forcomparison. EOS D MR D MR D MR D MR D EOS D EOS D EOS D EOS 2 3 4 5 2 3 4 5 PAL6 0.0034 0.0018 0.0007 0.0003 0.0032 0.0016 0.0005 0.0002 MS1 0.0474 0.0157 0.0132 0.0009 0.0277 0.0055 0.0035 0.0003 BGN1H1 0.1352 0.1702 0.1356 0.1382 0.0868 0.0495 0.0439 0.0403 Average 0.0396 0.0289 0.0276 0.0239 0.0323 0.0166 0.0124 0.0089 The overall accuracies of the equations of state determined by solving the spectral version of the inverse stellar structureproblemarequiteimpressive.Theseequationsofstatecanbedeterminedusingspectralmethodswithaverage errorsofjust a fewpercentoverthe entire rangeof neutronstar densities,using (highquality)measurementsof the massesandradiiofjusttwoorthreeneutronstars.Eventheworstcase,anequationofstatewithasharpphasetransition intheneutron-stardensityrange,isdeterminedwithaccuracylevelsaround15%usinghighqualitymeasurementsof justafewmassesandradii.Figure8illustratesinmoredetailtheerrorsintheequationsofstateobtainedwithmock mass-radius data from the three equations of state PAL6, MS1 and BGN1H1. These error graphs are qualitatively similartothosedisplayedinFig.6forthedirectspectralfits. 7. INVERSESTELLAR STRUCTURE PROBLEMUSING TIDALDEFORMABILITIES Thediscussionoftheinversestellarstructureprobleminthistalkhasfocuseduptothispointondevelopinganuclear- physicsmodelindependentmethodforusingmass-radiusdatatodeterminetheequationofstateofneutronstarmatter. Theadvancesinobservationalmethodsoverthepastfewyearshasdramaticallyincreasedthenumberandqualityof theobservationsofneutronstarmassesandradii.Itseemslikelythattheseimprovementswillcontinue,andthatthese observationswilleventuallyprovidehighenoughqualitydatatodeterminetheequationofstatewithgoodaccuracy. Other types of observations can provide measurements of other neutron-star observables, and in many cases these observablescan also be used to solve the inversestellar structureproblem.InparticularFlanniganand Hinderer[7] havepointedout(andthishasbeenconfirmedbyanumberofothers,e.g.,Lackey,etal.,[8,9])thatthemassesand tidal deformabilitiesof neutronstars could be measured by observing the gravitationalwaveforms producedby the FIGURE8. Accuraciesofthespectralrepresentationsdeterminedbysolvingtheinversestellarstructureproblemusingmock mass-radius data fromthree of the theoretical neutron-star equations of state.These three casesrepresent theequations of state whosespectralrepresentationshavethebest(PAL6),theaverage(MS1),andtheworst(BGN1H1)accuracies. inspiralandmergersofneutron-starbinarysystems.InthislastpartofmytalkIwilldescribesomerecentwork(done incollaborationwithNathanielIndik)thattestshowwellthespectralapproachtotheinversestellarstructureproblem workswhenappliedto(ideal)massandtidaldeformabilitydata. Thetidaldeformability,L ,measurestheamountbywhichastardistortsitshapeinresponsetotheapplicationof a tidalforcefroma nearbystar (orblackhole).Thetidaldeformabilitydependsonthe equationof state of the star, and therefore its measurement can in principle be used to determine the equation of state of the stellar matter. For a givenequationofstate, the tidaldeformabilitycan becalculatedformodelstars usingmethodsfirst developedby Hinderer [10, 11], and then transformedinto the somewhat more efficient method described here by Lindblomand Indik[6].Thestellar structureequations,(15)and(16),aresolvedform(h)andr(h), togetherwitha thirdequation thatdeterminesafunctiony(h)whichdescribesthetimeindependentquadrapoledeformationsofarelativisticstar, dy (r−2m)(y+1)y (m−4p r3e )y 4p r3(5e +9p)−6r 4p r3(e +p)2 4(m+4p r3p) = +y+ + + − . (19) dh m+4p r3p m+4p r3p m+4p r3p pG (m+4p r3p) r−2m Theappropriateinitialconditionfory(h)atthecenterofthestar,h=h ,isy(h )=2.Afterthisintegration,thevalues c c oftheresultingfunctionsareevaluatedatthesurfaceofthestar,h=0,todeterminethequantitiesM=m(0),R=r(0), andY =y(0).The(dimensionless)tidaldeformabilityL isthendeterminedbytheexpression, 16 L (C,Y)= (1−2C)2[2+2C(Y−1)−Y], (20) 15X whereC=M/R,andX isgivenby X (C,Y) = 4C3[13−11Y+C(3Y−2)+2C2(1+Y)]+3(1−2C)2[2−Y+2C(Y−1)]log(1−2C) +2C[6−3Y+3C(5Y−8)]. (21) For a givenequationof state, the mass M(h ,g ) and tidaldeformabilityL (h ,g ) of a stellar modelwill depend c k c k on the central value of the enthalpy h as well as the parameters g that characterized the equation of state. Using c k thesamespectralapproachtotheinversestellarstructureproblemdescribedearlier,theseparameterscanbefixedby matchingthemodelobservables,{L (hi,g ),M(hi,g )},withdata{L ,M}fromtheexactcurveofmassesandtidal c k c k i i deformabilities.Asbefore,thismatchingisdonebyminimizingthequantity,c (hi,g ),definedby c k c 2(hi,g ) = 1 N(cid:229)stars log M(hci,g k) 2+ log L (hci,g k) 2 , (22) c k N M L stars i=1 ((cid:20) (cid:18) i (cid:19)(cid:21) (cid:20) (cid:18) i (cid:19)(cid:21) ) withrespectto variationsintheparametershi andg . Theresultingvaluesofg determineanequationofstatethat c k k servesasanapproximatesolutiontotheinversestellarstructureproblem.Theresultsofoursolutionstothisproblem

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.