ebook img

The random matrix theory of the classical compact groups PDF

224 Pages·2019·2.46 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The random matrix theory of the classical compact groups

THE RANDOM MATRIX THEORY OF THE CLASSICAL COMPACT GROUPS This is the first book to provide a comprehensive overview of foundational results and recent progress in the study of random matrices from the classi- cal compact groups, drawing on the subject’s deep connections to geometry, analysis, algebra, physics, and statistics. The book sets a foundation with an introduction to the groups themselves and six different constructions of Haar measure.Classicalandrecentresultsarethenpresentedinadigested,accessible form,includingthefollowing:resultsonthejointdistributionsoftheentries; anextensivetreatmentofeigenvaluedistributions,includingtheWeylintegra- tion formula, moment formulae, and limit theorems and large deviations for thespectralmeasures;concentrationofmeasurewithapplicationsbothwithin randommatrixtheoryandinhighdimensionalgeometry,suchastheJohnson– Lindenstrauss lemma and Dvoretzky’s theorem; and results on characteristic polynomialswithconnectionstotheRiemannzetafunction.Thisbookwillbe ausefulreferenceforresearchersinthearea,andanaccessibleintroductionfor studentsandresearchersinrelatedfields. elizabeth s. meckes is Professor of Mathematics at Case Western Reserve University. She is a mathematical probabilist specializing in random matrixtheoryanditsapplicationstootherareasofmathematics,physics,and statistics.ShereceivedherPhDfromStanfordUniversityin2006andreceived theAmericanInstituteofMathematicsfive-yearfellowship.Shehasalsobeen supported by the Clay Institute of Mathematics, the Simons Foundation, and the US National Science Foundation. She is the author of 24 research papers inmathematics,aswellasthetextbookLinearAlgebra,coauthoredwithMark MeckesandpublishedbyCambridgeUniversityPressin2018. CAMBRIDGE TRACTS IN MATHEMATICS GENERAL EDITORS B. BOLLOBÁS, W. FULTON, F. KIRWAN, P. SARNAK, B. SIMON, B. TOTARO Acompletelistofbooksintheseriescanbefoundatwww.cambridge.org/mathematics. Recenttitlesincludethefollowing: 183. PeriodDomainsoverFiniteandp-adicFields.ByJ.-F.Dat,S.Orlik,andM.Rapoport 184. AlgebraicTheories.ByJ.Adámek,J.Rosický,andE.M.Vitale 185. Rigidity in Higher Rank Abelian Group Actions I: Introduction and Cocycle Problem. ByA.Katok andV.Nit¸icaˇ 186. Dimensions,Embeddings,andAttractors.ByJ.C.Robinson 187. Convexity:AnAnalyticViewpoint.ByB.Simon 188. Modern Approaches to the Invariant Subspace Problem. By I. Chalendar and J.R.Partington 189. NonlinearPerron–FrobeniusTheory.ByB.Lemmens andR.Nussbaum 190. JordanStructuresinGeometryandAnalysis.ByC.-H.Chu 191. Malliavin Calculus for Lévy Processes and Infinite-Dimensional Brownian Motion. By H.Osswald 192. NormalApproximationswithMalliavinCalculus.ByI.Nourdin andG.Peccati 193. DistributionModuloOneandDiophantineApproximation.ByY.Bugeaud 194. MathematicsofTwo-DimensionalTurbulence.ByS.Kuksin andA.Shirikyan 195. AUniversalConstructionforGroupsActingFreelyonRealTrees.ByI.Chiswell and T.Müller 196. TheTheoryofHardy’sZ-Function.ByA.Ivic´ 197. InducedRepresentationsofLocallyCompactGroups.ByE.Kaniuth andK.F.Taylor 198. TopicsinCriticalPointTheory.ByK.Perera andM.Schechter 199. CombinatoricsofMinusculeRepresentations.ByR.M.Green 200. SingularitiesoftheMinimalModelProgram.ByJ.Kollár 201. CoherenceinThree-DimensionalCategoryTheory.ByN.Gurski 202. CanonicalRamseyTheoryonPolishSpaces.ByV.Kanovei,M.Sabok,andJ.Zapletal 203. A Primer on the Dirichlet Space. By O. El-Fallah, K. Kellay, J. Mashreghi, and T.Ransford 204. GroupCohomologyandAlgebraicCycles.ByB.Totaro 205. RidgeFunctions.ByA.Pinkus 206. ProbabilityonRealLieAlgebras.ByU.Franz andN.Privault 207. AuxiliaryPolynomialsinNumberTheory.ByD.Masser 208. RepresentationsofElementaryAbelianp-GroupsandVectorBundles.ByD.J.Benson 209. Non-homogeneousRandomWalks.ByM.Menshikov,S.Popov andA.Wade 210. FourierIntegralsinClassicalAnalysis(SecondEdition).ByC.D.Sogge 211. Eigenvalues,MultiplicitiesandGraphs.ByC.R.Johnson andC.M.Saiago 212. Applications of Diophantine Approximation to Integral Points and Transcendence. By P.Corvaja andU.Zannier 213. VariationsonaThemeofBorel.ByS.Weinberger 214. TheMathieuGroups.ByA.A.Ivanov 215. SlendernessI:Foundations.ByR.Dimitric 216. JustificationLogic.ByS.Artemov andM.Fitting 217. DefocusingNonlinearSchrödingerEquations.ByB.Dodson 218. TheRandomMatrixTheoryoftheClassicalCompactGroups.ByE.S.Meckes The Random Matrix Theory of the Classical Compact Groups Cambridge Tracts in Mathematics 218 ELIZABETH S. MECKES CaseWesternReserveUniversity UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre, NewDelhi–110025,India 79AnsonRoad,#06–04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781108419529 DOI:10.1017/9781108303453 ©ElizabethS.Meckes2019 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2019 PrintedintheUnitedKingdombyTJInternationalLtd.,Padstow,Cornwall AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. LibraryofCongressCataloging-in-PublicationData Names:Meckes,ElizabethS.,author. Title:Therandommatrixtheoryoftheclassicalcompactgroups/ ElizabethMeckes(CaseWesternReserveUniversity). Description:Cambridge;NewYork,NY:CambridgeUniversityPress,2019.| Series:Cambridgetractsinmathematics;218| Includesbibliographicalreferencesandindex. Identifiers:LCCN2019006045|ISBN9781108419529(hardback:alk.paper) Subjects:LCSH:Randommatrices.|Matrices. Classification:LCCQA196.5.M432019|DDC512.9/434–dc23 LCrecordavailableathttps://lccn.loc.gov/2019006045 ISBN978-1-108-41952-9Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. ImagebySwallowtailGardenSeeds Contents Preface pageix 1 HaarMeasureontheClassicalCompactMatrixGroups 1 1.1 TheClassicalCompactMatrixGroups 1 1.2 HaarMeasure 7 1.3 LieGroupStructureandCharacterTheory 17 2 DistributionoftheEntries 31 2.1 Introduction 31 2.2 TheDensityofaPrincipalSubmatrix 38 2.3 HowMuchIsaHaarMatrixLikeaGaussianMatrix? 42 2.4 ArbitraryProjections 53 3 EigenvalueDistributions:ExactFormulas 60 3.1 TheWeylIntegrationFormula 60 3.2 DeterminantalPointProcesses 71 3.3 MatrixMoments 80 3.4 PatternsinEigenvalues:PowersofRandomMatrices 85 4 EigenvalueDistributions:Asymptotics 90 4.1 TheEigenvalueCountingFunction 90 4.2 TheEmpiricalSpectralMeasureandLinear EigenvalueStatistics 106 4.3 PatternsinEigenvalues:Self-Similarity 113 4.4 LargeDeviationsfortheEmpiricalSpectralMeasure 117 5 ConcentrationofMeasure 131 5.1 TheConcentrationofMeasurePhenomenon 131 5.2 LogarithmicSobolevInequalitiesandConcentration 133 vii viii Contents 5.3 TheBakry–ÉmeryCriterionandConcentrationforthe ClassicalCompactGroups 141 5.4 ConcentrationoftheSpectralMeasure 153 6 GeometricApplicationsofMeasureConcentration 161 6.1 TheJohnson–LindenstraussLemma 161 6.2 Dvoretzky’sTheorem 165 6.3 AMeasure-TheoreticDvoretzkyTheorem 170 7 CharacteristicPolynomialsandConnectionstotheRiemann ζ-function 181 7.1 Two-PointCorrelationsandMontgomery’sConjecture 181 7.2 TheZetaFunctionandCharacteristicPolynomials ofRandomUnitaryMatrices 186 7.3 NumericalandStatisticalWork 197 References 205 Index 212 Preface This book grew out of lecture notes from a mini-course I gave at the 2014 WomenandMathematicsprogramattheInstituteforAdvancedStudy.When askedtoprovidebackgroundreadingfortheparticipants,Ifoundmyselfata bit of a loss; while there are many excellent books that give some treatment of Haar distributed random matrices, there was no single source that gave a broad,andbroadlyaccessible,introductiontothesubjectinitsownright.My goalhasbeentofillthisgap:togiveanintroductiontothetheoryofrandom orthogonal,unitary,andsymplecticmatricesthatapproachesthesubjectfrom manyangles,includesthemostimportantresultsthatanyonelookingtolearn aboutthesubjectshouldknow,andtellsacoherentstorythatallowsthebeauty ofthismany-facetedsubjecttoshinethrough. The book begins with a very brief introduction to the orthogonal, unitary, andsymplecticgroups–justenoughtogetstartedtalkingaboutHaarmeasure. Section 1.2 includes six different constructions of Haar measure on the clas- sicalgroups;Chapter1alsocontainssomefurtherinformationonthegroups, includingsomebasicaspectsoftheirstructureasLiegroups,identificationof theLiealgebras,anintroductiontorepresentationtheory,anddiscussionofthe characters. Chapter2isaboutthejointdistributionoftheentriesofaHaar-distributed randommatrix.ThefactthatindividualentriesareapproximatelyGaussianis classical and goes back to the late nineteenth century. This chapter includes modern results on the joint distribution of the entries in various senses: total variation approximation of principal submatrices by Gaussian matrices, in- probabilityapproximationof(muchlarger)submatricesbyGaussianmatrices, andatreatmentofarbitraryprojectionsofHaarmeasureviaStein’smethod. Chapters 3 and 4 deal with the eigenvalues. Chapter 3 is all about exact formulas: the Weyl integration formulas, the structure of the eigenvalue pro- cesses as determinantal point processes with explicit kernels, exact formulas ix x Preface due to Diaconis and Shahshahani for the matrix moments, and an interesting decomposition(duetoEricRains)ofthedistributionofeigenvaluesofpowers ofrandommatrices. Chapter4dealswithasymptoticsfortheeigenvaluesoflargematrices:the sinekernelmicroscopicscalinglimit,limittheoremsfortheempiricalspectral measures and linear eigenvalue statistics, large deviations for the empirical spectralmeasures,andaninterestingself-similaritypropertyoftheeigenvalue distribution. Chapters 5 and 6 are where this project began: concentration of measure on the classical compact groups, with applications in geometry. Chapter 5 introducesthe concept of concentration of measure, the connection with log- Sobolev inequalities, and derivations of optimal (at least up to constants) log-Sobolev constants. The final section contains concentration inequalities fortheempiricalspectralmeasuresofrandomunitarymatrices. Chapter6hassomeparticularlyimpressiveapplicationsofmeasureconcen- trationontheclassicalgroupstohigh-dimensionalgeometry.First,aproofof thecelebratedJohnson–Lindenstrausslemmaviaconcentrationofmeasureon theorthogonalgroup,witha(verybrief)discussionoftheroleofthelemmain randomizedalgorithms.ThesecondsectionisdevotedtoaproofofDvoretzky’s theorem,viaconcentrationofmeasureontheunitarygroup.Thefinalsection givestheproofofa“measure-theoretic”Dvoretzkytheorem,showingthat,sub- jecttosomemildconstraints,mostmarginalsofhigh-dimensionalprobability measuresareclosetoGaussian. Finally,chapter7givesatasteoftheintriguingconnectionbetweeneigenval- uesofrandomunitarymatricesandzerosoftheRiemannzetafunction.There isasectiononMontgomery’stheoremandconjectureonpaircorrelationsand oneontheresultsofKeatingandSnaithonthecharacteristicpolynomialofa randomunitarymatrix,whichledthemtoexcitingnewconjecturesonthezeta side.Somenumericalevidence(andstrikingpictures)ispresented. Haar-distributedrandommatricesappearandplayimportantrolesinawide spectrumofsubfieldsofmathematics,physics,andstatistics,anditwouldnever havebeenpossibletomentionthemall.Ihaveusedtheend-of-chapternotesin parttogivepointerstosomeinterestingtopicsandconnectionsthatIhavenot included,anddoubtlesstherearemanymorethatIdidnotmentionatall.Ihave triedtomakethebookaccessibletoareaderwithanundergraduatebackground in mathematics generally, with a bit more in probability (e.g., comfort with measuretheorywouldbegood).Butbecausetherandommatrixtheoryofthe classical compact groups touches on so many diverse areas of mathematics, it has been my assumption in writing this book that most readers will not be familiarwithallofthebackgroundthatcomesup.Ihavedonemybesttogive accessible, bottom-line introductions to the areas I thought were most likely

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.