Mon.Not.R.Astron.Soc.000,000–000(0000) Printed20January2012 (MNLATEXstylefilev2.2) The radio spectra of reddened 2MASS QSOs: evidence for young radio jets A. Georgakakis2,1(cid:63), M. Grossi3,4, J. Afonso3,4, A. M. Hopkins5 1NationalObservatoryofAthens,I.Metaxa&V.Paulou,Athens15236,Greece 2Max-Planck-Institutfu¨rextraterrestrischePhysik,Giessenbachstrasse1,D-85748,GarchingbeiMu¨nchen,Germany 2 3Observato´rioAstrono´micodeLisboa,FaculdadedeCieˆncias,UniversidadedeLisboa,TapadadaAjuda,1349-018Lisbon,Portugal 1 4CentrodeAstronomiaeAstrof´ısicadaUniversidadedeLisboa,Lisbon,Portugal 0 5AustralianAstronomicalObservatory,P.O.Box296,Epping,NSW1710,Australia 2 n a J 20January2012 8 1 ABSTRACT ] Multifrequency radio continuum observations (1.4-22GHz) of a sample of reddened QSOs E arepresented.Wefindahighincidence(13/16)ofradiospectralproperties,suchaslowfre- H quencyturnovers,highfrequencyspectralbreaksorsteeppower-lawslopes,similartothose h. observed in powerful compact steep spectrum (CSS) and gigahertz-peaked spectrum (GPS) p sources. The radio data are consistent with relatively young radio jets with synchotron ages - <106−107yr.Thiscalculationislimitedbythelackofhighresolution(milli-arcsec)radio o ∼ observations. For the one source in the sample that such data are available a much younger r t radioageisdetermined, <2×103yr,similartothoseofGPS/CSSsources.Thesefindings s ∼ a areconsistentwithclaimsthatreddenedQSOsareyoungsystemscapturedatthefirststages [ of the growth of their supermassive black holes. It also suggests that expanding radio lobes maybeanimportantfeedbackmodeattheearlystagesoftheevolutionofAGN. 1 v Key words: galaxies: active – galaxies: quasars: general – galaxies: jets – ISM: jets and 2 outflows–radiocontinuum:general 2 9 3 . 1 0 1 INTRODUCTION and stars form almost simultaneously as the result of gas inflows 2 triggeredbyeithermajormergers(e.g.Springeletal.2005),disk Inthelastfewyearsanincreasingbodyofobservationspointstoan 1 instabilities (Hopkins & Quataert 2010; Bournaud et al. 2011) or intimaterelationbetweentheformationofgalaxiesandthegrowth : shocks in recycled gas from the winds of evolved stars (Ciotti & v ofthesupermassiveblackholes(SMBH)attheircentres(e.g.Fer- Ostriker2007).TheearlystagesofSMBHgrowthinallthosemod- i rarese & Merritt 2000; Gebhardt et al. 2000). The nature of the X elstakeplacebehinddustandgascocoons,whichatlatertimesare interplaybetweenthetwocomponentsisstillnotwellunderstood, r blownawaybysomeformofAGNrelatedfeedbackmechanism. althoughimportantforunderstandingboththestar-formationand a Thisallowsthecentralenginetoshineunobscuredforashortpe- accretionhistoryoftheUniverse. riodoftime,beforeitrunsoutoffuelandswitchesoffitself. The large energy output of QSOs relative to the binding en- ergyoftheirhosts(e.g.Silk&Rees1998)andthestrongoutflows Thisgenericevolutionaryscheme,firstputforwardbySanders observedinmanyofthesesystems(e.g.Reichardetal.2003),moti- etal.(1988),hasbeenshowntobeinbroadagreementwithobser- vatedanalyticalcalculationswhichproposedAGNfeedbackasthe vationsofAGNandgalaxies(e.g.Hopkinsetal.2008;Degrafetal. link between the formation of SMBH and the assembly galaxies 2010, 2011). Nevertheless many of the details remain to be fully (Silk&Rees1998;Fabian1999;King2003,2005).Thesestudies understood.Anumberofstudiesforexample,debatetheroleand suggestthattheenergyreleasedbythecentralenginehasastrong relativeimportanceofdifferentfeedbackmodes,e.gphotoionisa- impactontheinterstellarmediumtherebyaffectingtheevolution- tion,radiationpressure,bubbles,windsorjets(e.gHambricketal. ary path of the host galaxy. These results are broadly supported 2011,andreferencestherein).Hopkins&Elvis(2010)proposea by numerical simulations, which assume various AGN feedback twostagefeedbackscheme,inwhichAGNfirstdriveoutflowsin mechanisms and different conditions under which SMBH grow thehot/warmISM,whichinturnaffectcoldgascloudsbydeform- (e.g.DiMatteoetal.2005;Debuhretal.2010,2011).Thegeneral ingthemandhencesubstantiallyincreasingtheircrosssectionto picture emerging from the numerical simulations is that SMBHs ionisationandradiationpressurefromthecentralengine.Theover- alleffectofthisscenarioisareductionbyalmost1dexinthefrac- tionoftheAGNenergythatneedstobedepositedtotheISMto (cid:63) email:[email protected] expelthegasofthehostgalaxyandregulatetheformationofstars. (cid:13)c 0000RAS 2 Georgakakisetal. Recentstudiesalsohighlighttheefficiencyofstarburstsfordeplet- 2 OBSERVATIONS ingthenucleargasreservoirsofgalaxymergers,therebysubstan- The reddened QSOs followed with radio continuum observations tiallyrelaxingtherequirementsforAGNfeedbackforquenching at the VLA and EVLA are selected from the samples of Urrutia star-formation(e.g.Cen2011;Hopkins2011). et al. (2009) and Georgakakis et al. (2009). These studies com- bined the 2MASS in the near-infrared and the Sloan Digital Sky AGNcapturedatanearlystageoftheirevolution,whenfeed- Survey(SDSS)intheopticaltoselectsourceswithredoptical/near- back processes are expected to be close to their peak, are excel- infraredcolours(i.e.R−K >5,J −K >1.3maginUrrutiaet lent laboratories for testing these ideas and advancing our under- al.2009;R−K >5,J−K>2maginGeorgakakisetal.2009). ∼ standing on the interplay between the formation of SMBH and The sample of Urrutia et al. (2009) also includes pre-selection theirhosts.ReddenedQSOs,firstidentifiedin2MASS(TwoMi- of 2MASS sources with radio counterparts in the FIRST survey cronAllSkySurvey;Cutrietal.2001;Wilkesetal.2002;White (Faint Images of the Radio Sky at Twenty-Centimeters, Becker etal.2003;Glikmanetal.2007),arebelievedtorepresentyoung etal.1995).The2MASSreddenedQSOstargetedbyourVLAand AGN.Keypropertiesofthispopulationwhichareconsistentwith EVLAprogrammesarelistedinTables1and2respectively.They theyouthscenarioinclude(i)redcontinuamostlikelyassociated areselectedtohaveradio(1.4GHz)fluxdensitiesS >5mJyin 1.4∼ withdustinthehostgalaxy(e.gWhiteetal.2003;Glikmanetal. theFIRSTsurvey. 2007;Urrutiaetal.2009;Georgakakisetal.2009),(ii)ahighin- cidenceofmorphologicaldisturbancessuggestiveofrecentmerg- ers (Urrutia et al. 2008), (iii) optical spectroscopic signatures for fastoutflowsinthewarmphaseoftheinterstellarmedium(Urrutia 2.1 VLAdata etal.2009),(iv)enhancedstar-formationratesrelativetoUVbright QSOs(Georgakakisetal.2009).Allthesefindingsareconsistent Multi-frequency (1.4, 4.85, 8.4 and 22GHz) simultaneous obser- withthescenariothatreddenedQSOsareobservedshortlybefore vations of the sources listed in Table 1 were carried out at the orduringtheblow-outoftheirnatalcocoonofdustandgas,i.e.at VLAinsnapshotmodebetweenMayandAugust2009.TheVLA thestagewhereAGNfeedbackisclosetoitspeak. configurationschangedduringthatperiodfromCnBtoC.Targets 2MASSQSO10,F2MS0832+050,F2MS0932+385wereobserved intheCnBconfigurationwiththeremainderobservedintheCcon- InGeorgakakisetal.(2009)ahigherradiodetectionratewas figuration.ThedwelltimeintheL(1.4GHz),C(4.85GHz)andX foundforreddenedQSOscomparedtoUVbrightones.First,this (8.4GHz)bandswas30s.Thetargetswerebracketedbyobserva- suggeststhatexpandingradiolobesmayplayanimportantroleat tionsinthesamefrequencyofanearby(< 10deg)phasecalibra- theearlystagesofSMBHgrowth.Second,bydeterminingthesyn- tor. In the K-band (22GHz) fast switching phase calibration was chrotronageoftheelectronpopulationresponsibleforthejetsone used to minimise phase variations. A cycle time of 100 seconds cansetadditionalindependentconstraintstotheyouthscenariofor (70seconsource,30seconcalibrator)andadwelltimeof5min reddenedQSOs.Thetypicalcharacteristicsofyoungradiosources wasadopted.ObservationsintheK-bandwereprecededbypoint- are compact radio sizes (less than few tens of kpc), radio spec- ing observations in the X-band of the secondary calibrator. This tra which show a turnover at low frequencies (attributed to syn- istominimisepointingerrorswhichcansignificantlydegradethe chrotron self-absorption or free-free absorption) and/or a double sensitivity in the K-band as the a priori pointing can be off by a power-lawdistributionwithrelativelyflatpower-lawslopeatcen- largefractionoftheprimarybeaminthatband.Primaryfluxcali- timetrewavelengths(α≈0.7,wherethefluxdensityatfrequency brators(3C147or3C286)wereobservedinallbandsatthebegin- ν is S ∝ ν−α) followed by a steepening at higher frequencies ν ning of the multifrequency observations sequence of each target. (O’Dea1998).Inthestandardtheoryofsynchrotronemissionfrom SourceF2MS1618+350andF2MS1540+492lack1.4GHzobser- expanding lobes (Kardashev 1962), spectral indices steeper than vations,whileF2MS1615+031hasnotbeenobservedat22GHz. the canonical value of 0.7 are attributed to spectral aging. In this ThedatawerereducedusingtheAstronomicalImageProcess- picture the break frequency, at which the slope of the power-law ing System (AIPS) maintained by NRAO and following standard spectrumsteepens,decreaseswiththetimeelapsedsincethefor- reduction procedures. The secondary flux calibrators close to the mationofthesourceasν ∝t−2.Theshapeoftheradiospectrum br targetswereusedtotrackgainsandphasesofeachantenna.The canthereforeconstraintheageofthejet. calibration solutions have been derived with the task CALIB and they have been applied to the targets with the task CLCAL. The ThispaperpresentsVLA(VeryLargeArray)andEVLA(Ex- Kbanddatawereself-calibratedusingstandardprocedurestoim- pandedVeryLargeArray)continuumobservationsinthefrequency prove the image dynamic range and reduce the noise level. Typ- range1.4-22GHzofreddened QSOsselectedfromthe literature. ically one iteration of phase-only self-calibration was performed. This multifrequency dataset is used to (i) constrain the overall FinallythetaskIMAGR,whichincludesthealgorithmCLEAN,was shapeoftheradiospectraofreddenedQSOstosearchforfeatures usedtodeconvolvetheimages. indicativeofyoungradiojets(e.g.spectralbreaks,lowfrequency Thefinalimagesnoiselevelsrangefrom0.3to0.8mJy/beam turnovers) and (ii) estimate the break frequency ν to use it as (L band), 0.2 to 0.3 mJy/beam (C and X bands) and 0.3 to 0.5 br anageindicator.Additionallybyconstrainingtheradiospectraof mJy/beam (K band). The Gaussian restoring beam FWHM (Full reddenedQSOsonecanplacetheminthecontextofthepopula- WidthHalfMaximum)variesforeachsetofobservationsateach tionofcompactsteepspectrum(CSS)andgigahertz-peakedspec- band.Thetypicalbeamsizesareapproximately19(cid:48)(cid:48)×15(cid:48)(cid:48),5(cid:48)(cid:48)×4(cid:48)(cid:48), trum(GPS)radiosources.Theseobjectsareproposedtohostyoung 3(cid:48)(cid:48)×2(cid:48)(cid:48)and1(cid:48)(cid:48)×0(cid:48).(cid:48)8,at1.4,4.8,8.4and22GHzrespectively.The andexpandingradiolobes(e.g.O’Dea1998;Murgiaetal.1999), linearextentofthebeamsizeofthehighestspatialresolutionradio whicharelikelytohaveastrongimpactontheISMoftheirpar- image(22GHzandifnotavailable8GHz)attheredshiftofeach entgalaxies(e.g.Holtetal.2011).Throughoutthepaperweadopt sourceislistedinTable1.Fluxdensitieshavebeenmeasuredby H =70kms−1Mpc−1,Ω =0.3andΩ =0.7. fitting Gaussians to the source profiles, using the AIPS task JM- 0 M Λ (cid:13)c 0000RAS,MNRAS000,000–000 Youngradiosourcesin2MASSQSOs 3 FIT.TheresultsarepresentedinTable1.Thattablealsoliststhe isbecauseofthewideseparationofthecentralfrequenciesofthe rest-frame5GHzradiopowerofeachreddenedQSO. two IF bands (1348 and 1860MHz). The results are presented in For sources F2MS1540+492, F2MS1618+350, which lack Table2.Thattablealsoliststherest-frame5GHzradiopowerof 1.4GHzobservationsinourVLAprogram,weusethe1.4GHzflux eachreddenedQSO. densitiesestimatedbytheFIRSTandGlikmanetal.(2007)respec- Source F2MS0841+3604 has not been observed in the X- tively.ForsourceF2MS1618+350theFIRSTandGlikmanetal. band.AlsotechnicalproblemsaffectedtheL-bandobservationsof (2007)1.4GHzfluxdensitiesdifferbyafactorofabout2.Thisdis- F2MS0841+3604, F2MS0915+2418, F2MS1456+0114. As a re- crepancymaybebecauseofvariability,extendedemissionwhichis sult it was not possible to obtain reliable measurements at either resolvedoutbytheFIRSTdataorcalibrationproblems.Ourdataat 1.3GHzor1.8GHz.ForthosesourcestheFIRSTradiofluxden- higherfrequencies(4.8,8.4,22GHz)donotshowextendedradio sityat1.4GHzisadopted(seeTable2). emission.Glikmanetal.(2007)havealsodeterminedthe8.4GHz fluxdensityofF2MS1618+350,whichisingoodagreementwith ourestimate.Thissuggeststhatanybiasesbecauseofsourcevari- 3 RADIOSPECTRAOF2MASSQSOS abilitybetweenthetwoobservationepochsaresmall.Wetherefore choose to use the Glikman et al. (2007) 1.4GHz flux density for TheradioSpectralEnergyDistributions(SEDs)of2MASSQSOs F2MS1618+350. It is noted that for the majority of our sample areshowninFigure1.Table3presentstheradiospectralindices sourcesthe1.4GHzdensitiesestimatedbyFIRSTandourobser- α , α between the frequencies 1.4/4.8GHz 1.4−4.8GHz 8.4−22GHz vationstypicallyagreewithinabout30percent. and 8.0/22GHz respectively, which provide a model independent Also,allsamplesources,exceptF2MS1618+3502,areunre- wayofinvestigatingspectralfeaturescharacteristicofyoungjets, solved in the FIRST or our VLA observations, suggesting sizes e.g.spectralbreaksand/orturnovers.Dependingontheradiospec- smaller than a few arcseconds. Source F2MS1618+3502 shows tralindexatlowandhighfrequenciesandtheoverallshapeofthe two jets extending out to about 20arcsec (115kpc) from a radio SEDsinFigure1thesourcesinthesamplecanbegroupedinto3 brightcore.Another2MASSQSOsinTable1,F2MS1030+5806, broadcategories.Therearespectraforwhichtheradiofluxdensity hasbeenobservedatmilli-arcsecresolutionat5GHz.Thedataare (i)declinesmonotonicallywithincreasingfrequency,(ii)showsa fromtheVLBAImagingandPolarizationSurvey(VIPS)presented peak at GHz frequencies and decreases at both lower and higher byHelmboldtetal.(2007).Thissourcehasaverycompactradio frequencies, (iii) remains nearly constant in the frequency range morphologywithasmallscale(fewmilli-arcsec)radiojetwithlin- 1.4–22GHzandcannotbeplacedintooneofcategoriesabove.The earsizeattheredshiftofthesourceofabout100pc. classificationschemeaboveisshowninTable3.Class(iii)sources have radio spectra suggestive of free-free thermal emission typi- callyfoundatQSOcores. 2.2 EVLAdata TheradioSEDsofgroup(i)canbedescribedbyeitherasingle The EVLA data were obtained in snapshot mode at the L, C, X, oradoublepower-law.Thedataarefirstfitwithsinglepower-law and K bands between the 13th and the 30th of May 2010, in the modeloftheformS ∝ ν−α,whereαisthespectralindex.The ν Dconfiguration.Observationswerecarriedoutintwocontiguous, standard χ2 minimisation method is adopted for the fits. For the 128-MHzIFbands,eachdividedinto64channels,andcentredat calculationoftheχ2weaddtotheformaluncertaintiesdetermined 1348and1860MHz(L-band),4896and5024MHz(C-band),8396 bytheJMFITofAIPSlistedinTables1and2anerrorcorrespond- and8524MHz(X-band),22396and22524GHz(K-band).Obser- ingto5percentofthetotalflux.Thisistoaccountforuncertainties vationsat22GHzhavebeencarriedoutinthefastswitchingphase intheoverallcalibrationoftheradioobservations.Thegoodnessof calibrationmodetominimisephasevariations. fitofthemodelisdeterminedbyestimatingtheprobability,P , SPL The EVLA data were reduced using the Common Astron- ofgettingbychancethecalculatedχ2forthegivendegreesoffree- omySoftwareApplications(CASA)packagerelease3.0.2,main- dom(typically2).Wechoosetorejectthesinglepower-lawmodel tainedbyNRAOandfollowingthestandardreductionprocedure. ifP <0.05.TheresultsareshowninTable3. SPL Bandpass and flux density calibration were performed using the Sourcesforwhichthesinglepower-lawmodeldoesnotpro- primaryfluxcalibratorsclosetothetargets(3C147,3C286).The videagoodfittothedataarealsofitwithadoublepower-law.The amplitudescalewassetaccordingtothePerley-Butlercoefficients continuous injection model with no adiabatic losses (Kardashev derived from recent measurements at the EVLA. Amplitude and 1962) is adopted. In this case the spectral indices are α (with inj phase gains were derived for all calibrator sources, with the task a canonical value of about 0.7) below the break frequency (ν ) br GAINCAL,andtheyhavebeenappliedtothetargetswiththetask andα ≈ α +0.5aboveν .Thismodelwaschosenbecause inj br APPLYCAL, while the final images were produced with the task it fits well the spectra of GPS/CCS sources (Murgia et al. 1999; CLEANusingaBriggsweighting.TheEVLAK-banddatadidnot Murgia 2003). The model has 3 free parameters (ν , α , nor- br inj needtobeself-calibrated. malisation)andrequiresatleast4pointsintheradioSED.Source The final images noise levels range in the intervals FM2S1618+3502, which shows evidence for a spectral break in 0.3-1mJy/beam (L-band), 0.2-0.3 mJy/beam (C-band), 0.1-0.2 its radio SED, is not detected at 22GHz. We choose not to fit mJy/beam(X-band)and0.06-0.2mJy/beam(K-band).TheGaus- thissourcewiththedoublepower-lawmodeldescribedabove.The sianrestoringbeamFWHMslightlyvariesforeachsetofobserva- best-fitparametersvalues,minimumχ2andtheprobabilitiesofthe tionsateachband.Thetypicalbeamsizeis1.(cid:48)2×0.(cid:48)8,20(cid:48)(cid:48)×14(cid:48)(cid:48), goodness of fit, P , are listed in Table 3. The continuous in- DPL 11(cid:48)(cid:48)×9(cid:48)(cid:48),4(cid:48)(cid:48)×3(cid:48)(cid:48),fortheL,C,XandKband,respectively.The jectionmodeltypicallyprovidesadequatefitstotheradiospectra linearextentofthebeamsizeat22GHz(highestspatialresolution) of2MASSQSOswithα ≈ 0.4−0.8andν ≈ 4−7GHz. inj br attheredshiftofeachsourceislistedinTable2.Fluxdensitieshave OneexceptionsissourceF2MS1341+3301forwhichthesteepen- beenmeasuredbyfittingGaussianstothesourceprofiles,usingthe ing of the spectrum at high frequencies is more pronounced than task IMFIT. In the L-band we chose to produce two independent thatassumedbythecontinuousinjectionmodel(α≈α +0.5). inj images,oneforeachIFunit,insteadofcombiningthedata.This Ouranalysisshowsthatmorethanhalfofthesourcesinthe (cid:13)c 0000RAS,MNRAS000,000–000 4 Georgakakisetal. sample (9/16) show deviations from the single power-law SED modelandtheirradiospectracanbebetterdescribedby(i)adouble power-lawwithasteeperhighfrequencyindexor(ii)aturnoverat lowfrequencies.Thesepropertiesareconsistentwiththoseofpow- erful(P >1027W/Hz)GPSsources(e.g.O’Dea1998,Mur- 5GHz∼ giaetal.1999,2003,Randalletal.2011).Thispopulationisalso characterisedbycompactradiosizes,typically <1kpc(O’Deaet ∼ al.1998).Theradiodatapresentedinthispapersetonlyweaklim- its on the physical extent of the radio jets. All reddened QSOs with GPS radio spectral characteristics appear unresolved in the VLA/EVLAimages.Attheresolutionofthoseobservations(≈ 1 and4arcsecat22GHzrespectively)theupperlimitsonthesizeof theradioemittingregionareintherange5-30kpc(seeTables1and 2).Withthepresentdatasetitisthereforenotpossibletocomment onthecompactnessoftheradiosourcesof2MASSQSOsrelative toGPSsources. ForthereddenedQSOsinthesamplethatcanbedescribedby asinglepower-law(4/16)ouranalysisyieldssteepspectralslopes, α ≈ 1.ThesesourcesarealsounresolvedintheVLA/EVLAim- agesindicatingradiosizeupperlimits <30kpc(seeTables1and ∼ 2).BoththesepropertiesaresimilartothoseofCSSsourceswhich showsteepradiospectraandaretypicallyconfinedwithintheex- Figure2.Radio(5GHz)powerdistributionforGPS/CSSsources(O’Dea tentoftheirhostgalaxies(O’Dea1998;Randalletal.2011). &Baum1997;toppanel),reddenedQSOs(middlepanel)andradioexcess IRAS galaxies (Drake et al. 2004a; bottom panel). The radio powers of We conclude that the majority of reddened QSOs studied in GPS/CSSarefromO’Dea&Baum(1997).ForradioexcessIRASgalaxies this paper (13/16) have radio spectral properties typical to those ofpowerful(P >1027W/Hz)GPS/CSSsources,whichare theradiomultifrequencyradiodatapresentedbyDrakeetal.(2004a)are 5GHz∼ usedtointerpolateandestimatetherest-frame5GHzradiopower.Thesame believed to host young and expanding radio jets. This is interest- approachisusedforreddenedQSOs. ing because at bright fluxes the GPS/CSS population represents onlyabout20-30percentofradioselectedsamples(O’Deaetal. 1998). We caution however, that this fraction has not been deter- forazeroageelectronpopulation(Kardashev1962).Thereforethe minedforQSOswithradioemissionatthemJyfluxdensitylevels breakfrequencyforthisobjectlikelyliesabove22GHzattheob- ofthepresentsample. server’s frame. The radio spectrum of F2MS1030+5806 shows a For those 2MASS QSOs for which the continuous injection turnover below about 5GHz and therefore cannot be fit with the modelprovidesadequatefitstotheirradiospectra,thebreakfre- continuous injection model. However, the spectral index of this quency,νbreak,listedinTable3canbeusedtoestimatetheirsyn- sourceathighfrequenciesisα8.4−22GHz = 0.52±0.01,closeto chrotronages(e.g.Murgiaetal.1999;Drakeetal.2004a) thecanonicalsynchrotronslopeandsimilartotheinjectionslopes (cid:104) (cid:105) estimatedinTable3forothers2MASSQSOswithspectrabetter t =0.045B−3/2 ν (1+z) , (1) syn br describedbythecontinuousinjectionmodel.Itisthuslikelythat ν >22GHzforthissource. where B is the magnetic field and z the source redshift. For this br Theupperlimitsofthesynchrotronagesof2MASSQSOsare calculationwewillassumetheequipartitionvalueforthemagnetic typicallyoftheorderoffew106yrs.Forcomparisonextendedra- field(e.g.Pacholczyk1970;Duric1991) diogalaxiestypicallyhavet ≈107−108yrs(e.g.Kleinetal. syn B =(cid:104)6π(1+k)c V−1L(cid:105)2/7, (2) 1995;Parmaetal.1999),whileGPS/CSSsourcesarebelievedtobe 12 muchyounger,t =103−105yr(e.g.Murgiaetal.1999).The syn wherekistheheavyelementtoparticleratio,V isthevolume,Lis mainlimitationinthecalculationofsynchrotronagesfor2MASS thesynchrotronluminositybetweenfrequenciesν ,ν andc isa QSOsisthelackofhighresolutionradiodata.Fortheonesource 1 2 12 constantwhichdependsonν andν andthespectralindexα inthesample(F2MS1030+5806)thatsuchobservationsareavail- 1 2 inj oftheradioSED(e.g.Irwinetal.1999).Thevolumeofthesource able,muchyoungeragesareestimated,tsyn <2000yr,similarto is estimated from the highest resolution data available, which in GPS/CCSsources.Itisthereforelikelythattheupperlimitsintsyn most cases are the 22GHz observations. In the absence of milli- listedinTable4areconservative.Inanycase,thesimilarityofthe arcsec radio data for the majority of the sources, this is an upper radio spectral properties of GPS/CSS sources and 2MASS QSOs limitas2MASSQSOsaretypicallyunresolvedinarcsecscaleradio supportstheyouthscenarioforthelatterpopulation. observations.Weusek = 0,ν = 100MHzandν = 100GHz, 1 2 whichareoftenadoptedintheliterature.Theestimatedsynchrotron agesaresomewhatsensitive(factorofafew)tothoseparameters. 4 RADIOVSMULTIWAVELENGTHPROPERTIES Table 4 lists the synchrotron ages and luminosities as well as the magnetic fields for those sources in the sample that an es- Next we study the multiwavelength properties of the reddened timate of ν can be obtained from the observations. In addition QSOsinTable3inrelationtotheirradiospectralcharacteristics. br tosourceswithradiospectrabetterdescribedbyadoublepower- Thisistoinvestigateonasourcetosourcebasisiftheyoungradio law,wealsoestimatet for2MASSQSOsF2MS1540+4923and jetscenarioissupportedbyobservationsatotherwavelengths. syn F2MS1030+5806.Theformerisdescribedbyasinglepower-law FoursourcesinTable3havebeeninvestigatedbyUrrutiaet with α ≈ 0.8, similar to the canonical value of ≈ 0.7 expected al. (2008) for Broad Absorption Lines (BALs) blueward of the (cid:13)c 0000RAS,MNRAS000,000–000 Youngradiosourcesin2MASSQSOs 5 Figure1.RadiospectraofreddenedQSOsinthefrequencyrange1.4-22GHz.SourcesareorderedinawaythattheirRightAscensionisincreasingfromleft torightandfromtoptobottom.Upperlimitsinradiofluxdensityareshownwithanarrowpointingdownward.They-axisinallplotsisscaledtospanthe range±1.5dexaroundthefluxdensityofeachsourceat4.8GHz.Thedashedlinescorrespondtothebest-fitsinglepower-laworcontinuousinjectionmodel withnoadiabaticloses(Kardashev1962).Thelatterisplottedforsourcesforwhichasinglepower-lawprovidesapoorfittothedata(PSPL < 0.05,see Table3).Sourceswithaturnoveratlowfrequenciescannotbefitbythecontinuousinjectionmodel.Also,SourceFM2S1618+3502,whichshowsevidence foraspectralbreakinitsradiospectrum(seeα1.4−4.8GHz,α8.4−22GHzinTable3),isnotdetectedat22GHz.Thissourceisnotfitwiththecontinuous injectionmodelandonly.Forthatsourceonlythesinglepower-lawmodelisshown.Inthefitprocessthe22GHzupperlimitisnotused.helabelonthetop ofeachpanelindicatesthespectralcharacteristicsofeachsource(singlepower-law,doublepower-law,lowfrequencyturnoverorflatradiospectrum). MgII2800A˚ emission. Two of then are classified as Low Ioni- tiaetal.(2009;F2MS0832+0509,F2MS1012+2825)haveflatra- sationBALs(LoBALs;F2MS1344+2839,F2MS1456+0114),the diospectra,indicativeofthermalemissionoftenobservedatQSO classofBALswhichareproposedtorepresentanearlyevolution- cores. arystageinthequasarlifetime(e.g.Beckeretal.2000;Trumpetal. 2006).Interestinglyboththosesourcesalsohaveradiospectrasim- ilartoGPS/CSSsources,consistentwiththeyouthscenario.More- Another source in our sample that shows evidence for out- over,thetwosourcesthatarecharacterisedasnon-BALsbyUrru- flowsintheformofdouble-peakednarrowemissionlinesseparated by600kms−1 (Urrutiaetal.2008)is2MASSQSO10.Theradio (cid:13)c 0000RAS,MNRAS000,000–000 6 Georgakakisetal. spectrumofthatsystemisbetterdescribedbythecontinuousinjec- acriticaltimeoftheirevolutionduringwhichthenataldustandgas tionmodel,suggestiveofyoungradiojets. cocoonthatenshroudstheSMBHisblownawaybysomefeedback HST observations are available for reddened QSOs processrelatedtotheenergyoutputofthecentralengine. 2MASSQSO10, F2MS0841+3604, F2MS0915+2418 and Outflowsintheionisedgasareindeedobservedinreddened F2MS1012+2825 (Urrutia et al. 2008). Those sources which QSOs.Forthehighredshift(z>0.9)subsetofthosesources,for ∼ haveradiospectralpropertiessimilartothoseofGPS/CSSsources whichtheMgII2800A˚ emissionlinelieswithintheopticalspec- (2MASSQSO10, F2MS0841+3604, F2MS0915+2418) also show troscopic window, a high fraction of low ionisation BALs is re- higlydisturbedopticalmorphologiesindicativeofongoingmerg- portedbyUrrutiaetal.(2009).Theyoungradiojetsfoundbyour ers. The one source that shows the least disturbed optical light analysis may play an important role in driving these outflows. In profile is F2MS1012+2825, which is also characterised by a flat themoreradioluminousGPS/CSSsources,outflowsalsotracedin radiospectrum.AlthoughHSTrevealstwonucleiwithseparation theionisedorneutralgas(e.g.Holtetal.2003,2006,2008,2011; of only 0.15arcsec (1.2kpc), the optical isophotes of this object Morganti et al. 2005) and are proposed to be associated with the followasmoothellipticallightprofile. expandingpowerfulradiojets(Batcheldoretal.2007).Thesefind- ThereddenedQSOsinTable1forwhichX-raydataareavail- ingscoupledwiththesuggestionbyGeorgakakisetal.(2009)fora able(Urrutiaetal.2005,F2MS0841+3604,F2MS0915+2418and highfractionofradiodetectionsamongreddenedQSOscompared F2MS1012+2825)typicallyshowhardX-rayspectra,indicativeof to UV/optically bright ones, highlights the potential significance obscured(NH>∼1022cm−2)AGN.Wedonotfindanyobviousre- ofradiojetsasafeedbackmechanismattheearlystagesofAGN lationbetweentheirX-raypropertiesandradiospectra. evolution. Overalltheopticalspectraandmorphologiesofthereddened This is consistent with the two-stage feedback scheme pro- QSOswithradiopropertiessuggestiveofyoungradiojetsarealso posed by Hopkins & Elvis (2010). They suggest that some AGN consistentwithobjectsintheprocessofformation.Twoofthesam- relatedprocess,whichtheevidenceabovesuggestsmightberadio plesourceswithflatradiospectradonotsharethoseproperties. jets,firstdrivesawindinthewarm/hotdiffusegas.Coldcloudsare then deformed and shredded in the wake of this outflow, thereby effectively becoming more susceptible to pressure and ionisation from the QSO intense radiation field. The net result of this pro- 5 DISCUSSION cessisasignificantreductionoftheinitialAGNenergyoutputthat WefindthatalargefractionofreddenedQSOsshoweitherspec- needstocouplewiththeISMtoblowawayordestroythecoldgas tralbreaksand/orturnoversatlowfrequencies(9/16)orsteepra- ofitshostgalaxy,inbetteragreementwithrecentobservations(e.g. diospectraandrelativelysmallradiosizes(4/16).Similarspectral Holtetal.2006,2011). characteristicsareobservedinGPS/CSSradiosourcesandarein- Anotherpopulationofsourceswhicharealsofoundtoinclude terpretedasevidenceforyoung(103−105yrs)andexpandingra- ahighfractionofrelativelyyoungradiojets(<106yrs)areRadio dio jets (O’Dea & Baum 1997; O’Dea 1998; Murgia et al. 1999; ExcessIRASGalaxies(Drakeetal.2003,2004a).Giventhesimi- Murgia 2003; Randall et al. 2011). Compared to that population laritiesintheradiopropertiesofRadioExcessIRASGalaxiesand however, 2MASS QSOs are underluminous at radio frequencies reddened2MASSQSOsitisinterestingtocomparethemultiwave- (5GHz,seeTables1,2)byatleastfewordersofmagnitude.This lengthpropertiesofthetwopopulations. isdemonstratedinFigure2showingthedistributionof5GHzra- RadioExcessIRASGalaxiesareselectedtohaveradioemis- diopowersforoursampleandGPS/CSSsources(O’Dea&Baum sion above the expectation from the radio/far-infrared correlation 1997).Thisislikelybecauseofdifferencesinboththefluxdensity forstar-formation(Drakeetal.2003).Themajorityofthesesources limits(S >5mJyfor2MASSQSOsvsS >1JyforGPS/CSS (70 per cent) are hosted by galaxies which either show disturbed 1.4∼ 4∼ sources)andthetheredshiftdistributions(medianredshiftof0.74 opticalmorphologyorhavenearbycompanionssuggestiveoftidal for2MASSQSOsvs0.9forGPS/CSSsources)ofthetwosamples. interactions(Drakeetal.2004b).Thisissimilarto2MASSQSOs, Inanycase,the2MASSQSOspresentedinthispaperappeartobe alargefractionofwhichshowmorphologicalevidenceformerg- lowpoweranaloguesofGPS/CCSsources. ers (Urrutia et al. 2008). Studies of the optical spectra of Radio The comparison between the radio properties of 2MASS Excess IRAS Galaxies (Buchanan et al. 2006) show a large frac- QSOs and GPS/CSS sources should also take into account the tion of post-starburst stellar continua, indicating recently termi- sizeoftheradioemittingregioninthetwopopulations.Although nated(<1Gyr)star-formationactivity.InreddenedQSOs,theop- CCS sources extend over tens of kpc, the GPS radio population ticalspectrahaveasignificantcontributionfromthecentralengine, is more compact (<1kpc; O’Dea et al. 1998). The VLA/EVLA and therefore the identification of hostgalaxy spectralfeatures is ∼ observations presented in this paper lack the spatial resolution to difficult. Nevertheless, Georgakakis et al. (2009) studied the in- set interesting limits on the size of the radio emitting region of frared properties of reddened 2MASS QSOs and found evidence 2MASS QSOs. Nevertheless, for the one 2MASS QSOs in our forenhancedstar-formationcomparedtoopticallyselectedQSOs. sample(F2MS1030+5806)thattightconstraintsonthejetsizeare Blueshiftsbetweenthe[OIII]5007A˚ lineandthebroademission availablefrommilli-arcsecresolutionobservations,bothitsextent linesarealsoobservedinRadioExcessIRASGalaxiesandarein- andinferedradioageareconsistentwiththoseofGPSsources.It terpretedasevidenceforinteractionsbetweentheradiojetandthe isinterestingthatthissourcesalsohasthehighestradiopowerin surroundinginterstellarmedium(Buchananetal.2006).Similarly, thesample,P =1026W/Hz(seeTable1). outflowsinthewarmISMareobservedinreddenedQSOs(Urrutia 5GHz Thehighincidenceofradiospectralpropertiessuggestiveof et al. 2009). Figure 2 shows that the two populations have simi- youngradiojetsamongreddenedQSOsisconsistentwithsugges- lar radio power distributions at 5GHz, with Radio Excess IRAS tions that these systems represent an early and brief stage of the Galaxieshavingalowermedian.Thiscanbeattributedtothedif- growthofSMBHs(Hopkinsetal.2008;Urrutiaetal.2008,2009; ferent redshift distributions of the two samples, with medians of Georgakakisetal.2009).InthispicturereddenedQSOsarethepre- 0.15and0.74forRadioExcessIRASGalaxiesand2MASSQSOs, decessorsofUV/opticallybrighttype-IAGN.Theyarecapturedat respectively. (cid:13)c 0000RAS,MNRAS000,000–000 Youngradiosourcesin2MASSQSOs 7 Table1.ThesampleofreddenedQSOsobservedbyVLA ID α δ redshift S1.4GHz S4.8GHz S8.4GHz S22.0GHz logP5GHz beamsize (J2000) (J2000) (mJy) (mJy) (mJy) (mJy) (W/Hz) (kpc) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 2MASSQSO10 08:25:02.05 +47:16:51.96 0.804 49.2±2.2 26.8±0.6 16.2±0.8 4.8±0.7 25.4 7.5 F2MS0832+0509 08:32:11.64 +05:09:01.04 1.070 31.3±1.2 17.2±0.5 19.5±0.5 19.5±0.8 25.8 8.1 F2MS0932+3854 09:32:33.29 +38:54:28.12 0.506 51±2 30.0±0.6 21.0±0.5 8.8±1.7 25.2 6.1 F2MS1030+5806 10:30:39.62 +58:06:11.41 0.504 89.0±9.5 132.0±0.5 142.0±0.5 84.32±0.72 26.0 6.1 F2MS1248+0531 12:48:47.16 +05:31:30.79 0.740 16.6±1.2 4.9±0.5 3.08±0.43 <1.52 24.6 21.9 F2MS1341+3301 13:41:08.11 +33:01:10.23 1.720 65.1±0.6 36.6±0.4 21.9±0.5 6.2±0.9 25.9 8.5 F2MS1540+4923 15:40:43.74 +49:23:23.89 0.696 32.99±0.0 12.50±0.40 8.6±0.5 4.4±0.6 25.0 7.1 F2MS1615+0318 16:15:47.90 +03:18:50.83 0.424 54±2 37.4±0.4 34.8±0.5 – 25.2 16.8 F2MS1618+3502 16:18:09.72 +35:02:08.53 0.446 34.3±0.2 13.5±0.4 6.5±0.4 <1.30 24.6 17.1 Thecolumnsare:(1)SourceIDaslistedinGeorgakakisetal.(2009)orUrrutiaetal.(2009);(2)rightascension;(3)declination;(4)sourceredshift;(5) 1.4GHzradiofluxdensityinmJy.SourcesF2MS1540+4923andF2MS1618+3502havenotbeenobservedat1.4GHz.Thelistedfluxdensitiesarefromthe FIRSTsurvey(F2MS1540+4923)andGlikmanetal.(2007;F2MS1618+3502);(6)4.8GHzradiofluxdensityinmJy;(7)8.4GHzradiofluxdensityinmJy; (8)22.0GHzradiofluxdensityinmJy.SourceF2MS1615+0318hasnotbeenobservedatthisfrequencybecauseoftechnicalproblems;(9)Radiopowerat 5GHzestimatedbyinterpolatingbetweentheobserveddatapoints;(10)Linearsizeinkpcoftheantennabeamat22GHzattheredshiftofthesource.For sourcesnotdetectedornotobservedat22GHzthe8GHzbeamsizeislisted.Forunresolvedsources(allbutF2MS1618+3502,seesection2.1)thistheupper limitoftheextentoftheradioemittingregion. Table2.ThesampleofreddenedQSOsobservedbyEVLA ID α δ redshift S1.3GHz S1.8GHz S4.8GHz S8.4GHz S22.0GHz logP5GHz beamsize (J2000) (J2000) (mJy) (mJy) (mJy) (mJy) (mJy) (W/Hz) (kpc) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) F2MS0841+3604 08:41:04.98 +36:04:50.09 0.552 6.6±0.2 - 9.5±0.2 - 1.08±0.02 24.6 25.0 F2MS0915+2418 09:15:01.71 +24:18:12.24 0.842 10.1±0.1 - 21.96±0.07 13.97±0.09 5.34±0.07 25.4 30.5 F2MS1012+2825 10:12:30.49 +28:25:27.15 0.937 8.5±0.1 8.3±0.2 8.3±0.1 5.64±0.04 3.64±0.03 25.1 31.5 2MASSQSO06 13:40:39.68 +05:14:19.90 0.259 12.9±0.3 13.4±0.3 4.46±0.03 2.89±0.03 1.02±0.01 23.8 16.0 F2MS1344+2839 13:44:08.31 +28:39:31.97 1.770 10.5±0.2 - 3.99±0.07 2.11±0.04 0.68±0.01 25.0 33.8 F2MS1456+0114 14:56:03.09 +01:14:45.71 2.378 8.7±0.2 - 11.68±0.06 8.21±0.04 2.64±0.02 25.7 32.6 2MASSQSO02 20:56:29.76 -06:50:55.40 0.635 - 5.8±0.1 1.89±0.02 0.85±0.02 0.26±0.01 24.0 27.4 Thecolumnsare:(1)SourceIDaslistedinGeorgakakisetal.(2009)orUrrutiaetal.(2009;(2)rightascension;(3)declination;(4)sourceredshift;(5)1.3GHz radiofluxdensityinmJy.SourceF2MS1456+0114hasanearbyradiosourcewhichisnotresolvedbytheEVLAL-bandobservations.Theradiofluxdensity atthisfrequencyisfromtheFIRST.TheL-bandobservationsofF2MS0841+3604,F2MS0915+2418sufferedtechnicalproblems.Thelistedfluxdensities forthoseobjectsarefromtheFIRST.The1.3GHzfluxdensityof2MASSQSO02couldnotbeestimated;(6)1.8GHzradiofluxdensityinmJy.The1.8GHz fluxdensityofF2MS1344+2839couldnotbeestimated;(7)4.8GHzradiofluxdensityinmJy;(8)8.4GHzradiofluxdensityinmJy;(9)22.0GHzradioflux densityinmJy;(9)Radiopowerat5GHzestimatedbyinterpolatingbetweentheobserveddatapoints;(10)Linearsizeinkpcoftheantennabeamat22GHz attheredshiftofthesource.ThisistheupperlimitoftheextentoftheradioemittingregionasalllistedsourcesareunresolvedintheEVLAimages. 6 CONCLUSIONS 7 ACKNOWLEDGEMENTS Theauthorswouldliketothankthereferee,JoannaHolt,forcon- structivecomments.AGacknowledgesfinancialsupportfromthe Marie-Curie Reintegration Grant PERG03-GA-2008-230644. JA and MG gratefully acknowledge support from the Science and In summary the multifrequency radio observations (1.4-22GHz) TechnologyFoundation(FCT,Portugal)throughtheresearchgrant of reddened QSOs presented in this paper reveal a high fraction PTDC/CTE-AST/105287/2008. The National Radio Astronomy ofspectralfeatures(breaksand/orturnovers)suggestiveofyoung ObservatoryisafacilityoftheNationalScienceFoundationoper- (<106yrs) radio jets. This is consistent with the youth scenario ∼ atedundercooperativeagreementbyAssociatedUniversities,Inc. forreddenedQSOsaccordingtowhichtheyaresystemscaptured atanearlystageoftheformationoftheirSMBHs.Theevidencefor youngandexpandingradiolobescoupledwithclaimsforahigher fraction of radio detections among reddened QSOs (Georgakakis etal.2009),suggestthatfeedbackassociatedwithradiojetsmay REFERENCES be play an important role at the early phases of the evolution of AGNandtheirhostgalaxies.Thissupportsthetwostagefeedback BatcheldorD.,TadhunterC.,HoltJ.,MorgantiR.,O’DeaC.P., schemesuggestedbyHopkins&Elvis(2010). AxonD.J.,KoekemoerA.,2007,ApJ,661,70 (cid:13)c 0000RAS,MNRAS000,000–000 8 Georgakakisetal. Table3.Radiospectralslopes ID α4.8GHz α22GHz class SPLParameters DPLParameters GPS/CCS 1.4GHz 8.5GHz α χ2 PSPL νbreak αinj χ2 PDPL (GHz) 2MASSQSO10 0.49±0.07 1.3±0.2 (i) 0.75+0.03 27.0 <10−4 5.1+1.1 0.52+0.06 2.5 0.11 DPL −0.02 −1.1 −0.07 F2MS0832+0509 0.49±0.07 0.00±0.09 (iii) – – – – – – – F2MS0841+3604 −0.30±0.06 – (ii) – – – – – – – LFT F2MS0915+2418 −0.63±0.06 1.00±0.07 (ii) – – – – – – – LFT F2MS0932+3854 0.43±0.07 0.9±0.2 (i) 0.54+0.04 6.7 0.035 6.7+0.9 0.43+0.05 0.1 0.75 DPL −0.04 −0.9 −0.05 F2MS1012+2825 0.02±0.06 0.45±0.07 (iii) – – – – – – – F2MS1030+5806 −0.32±0.10 0.54±0.07 (ii) – – – – – – – LFT F2MS1248+0531 1.0±0.1 >0.73 (i) 0.96+0.07 0.3 0.58 – – – – SPL −0.08 2MASSQSO06 0.88±0.06 1.08±0.07 (i) 0.92+0.05 5.3 0.07 – – – – SPL −0.04 F2MS1341+3301 0.47±0.06 1.3±0.2 (i) 0.71+0.03 37.8 <10−4 5.1+0.5 0.47+0.02 5.0 0.025 DPL −0.03 −0.7 −0.04 F2MS1344+2839 0.79±0.06 1.18±0.08 (i) 0.97+0.03 20.0 <10−4 3.8+3.2 0.66+0.08 0.04 0.84 DPL −0.02 −1.2 −0.08 F2MS1456+0114 −0.24±0.06 1.18±0.07 (ii) – – – – – – – LFT F2MS1540+4923 0.78±0.06 0.7±0.2 (i) 0.77+0.02 0.6 0.74 – – – – SPL −0.02 F2MS1615+0318 0.29±0.06 – (iii) – – – – – – – F2MS1618+3502 0.76±0.06 >1.7 (i) 0.88+0.04 2.21 0.14 – – – – DPL −0.04 2MASSQSO02 0.91±0.06 1.23±0.09 (i) 1.25+0.03 2.52 0.28 – – – – SPL −0.04 Thecolumnsare:(1):SourceID;(2)spectralindexα1.4−4.8GHz betweenthefrequencies1.4and4.8GHz;(3)spectralindexα8.4−22GHz betweenthe frequencies8.0and22GHzrespectively;(4)classificationbasedonthespectralindicesα4.8GHz,α22GHz andtheoverallshapeoftheradiospectrum 1.4GHz 8.5GHz (seetextfordetails);(5):best-fitspectralindexforthesinglepower-lawmodel.Theuncertaintiescorrespondtothe68percentconfidencelevel.Forsource F2MS1618+3502onlythe1.4–8.4GHzdataareusedinthefit;(6)χ2 ofthebest-fitsinglepower-lawmodelanddegreesoffreedom;(7)goodnessoffit probabilityforthesinglepower-lawmodelfortheestimatedminimumχ2andthedegreesoffreedom.ForsourceswithPSPL < 0.05best-fitparameters forthecontinuousinjectionmodel(doublepower-law)arealsoestimated.Inthiscasetheadditionalcolumnsare(8)best-fitand68percentconfidencelevel errorsforthebreakfrequencyofthecontinuousinjectionmodel;(9)best-fitand68percentconfidencelevelerrorsforthelowfrequencyspectralindexof thecontinuousinjectionmodel;(10)χ2 ofthebest-fitcontinuousinjectionmodelandnumberofdegreesoffreedom;(11)probabilityofgoodnessoffit; (11)markssourceswithradiospectralfeaturesconsistentwiththoseoftheGPS/CSSpopulation.TheacronymsindicateLFT:lowfrequencyturnovers,DPL: doublepower-lawandSPL:steeppower-lawspectrum. Table4.Synchrotrontimescales ID sourcesize νbreak Lsyn Bmin tsyn (kpc) (GHz) (erg/s) (µG) (yr) 2MASSQSO10 <7.5 5.1 4.0×1043 >34.2 <2.3×106 F2MS0932+3854 <6.1 6.7 1.5×1043 >28.4 <3.0×106 F2MS1030+5806 0.06 >22.0 7.1×1043 2500 <2.0×103 F2MS1341+3301 <8.5 5.1 7.6×1044 >69.1 <0.6×106 F2MS1344+2839 <33.8 3.8 7.0×1043 >41.0 <1.7×106 F2MS1540+4923 <7.1 >22.0 8.3×1042 >12.5 <9.9×106 Thecolumnsare:(1):SourceID;(2):sourcesizeinthehighestresolutionradiodataavailable.Thosearetypicallythe22GHzobservations,exceptfromsource F2MS1030+5806forwhichmilli-arcsecscaleradiodataareavailablefromHelmboldtetal.(2007);(3)best-fitbreakfrequencyofthecontinuousinjection model;(4):synchrotronluminosityinerg/sbetweenfrequenciesν1 =100MHzandν2 =100GHz;(5):minimumenergy(equipartition)magneticfieldin µG(equation2);(6):synchrotrontimescaleinyears(equation1) Becker R. H., White R. L., Gregg M. D., Brotherton M. S., 829–+ Laurent-MuehleisenS.A.,AravN.,2000,ApJ,538,72 DebuhrJ.,QuataertE.,MaC.-P.,2011,MNRAS,412,1341 BeckerR.H.,WhiteR.L.,HelfandD.J.,1995,ApJ,450,559 DebuhrJ.,QuataertE.,MaC.-P.,HopkinsP.,2010,MNRAS,406, BournaudF.,DekelA.,TeyssierR.,CacciatoM.,DaddiE.,Juneau L55 S.,ShankarF.,2011,ArXive-print1107.1483 DegrafC.,DiMatteoT.,SpringelV.,2010,MNRAS,402,1927 Buchanan C. L., McGregor P. J., Bicknell G. V., Dopita M. A., —,2011,MNRAS,413,1383 2006,AJ,132,27 DiMatteoT.,SpringelV.,HernquistL.,2005,Nature,433,604 CenR.,2011,arXiv:1102.0262 DrakeC.L.,BicknellG.V.,McGregorP.J.,DopitaM.A.,2004a, CiottiL.,OstrikerJ.P.,2007,ApJ,665,1038 AJ,128,969 CutriR.M.,NelsonB.O.,KirkpatrickJ.D.,HuchraJ.P.,Smith DrakeC.L.,McGregorP.J.,DopitaM.A.,2004b,AJ,128,955 P. S., 2001,in Bulletinof theAmerican AstronomicalSociety, DrakeC.L.,McGregorP.J.,DopitaM.A.,vanBreugelW.J.M., Vol. 33, Bulletin of the American Astronomical Society, pp. 2003,AJ,126,2237 (cid:13)c 0000RAS,MNRAS000,000–000 Youngradiosourcesin2MASSQSOs 9 DuricN.,1991,inAstronomicalSocietyofthePacificConference M.,LauerT.R.,OegerleW.,2003,AJ,126,706 Series,Vol.18,TheInterpretationofModernSynthesisObserva- WilkesB.J.,SchmidtG.D.,CutriR.M.,GhoshH.,HinesD.C., tionsofSpiralGalaxies,N.Duric&P.C.Crane,ed.,pp.17–26 NelsonB.,SmithP.S.,2002,ApJ,564,L65 FabianA.C.,1999,MNRAS,308,L39 FerrareseL.,MerrittD.,2000,ApJ,539,L9 GebhardtK.,BenderR.,BowerG.,DresslerA.,FaberS.M.,Fil- ippenkoA.V.,GreenR.,GrillmairC.,HoL.C.,KormendyJ., Lauer T. R., Magorrian J., Pinkney J., Richstone D., Tremaine S.,2000,ApJ,539,L13 GeorgakakisA.,etal.,2009,MNRAS,397,623 Glikman E., Helfand D. J., White R. L., Becker R. H., Gregg M.D.,LacyM.,2007,ApJ,667,673 Hambrick D. C., Ostriker J. P., Naab T., Johansson P. H., 2011, ArXive-prints1106.1405 HelmboldtJ.F.,etal.,2007,ApJ,658,203 Holt J., Tadhunter C., Morganti R., Bellamy M., Gonza´lez Del- gadoR.M.,TzioumisA.,InskipK.J.,2006,MNRAS,370,1633 HoltJ.,TadhunterC.N.,MorgantiR.,2003,MNRAS,342,227 —,2008,MNRAS,387,639 Holt J., Tadhunter C. N., Morganti R., Emonts B. H. C., 2011, MNRAS,410,1527 HopkinsP.F.,2011,ArXive-prints1101.4230 HopkinsP.F.,ElvisM.,2010,MNRAS,401,7 HopkinsP.F.,HernquistL.,CoxT.J.,KeresˇD.,2008,ApJS,175, 356 HopkinsP.F.,QuataertE.,2010,MNRAS,407,1529 IrwinJ.A.,EnglishJ.,SorathiaB.,1999,AJ,117,2102 KardashevN.S.,1962,SovietAst.,6,317 KingA.,2003,ApJ,596,L27 —,2005,ApJ,635,L121 KleinU.,MackK.-H.,GregoriniL.,ParmaP.,1995,A&A,303, 427 MorgantiR.,TadhunterC.N.,OosterlooT.A.,2005,A&A,444, L9 MurgiaM.,2003,PASA,20,19 MurgiaM.,FantiC.,FantiR.,GregoriniL.,KleinU.,MackK.-H., VigottiM.,1999,A&A,345,769 O’DeaC.P.,1998,PASP,110,493 O’DeaC.P.,BaumS.A.,1997,AJ,113,148 Pacholczyk A. G., 1970, Radio astrophysics. Nonthermal pro- cessesingalacticandextragalacticsources,Pacholczyk,A.G., ed. Parma P., Murgia M., Morganti R., Capetti A., de Ruiter H. R., FantiR.,1999,A&A,344,7 RandallK.E.,HopkinsA.M.,NorrisR.P.,EdwardsP.G.,2011, MNRAS,416,1135 ReichardT.A.,RichardsG.T.,SchneiderD.P.,HallP.B.,Tolea A.,KrolikJ.H.,TsvetanovZ.,VandenBerkD.E.,YorkD.G., KnappG.R.,GunnJ.E.,BrinkmannJ.,2003,AJ,125,1711 SandersD.B.,SoiferB.T.,EliasJ.H.,NeugebauerG.,Matthews K.,1988,ApJ,328,L35 SilkJ.,ReesM.J.,1998,A&A,331,L1 SpringelV.,etal.,2005,Nature,435,629 TrumpJ.R.,HallP.B.,ReichardT.A.,RichardsG.T.,Schneider D.P.,VandenBerkD.E.,KnappG.R.,AndersonS.F.,FanX., BrinkmanJ.,KleinmanS.J.,NittaA.,2006,ApJS,165,1 Urrutia T., Becker R. H., White R. L., Glikman E., Lacy M., HodgeJ.,GreggM.D.,2009,ApJ,698,1095 UrrutiaT.,LacyM.,BeckerR.H.,2008,ApJ,674,80 UrrutiaT.,LacyM.,GreggM.D.,BeckerR.H.,2005,ApJ,627, 75 WhiteR.L.,HelfandD.J.,BeckerR.H.,GreggM.D.,Postman (cid:13)c 0000RAS,MNRAS000,000–000